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KATSUMI SH IRATAN I AND MIEKO YAMADA (FUKUOKA)

1. Introduction. Let p be an odd prime and q = pf , where f is a
positive integer. Let GF(q) be the finite field of q elements. The character
group of the multiplicative group GF(q)× is generated by the Teichmüller
character ω, and is cyclic of order q − 1.

Let η ∈ 〈ω〉 be a nonprincipal character. For any character χ ∈ 〈ω〉 dif-
ferent from the principal character ω0 and from the character η we consider
the Jacobi sum

J(χ, η) =
∑

x∈GF(q)−{0,1}

χ(x)η(1− x).

We consider the problem of obtaining precise conditions to ensure that
J(χ, η) belongs to the rational number field Q. This problem seems to be of
interest in itself and has an application. Indeed, it is related to a question in
algebraic combinatorics. The Jacobi sum J(χ, η) with the quadratic charac-
ter η = ω

q−1
2 belongs to Q if and only if the T -submodule of the Terwilliger

algebra obtained from a cyclotomic scheme with class 2 is reducible [4].
In this paper we treat only the case where the character η is the quadratic

character ω
q−1
2 . Namely we determine conditions on χ and q ensuring that

J(χ, η) belongs to the rationals Q, in the case f = 2:

Suppose q = p2 and 1 ≤ i ≤ p2−1. Then J(ω−i, ω
p2−1

2 ) is rational if and
only if i = (p−1)k (k = 1, 2, . . . , p), or i = p+1

2 k (k = 1, 3, . . . , 2(p−1)−1),
or ω−i is of order 24 and p ≡ 17, 19 (mod 24), or ω−i is of order 60 and
p ≡ 41, 49 (mod 60) (1).

We can discuss the problem in the general case by the same method.

1991 Mathematics Subject Classification: 11T24.
(1) One of the authors has recently received a reprint of a paper by S. Akiyama,

On the pure Jacobi sums, Acta Arith. 75 (1996), 97–104. The authors have found that
the same result is independently obtained there with a completely different proof. The
authors had already announced the result in a symposium of RIMS at Kyoto University
held in November 1994.
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We turn to the case where q is arbitrary. It is known [7] that Jacobi
sums can be factored into Gauss sums in the sense that

(1) J(χ, η) =
g(χ)g(η)
g(χη)

.

Here we define the Gauss sum g(χ) for any χ ∈ 〈ω〉, as usual, as follows:

g(χ) =
∑

x∈GF(q)×

χ(x)ζs(x)
p ,

where ζp denotes a fixed primitive pth root of unity and s(x) means the
trace of x with respect to GF(q)/GF(p).

Now, we embed the Gauss sum g(ω−i) ∈ Q(ζp, ζq−1) (0 ≤ i ≤ q − 2)
into the p-adic field Qp(ζp, ζq−1) over the p-adic rational number field Qp,
where ζq−1 denotes a primitive (q − 1)th root of unity. Then we have the
Gross–Koblitz formula [5]

(2) g(ω−i) = −$sp(i)

f−1∏
l=0

Γp

(
pli

q − 1
−

l∑
j=1

if−jp
l−j

)
.

Here sp(i) =
∑f−1

j=0 ij means the sum of the coefficients of the canonical p-
adic expansion of i, namely i = i0 + i1p+ . . .+ if−1p

f−1 with 0 ≤ ij ≤ p−1,
and $ denotes a prime element in the field Qp(ζp) such that $ = p−1

√
−p,

$ ≡ ζp − 1 (mod (ζp − 1)2). The function Γp(x) is the p-adic gamma
function. For example, we see for η = ω−

q−1
2 that

g(ω−
q−1
2 ) = −$

p−1
2 fΓp

(
1
2

)f
.

In the sequel, for the sake of convenience, we call the product appearing in
the Gross–Koblitz formula the gamma product part and $sp(i) the $-part
of the Gauss sum g(ω−i).

2. A formulation in the general case. The condition J(ω−i, ω
q−1
2 ) ∈

Q is equivalent to J(ω−i, ω
q−1
2 ) ∈ Z, the ring of rational integers, because

J(ω−i, ω
q−1
2 ) is an algebraic integer. This condition yields easily f ≡ 0

(mod 2), in view of |J(ω−i, ω
q−1
2 )| = √

q and the formula (1).
Next, as J(ω−i, ω

q−1
2 ) ∈ Z is left fixed by the element σ−1 in the Ga-

lois group G(Q(ζq−1, ζp))/Q(ζp)), which is defined by σ−1(ζq−1) = ζ−1
q−1,

σ−1(ζp) = ζp, we have by the equality (1),

(3)
g(ω−i)

g(ω−i+ q−1
2 )

=
g(ωi)

g(ωi+ q−1
2 )

.

Then, comparing the $-parts of both sides we see at once that

sp(i)− sp(j) = sp(q − 1− i)− sp(q − 1− j),
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where we put ω−j = ω−i+ q−1
2 with 1 ≤ j ≤ q − 2. Hence we have sp(i) =

sp(j). In the case 1 ≤ i < q−1
2 this gives sp(i) = sp

(
i + q−1

2

)
, and in

the case q−1
2 < i ≤ q − 2 this gives sp(i) = sp

(
i − q−1

2

)
from the equality

sp(q − 1− i) + sp(i) = f(p− 1).
In the former case this can be rewritten as

sp(i) + sp

(
q − 1

2
− i

)
= f(p− 1),

and this means that the canonical p-adic expansion i = i0 + i1p + . . . +
if−1p

f−1 has just f
2 coefficients not smaller than p−1

2 .
Moreover, for f ≡ 0 (mod 2) we see

(4) g(ω−
q−1
2 ) = (−1)1+

f
2

p−1
2 p

f
2 .

Hence, J(ω−i, ω
q−1
2 ) ∈ Z means necessarily that its absolute value is p

f
2 .

From this and (1), (4) we conclude that

g(ω−i) = ±g(ω−i+ q−1
2 ).

Conversely, if this equality holds together with f ≡ 0 (mod 2), we see
readily that J(ω−i, ω

q−1
2 ) = ±p

f
2 ∈ Z. In the sequel we may assume 1 ≤

i < q−1
2 , because we can take q − 1 − i instead of i if necessary. Thus we

have the following:

Theorem 1. It is necessary and sufficient for J(ω−i, ω
q−1
2 ) ∈ Q that we

have f ≡ 0 (mod 2), sp(i) = sp

(
i + q−1

2

)
and

f−1∏
l=0

Γp

(
pli

q − 1
−

l∑
j=1

if−jp
l−j

)

= ±
f−1∏
l=0

Γp

(
pl

(
i + q−1

2

)
q − 1

−
l∑

j=1

(
i +

q − 1
2

)
f−j

pl−j

)
.

3. The case f = 2. In what follows we treat only the case f = 2. In
this case the condition can be simply expressed as follows.

For 1 ≤ i < p2−1
2 , let i = i0 + i1p be the canonical expansion of i. Then

the equality in Theorem 1 states that for p−1
2 < i0 ≤ p− 1, 0 ≤ i1 < p−1

2 we
have

(5) Γp

(
i0 + i1p

p2 − 1

)
Γp

(
i1 + i0p

p2 − 1

)
= ±Γp

(
i0 + i1p

p2 − 1
+

1
2

)
Γp

(
i1 + i0p

p2 − 1
− 1

2

)
.

We immediately get two systems of trivial solutions of this equation, namely
solutions with the integers i that satisfy

i0 + i1p

p2 − 1
= 1− i1 + i0p

p2 − 1
or

i0 + i1p

p2 − 1
=

i1 + i0p

p2 − 1
− 1

2
.
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The former follows from the norm relation Γp

(
i1+i0p
p2−1

)
Γp

(
1− i1+i0p

p2−1

)
= ±1,

which is explained below. Hence in the range 1 ≤ i < p2 − 1 we obtain

Theorem 2. For i = (p − 1)k (k = 1, . . . , p) or i = p+1
2 k (k =

1, 3, . . . , 2(p− 1)− 1) we have J(ω−i, ω
p2−1

2 ) ∈ Z.

In order to find all nontrivial solutions we explain the distribution re-
lation of Gauss sums. The equality g(ω−i) = ±g(ω−i+ q−1

2 ) in question is
a relation between Gauss sums. Hence it follows necessarily only from the
norm relations, the Davenport–Hasse relations and the 2-torsion relations of
Gauss sums, because the Davenport–Hasse distribution of the Gauss sums is
the universal odd distribution up to 2-torsion relations [6]–[9]. The equality
g(ω−i) = ±g(ω−i+ q−1

2 ) is equivalent to g(ω−i)2 = g(ω−i+ q−1
2 )2, thus this

equality comes only from the norm relations and the Davenport–Hasse re-
lations. It is also known that the norm relations and the Davenport–Hasse
relations of Gauss sums can be obtained from the norm relations and the
distribution relations of the p-adic gamma function Γp(x) together with con-
sideration of the $-parts by making use of the Gross–Koblitz formula. The
norm relations of Γp(x) in the case of odd p are as follows [5]:

Γp(x)Γp(1− x) = (−1)1+u(−x) for any x ∈ Zp,

where u(−x)∈ Z denotes the unique integer satisfying u(−x)≡−x (mod p),
0 ≤ u(−x) ≤ p− 1.

The distribution relations of Γp(x) are expressed as follows. Let m be
any natural number prime to p. Then

(6)
∏m−1

h=0 Γp

(
x+h
m

)
Γp(x)

∏m−1
h=1 Γp

(
h
m

) = mu(−x)(m1−p)
1
p (u(−x)+x)

for any x ∈ Zp [5]. This is called the m-multiplication formula.
Now, if d denotes the order of the character ω−i, the equality g(ω−i) =

±g(ω−i+ p2−1
2 ) is left fixed by any ϕ(d) automorphisms of the Galois group

G(Q(ζd)/Q) of the extension Q(ζd)/Q, where ζd means a primitive dth root
of unity.

By setting

i0 + i1p

p2 − 1
=

α

d
,

i1 + i0p

p2 − 1
=

β

d
, (α, d) = (β, d) = 1,

namely i0 = 1
d (βp− α), i1 = 1

d (αp− β), where αp ≡ β (mod d), βp ≡ α
(mod d), the equality (5) can be rewritten as

(7) Γp

(
α

d

)
Γp

(
β

d

)
= ±Γp

(
α

d
+

1
2

)
Γp

(
β

d
− 1

2

)
.



JACOBI SUMS 255

Furthermore, α and β satisfy

(8) 0 <
α

d
<

1
2

and
1
2

<
β

d
< 1.

From the invariance property mentioned above, the equality (7) is simply
equivalent to

(9) Γp

(
1
d

)
Γp

(
β

d

)
= ±Γp

(
1
d

+
1
2

)
Γp

(
β

d
− 1

2

)
,

where β ≡ p (mod d), 1
d < β

d −
1
2 < β

d < 1
d + 1

2 .
First we assume that the equality (9) (or (7)) holds. Under this assump-

tion we prove several lemmas.

Lemma 1. Denote the order of ω−i by d. If ω−i gives a nontrivial solu-
tion, namely the equality (7) holds for ω−i, then d is divisible by 4.

P r o o f. The order of χη = ω−i+(p2−1)/2 is d or 2d when d is even or
odd respectively. Therefore, we can suppose that d is odd by taking χη
instead of χ if necessary. Then σ2 : ζd → ζ2

d is an element of the Galois
group G(Q(ζd)/Q). Let n be the minimal positive integer such that 2n ≡ 1
(mod d). From the assumption and letting σ2 operate repeatedly on the
Davenport–Hasse relation

g(χ)2 = ±g(χ)g(χη) = ±χ(2−2)g(η)g(χ2),

we obtain

(10) g(χ) = g(χ2n

) = ±p−(2n−1)g(χ)2
n

.

By the Gross–Koblitz formula we then have

g(χ)2
n

= −($
α+β

d (p−1))2
n

(
Γp

(
α

d

)
Γp

(
β

d

))2n

.

Comparing the $-parts of both sides of (10) we have

$
α+β

d (p−1) = ±(−$
α+β

d (p−1))2
n

p−(2n−1).

This yields α+β
d = 1. By virtue of the norm relation of Γp(x) this means

that ω−i is a trivial solution. Consequently, d is divisible by 4.

As mentioned before, since the equality is a relation between Gauss sums,
it comes from the norm relations and the distribution relations of the p-adic
gamma function. It is equivalent to obtain the simultaneous solutions of the
equality (9) and the distribution relations (6). Thus, if the equality (9) or
(7) has a simultaneous solution with the m-multiplication formula for some
positive integer m prime to p, then we call the equality (9) m-reducible.
Then the equality holds if and only if there exists an odd prime l such that l
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divides d exactly once and the equality is l-reducible. Namely, if the equality
is m-reducible for some m, then it has to be l-reducible for some odd prime l.

Using these definitions we have

Lemma 2. Assume that ω−i gives a nontrivial solution of the equality
(9) and this is l-reducible for an odd prime divisor l of d. Then l is equal
to 3 or 5. Furthermore, the equality holds only when d = 24 and p ≡ 17, 19
(mod 24) or d = 60 and p ≡ 41, 49 (mod 60).

P r o o f. We distinguish two cases according as p − 1 ≡ 0 (mod l) or
p + 1 ≡ 0 (mod l).

C a s e 1: p + 1 ≡ 0 (mod l). As (p − 1, l) = 1, the denominator of
β
d −

1
d ≡ p−1

d (mod 1) is divisible by l. From the above, it must be equal
to l.

Now we put

β

d
− 1

d
=

h

l
, (h, l) = 1, 0 < h < l.

The left-hand side of the equality (9) appears in the numerator of the fol-
lowing distribution relation:

(11)
∏l−1

x=0 Γp

(
1
d + x

l

)
Γp( l

d )
∏l−1

x=1 Γp

(
x
l

) = lu(− l
d )(l1−p)

1
p (u(− l

d )+ l
d ).

Similarly the right-hand side of (9) appears in the numerator of the distri-
bution relation

(12)
∏l−1

x=0 Γp

(
β
d −

1
2 + x

l

)
Γp

(
lβ
d − l

2

) ∏l−1
x=1 Γp(x

l )
= lu(− lβ

d + l
2 )(l1−p)

1
p (u(− lβ

d + l
2 )+ lβ

d −
l
2 ).

Exactly one fraction, say 1
d + m

l , in the numerator of (11) has the denomina-
tor d

l . Then 1
d + m

l = 1
d (1+ dm

l ) ≡ 0 (mod l
d ). The other l−1 fractions have

the denominator d. We first consider the fraction 1
d + j

l (0 ≤ j < h, j 6= m).
Letting the automorphism σp : ζd → ζp

d operate on the Gauss sums, we have

p

(
1 +

d

l
j

)
≡ β +

d

l
pj ≡ β − d

l
j ≡ 1 +

d

l
(h− j) (mod d).

This means that Γp

(
1
d + j

l

)
Γp

(
1
d + h−j

l

)
is the gamma product part of the

Gauss sum g(χξl), where ξl denotes a character of order l. Since an element
of the Galois group G(Q(ζd)/Q) maps g(χ) to g(χξl) and the equality is left
fixed by this automorphism, the fractions 1

d + j
l and 1

d + h−j
l satisfy the

condition (8), namely one of them is less than 1
2 and the other is greater

than 1
2 .

Next we consider the fractions 1
d + h+j

l (0 < j < l − h, j 6= m). Letting
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σp operate on the Gauss sums, we have

p

(
1+

d

l
(h+j)

)
≡ β+

d

l
p(h+j) ≡ 1+

d

l
h− d

l
(h+j) ≡ 1+

d

l
(l−j) (mod d).

This means that Γp

(
1
d + h+j

l

)
Γp

(
1
d + l−j

l

)
is also the gamma product part

of a Gauss sum. Hence 1
d + h+j

l and 1
d + l−j

l must also satisfy the condition
(8), but both numbers are greater than 1

2 .
Therefore h = l − 1 or h = l − 2, and m = l − 1. But the case h = l − 2

and m = l − 1 does not occur. Indeed, when we take j = l−1
2 , the product

Γp

(
1
d + 1

l
l−1
2

)
Γp

(
1
d + 1

l

(
l− 2− l−1

2

))
is the gamma product part of a Gauss

sum. But the fractions 1
d + 1

l
l−1
2 and 1

d + 1
l

(
l − 2− l−1

2

)
do not satisfy the

condition (8), as

1
d

+
1
l

l − 1
2

<
1
2

and
1
d

+
1
l

(
l − 2− l − 1

2

)
<

1
2
.

Hence h = l − 1. We see that m = 1
2 (l − 1) and β = 1 + d

l (l − 1). Since
the l− 1 values of the gamma function in the numerator of (11) (also (12))
are the gamma product parts of certain l−1

2 Gauss sums, and an element
of G(Q(ζd)/Q) maps g(χ) to those l−1

2 Gauss sums, and the equality is left
fixed by these automorphisms, the distribution relations (11), (12) give rise
to the relation

(13) Γp

(
l

d

)
Γp

(
1
2
− 1

d
+

1
2l

)
= ±Γp

(
l

d
+

1
2

)
Γp

(
1
2l
− 1

d

)
.

Since 1
2l −

1
d ≡

1
d ( d

2l −1) ≡ 0 (mod l
d ), we obtain d

2l ≡ 1 (mod l). Therefore
the order d can be written as d = 2l(kl + 1) for some odd integer k.

Assume that kl ≡ 1 (mod 4). If l is not equal to 5, we put x = 1
2 (kl+5).

Then by letting the automorphism σ 1
2 (kl+5) : ζd → ζ

1
2 (kl+5)

d operate on the
Gauss sum g(χ), we have

βx = (1 + 2(lk + 1)(l − 1))
1
2
(kl + 5)

≡ 1
2
(−2l − 2l(k − 1)− 1)(kl + 5)

≡ kl2 − 9
2
kl + l − 5

2
(mod d).

The condition (8) is not satisfied except for l = 3 as

kl2 − 9
2
kl + l − 5

2
<

d

2
= kl2 + l.

When kl ≡ 3 (mod 4) and l 6= 3, by letting the automorphism σ 1
2 (kl+3) :

ζd → ζ
1
2 (kl+3)

d operate on the Gauss sum g(χ), we see that (8) is not satisfied.
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Now we assume l = 3. Then d = 18k + 6 and β = 12k + 5. If k ≡ 1
(mod 4) and k > 1, we put x = 1

2 (3k+7). Then by letting the automorphism

σ 1
2 (3k+7) : ζd → ζ

1
2 (3k+7)

d operate on the Gauss sum g(χ), we have

βx =
1
2
(3k + 7)(12k + 5) ≡ 7k + 5 +

1
2
(k + 1) (mod d),

7k + 5 +
1
2
(k + 1) < 9k + 3 =

d

2
.

This contradicts (8).
If k ≡ 3 (mod 4), we see that βx is also less than 1

2 by letting the
automorphism σ 1

2 (3k−11) for k > 3 operate on the Gauss sum. In two cases
l = 3, k = 1 and l = 3, k = 3, we can verify easily that for every positive
integer c such that (c, d) = 1, one of c

d and βc
d is less than 1

2 and the other
is greater than 1

2 .
We treat the case l = 5 similarly. Assume k > 1. Then, operating by

σ 1
2 (5k−7) : ζd → ζ

1
2 (5k−7)

d if k ≡ 1 (mod 4) and by σ 1
2 (5k+3) : ζd → ζ

1
2 (5k+3)

d

if k ≡ 3 (mod 4) respectively, we get the same contradiction. However, the
condition (8) is satisfied in the case k = 1.

Consequently, we have the solutions d = 24, β = 17, and d = 60, β = 41,
and d = 60, β = 49.

C a s e 2: p − 1 ≡ 0 (mod l). As (p + 1, l) = 1, the denominator of
3
2 −

β
d −

1
d ≡

3
2 −

p+1
d (mod 1) is divisible by l, hence it must be equal to l.

As above, we have quite similarly the solutions d = 24, β = 19, and d = 60,
β = 41, and d = 60, β = 49.

From Lemmas 1 and 2 we obtain

Theorem 3. It is necessary and sufficient for J(ω−i, ω
p2−1

2 ) ∈ Q, except
for the trivial solutions, that the character ω−i is of order 24 for p ≡ 17, 19
(mod 24) or the character ω−i is of order 60 for p ≡ 41, 49 (mod 60).

P r o o f. Assume that the equality (7) or (9) holds. From the above
lemmas, the order d is equal to 24 or 60, and p ≡ 17, 19 (mod 24) or
p ≡ 41, 49 (mod 60).

Conversely, let d be equal to 24 or 60, and p ≡ 17, 19 (mod 24) or
p ≡ 41, 49 (mod 60), respectively. When d = 24 and p ≡ 17 (mod 24),
from the norm relations together with the distribution relations of Γp(x),
we have

Γp

(
1
24

)
Γp

(
9
24

)
Γp

(
17
24

)
Γp

(
1
8

)
Γp

(
1
3

)
Γp

(
2
3

) = 3u(− 1
8 )(31−p)

1
p (u(− 1

8 )+ 1
8 ) = 1

and
Γp

(
5
24

)
Γp

(
13
24

)
Γp

(
21
24

)
Γp

(
5
8

)
Γp

(
1
3

)
Γp

(
2
3

) = 3u(− 5
8 )(31−p)

1
p (u(− 5

8 )+ 5
8 ) = 1,
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hence we obtain the equality

Γp

(
1
24

)
Γp

(
17
24

)
= ±Γp

(
5
24

)
Γp

(
13
24

)
.

When d = 60 and p ≡ 41 (mod 60), from the norm relations together
with the two distribution relations, we easily get

Γp

(
1
60

)
Γp

(
21
60

)
Γp

(
41
60

)
Γp

(
1
20

) = ±
Γp

(
11
60

)
Γp

(
31
60

)
Γp

(
51
60

)
Γp

(
11
20

) .

By making use of the distribution relation of 5-multiplication

Γp

(
1
20

)
Γp

(
5
20

)
Γp

(
9
20

)
Γp

(
13
20

)
Γp

(
17
20

)
Γp

(
1
4

)
Γp

(
1
5

)
Γp

(
2
5

)
Γp

(
3
5

)
Γp

(
4
5

) = 5u(− 1
4 )(51−p)

1
p (u(− 1

4 )+ 1
4 ) = 1,

we see that

Γp

(
1
60

)
Γp

(
41
60

)
= ±Γp

(
11
60

)
Γp

(
31
60

)
.

This completes the proofs for sufficiency in the cases treated.
In the other cases, where d = 24 and p ≡ 19 (mod 24) or d = 60 and

p ≡ 49 (mod 60), the sufficiency can be proved in a similar way.

It should be noted that the condition in Theorem 3 is sufficient in any
general case where the problem is considered in GF(pf ) with f ≡ 0 (mod 2).
If a character ω−i of order d is a solution of the equality, then the induced
character ω−i ◦ NGF(pf )/GF(p2) of GF(pf )×, which is of the same order d,
also satisfies the equality(

Γp

(
1
d

)
Γp

(
β

d

)) f
2

= ±
(

Γp

(
1
d

+
1
2

)
Γp

(
β

d
− 1

2

)) f
2

,

where p ≡ β (mod d) and NGF(pf )/GF(p2) means the norm with respect to
GF(pf )/GF(p2).

This equality amounts just to one of the Davenport–Hasse relations for
Gauss sums. Thus we see that the condition in Theorem 3 is still sufficient
in any general case with f ≡ 0 (mod 2).
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