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1. Introduction. By Drozd’s Tame and Wild Theorem [8] the class of
finite-dimensional algebras (associative, with identity) over an algebraically
closed field may be divided into two disjoint classes. One class consists of the
tame algebras, for which the indecomposable modules occur in each dimen-
sion d in a finite number of discrete and a finite number of one-parameter
families. The second class is formed by the wild algebras whose represen-
tation theory is as complicated as the study of finite-dimensional vector
spaces together with two non-commuting endomorphisms, for which the
classification of the indecomposable finite-dimensional modules is a well-
known difficult problem. Hence we can hope to classify the modules only
for tame algebras. Among the tame algebras we may distinguish the class of
polynomial growth algebras A for which there exists an integer m (depend-
ing on A) such that, in each dimension d, the indecomposable A-modules
occur in a finite number of discrete and at most dm one-parameter fami-
lies.

Frequently, applying covering techniques, we may reduce the represen-
tation theory of a given tame (respectively, polynomial growth) algebra to
that of the corresponding simply connected algebra. Recently, the class of
polynomial growth simply connected algebras has been extensively investi-
gated. In particular, a rather complete representation theory of polynomial
growth strongly simply connected algebras has been established by the sec-
ond author in [21]. One of the important open problems is to extend this
theory to arbitrary simply connected algebras of polynomial growth. We are
especially interested in criteria for a simply connected algebra to be of poly-
nomial growth. This leads to the study of tame simply connected algebras
which are minimal not of polynomial growth (they themselves are not of
polynomial growth but every proper convex subcategory is).

The main aim of this article is to introduce and classify (by quivers and
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relations) a class of tame minimal non-polynomial growth simply connected
algebras, which we call (generalized) polynomial growth critical algebras.
Moreover, we describe basic properties of polynomial growth critical alge-
bras and the structure of the category of indecomposable finite-dimensional
modules over such algebras. It is expected that the class of polynomial growth
critical algebras introduced and investigated here will play an important role
in the study of arbitrary tame non-polynomial growth simply connected al-
gebras.

The paper is organized as follows. In Section 2 we fix the notations
and recall the needed definitions. In Section 3 we introduce the polyno-
mial growth critical algebras and classify them by quivers and relations. In
particular, we prove that all such algebras are simply connected and their
opposite algebras are also polynomial growth critical. Moreover, applying
the main results of [21], we get a handy criterion for a strongly simply
connected algebra to be of polynomial growth. Section 4 is devoted to the
tilting classes of polynomial growth critical algebras. We prove that two
polynomial growth critical algebras with the same number of simple modules
belong to the same tilting class. Then we deduce that the Euler form of
any polynomial growth critical algebra is positive semi-definite with radical
of rank 2. In Section 5 we determine the Coxeter polynomial of any poly-
nomial growth critical algebra and show that the eigenvalues of its Coxeter
matrix are roots of unity. In the final Section 6 we investigate the module
category of polynomial growth critical algebras. We completely describe the
structure of all non-regular components of their Auslander–Reiten quivers
and discuss the behaviour of non-regular components in the category of in-
decomposable finite-dimensional modules. In particular, we show that the
Auslander–Reiten quiver of any polynomial growth critical algebra has ex-
actly one preprojective component, exactly one preinjective component, and
exactly one component containing both a projective module and an injective
module.

The authors gratefully acknowledge support from the Polish KBN Grant
No. 2 PO3A 020 08 and the Sonderforschungsbereich 343 (Universität Biele-
feld).

2. Preliminaries. Throughout this article, K will denote a fixed alge-
braically closed field. By an algebra is meant an associative finite-dimension-
al K-algebra with an identity, which we shall assume to be basic and con-
nected. An algebra A can be written as a bound quiver algebra A ∼= KQ/I,
where Q = QA is the quiver of A and I is an admissible ideal in the path
algebra KQ of Q. Equivalently, an algebra A = KQ/I may be considered
as a K-category whose object class is the set of vertices of Q, and the set
of morphisms A(x, y) from x to y is the quotient of the K-space KQ(x, y)
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of all K-linear combinations of paths in Q from x to y modulo the sub-
space I(x, y) = I ∩ KQ(x, y). An algebra A with QA having no oriented
cycle is said to be triangular . A full subcategory C of A is said to be con-
vex if any path in QA with source and target in QC lies entirely in QC .
Following [1] a triangular algebra A is called simply connected if, for any
presentation A ∼= KQ/I of A as a bound quiver algebra, the fundamental
group Π1(Q, I) of (Q, I) is trivial. Moreover, following [20] an algebra A
is said to be strongly simply connected if every convex subcategory of A is
simply connected. It was shown in [20] that a triangular algebra is strongly
simply connected if and only if every convex subalgebra C of A satisfies the
separation condition of Bautista, Larrión and Salmerón [3]. For example, if
QA is a tree, then A is strongly simply connected.

For an algebra A, we denote by modA the category of finite-dimensional
right A-modules and by indA its full subcategory consisting of the indecom-
posable modules. We shall denote by ΓA the Auslander–Reiten quiver of A
and by τA = DTr and τ−A = TrD the Auslander–Reiten translations. We
shall agree to identify an indecomposable A-module with the vertex of ΓA
corresponding to it. For each vertex i of QA we denote by SA(i) the simple
A-module having K at the vertex i, by PA(i) the projective cover of SA(i),
and by IA(i) the injective envelope of of SA(i). For a module M in modA
we shall denote by dimM the dimension vector (dimKM(i))i vertex inQA

. The
support suppM of a module M in modA is the full subcategory of A given
by all vertices i of QA such that M(i) 6= 0.

Let A be an algebra and K[X] the polynomial algebra in one variable.
Following [8], A is said to be tame if, for each dimension d, there exists a
finite number of K[X]-A-bimodules Mi, 1 ≤ i ≤ nd, which are finitely gen-
erated and free as left K[X]-modules, and such that all but a finite number
of isomorphism classes of indecomposable right A-modules of dimension d
are of the form K[X]/(X − λ) ⊗K[X] Mi for some λ ∈ K and some i. Let
µA(d) be the least number of K[X]-A-bimodules satisfying the above condi-
tions. Then A is said to be of polynomial growth if there is a positive integer
m such that µA(d) ≤ dm for any d ≥ 1 (cf. [19]). Examples of polynomial
growth algebras are tilted algebras of Euclidean type and tubular algebras
[15].

Let A = KQ/I be a triangular algebra. Denote by K0(A) the Grothen-
dieck group of A. Then K0(A) = Zn, where n is the number of vertices of Q.
The Euler quadratic form χA of A is the integral quadratic form on K0(A)
such that

χA(dimX) =
∞∑
i=0

(−1)i dimK ExtiA(X,X)

for any module X in modA (see [15, (2.4)]). If gl.dimA ≤ 2 then χA coin-
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cides with the Tits form qA of A, defined for x = (xi)i∈Q0 ∈ K0(A) as follows:

qA(x) =
∑
i∈Q0

x2
i −

∑
(i→j)∈Q1

xixj +
∑
i,j∈Q0

ri,jxixj ,

where Q0 and Q1 are the sets of vertices and arrows of Q, respectively,
and ri,j is the cardinality of L ∩ I(i, j) for a minimal set of generators
L ⊆

⋃
i,j∈Q0

I(i, j) of the ideal I (see [4]).
For basic background on the representation theory of finite-dimensional

algebras we refer to [15].

3. Tame minimal non-polynomial growth algebras. In this section
we give a complete description of a class of tame minimal non-polynomial
growth algebras by quivers and relations. For an algebra A = kQ/I, gener-
ators of I are usually called relations. In our bound quivers, a dashed line
indicates a relation being the sum of all paths from the starting point to the
end point. Moreover, a dotted line indicates a zero-relation along a path of
length 2.

Recall that a concealed algebra is of concealed type ∆ if it is an algebra
C of the form C = EndH(T ) where H is a hereditary algebra of type ∆ and
T is a preprojective tilting H-module. We know from [5], [10] that there
is only one family of concealed algebras of type Ãn, n ≥ 1, given by the
quivers

r r r r
r
· · ·

#
#

#
##

c
c
c
cc

and four families of concealed algebras of type D̃n, n ≥ 4, given by the
following quivers and relations:

(1) q
q q q q q q

q
��

@@ · · · ��

@@

(2) q
q q q q
��

@@ · · · q
q

q




�

J
JĴ

@@R
···

��	

(3) q
q

q
J
JĴ





�

��	
···
@@R

q q· · · q
q

q




�

J
JĴ

@@R
···

��	

(4) q q q qqq
���
- · · · -

@@R
XXXz ���:H
HHj �

��*

where the number of vertices is equal to n + 1 and q q means q q- orq q� . It is known that if C is a concealed algebra of Euclidean type then ΓC
consists of a preprojective component P, a preinjective component Q and a
P1(K)-family T = (Tλ)λ∈P1(K) of stable tubes. It is shown in [15, (4.9)] that
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an algebra B is a tilted algebra EndH(T ), where H is a hereditary algebra
of type D̃n and T a tilting H-module without preinjective (respectively,
preprojective) direct summands, if and only if B is a tubular extension
(respectively, coextension) of tubular type (2, 2, n− 2) of a concealed algebra
C of type Ãm or D̃m, m ≤ n. In the case when B is a tubular extension of
C (of type (2, 2, n− 2)), ΓB consists of a preprojective component P ′ (which
is the preprojective component of ΓC), a preinjective component Q′ having
a complete slice of type D̃n, and a P1(K)-family T ′ = (T ′λ)λ∈P1(K) of ray
tubes. Two tubes in T ′ have 2 rays, one has n − 2 rays, and the remaining
ones are stable tubes of rank 1 (homogeneous tubes). We have the dual
structure for ΓB in the case when B is a tubular coextension of C (of type
(2, 2, n− 2)). Finally, we note that any representation-infinite tilted algebra
of type D̃n is of one of the above types.

The main objective of this article is to investigate the following class of
algebras. By a polynomial growth critical algebra, briefly pg-critical algebra,
we mean an algebra A satisfying the following conditions:

(i) A is of one of the forms:

B[M ] =
[
K M
0 B

]
, B[N, t] =



K K · · · K K K N
K · · · K K K 0

. . .
...

...
...

...
K K K 0

0 K 0 0
K 0

B


,

where B is a representation-infinite tilted algebra of the form EndH(T ), for
a hereditary algebra H of type D̃n and a titlting H-module T without non-
zero preinjective direct summands, M = HomH(T,R) (respectively, N =
HomH(T, S)) for an indecomposable regular H-module R of regular length
2 (respectively, indecomposable regular H-module S of regular length 1)
lying in a tube of ΓH with n − 2 rays, and t + 1 (t ≥ 2) is the number
of objects of B[N, t] which are not in B.

(ii) Every proper convex subcategory of A is of polynomial growth.

If A = B[M ] then the quiver QA of A consists of the quiver QB of B
and an extension vertex w (which is a source of QA) such that M is the
restriction of PA(w) to B. In the case when A = B[N, t] the quiver QA
consists of QB and the quiver

q q q qqw

a

b
c

- - · · · - ���

@@R

and N is the restriction of PA(w) to B.
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The following proposition motivates the name “pg-critical algebra”.

Proposition 3.1. Let A be a pg-critical algebra. Then A is tame but
not of polynomial growth.

P r o o f. We may assume that A is of the form B[M ] or B[N, t]. If A =
B[M ] then the claim follows from [14] and [17]. In the case when A = B[N, t],
applying the APR-tilting module [2] induced by the simple projective A-
module given by one of the vertices a or b, we get an algebra of type B′[M ′]
for a tubular extension of a tilted algebra B′ of type D̃n+t and a regular
indecomposable B′-module M ′ of regular length 2 lying in the tube of ΓB′
having n+ t− 2 rays.

We note that the use of the term “pg-critical algebra” in the present
paper slightly deviates from its use in an earlier publication by the authors
[12]. Here, we consider a more general class of algebras which seems to
be crucial for studying arbitrary tame simply connected algebras which are
not of polynomial growth. Observe also that in the above definition of a
pg-critical algebra both conditions (i) and (ii) are essential. Indeed, if Λ is
an algebra given by the following quiver and relations:r

r
ra
r
r
r
r r
r
r

@
@R

�
��

?- ?- - �
��

@
@R

········································
················································································

then Λ satisfies (i) but not (ii), as the convex subcategory of Λ formed by
all vertices except a is still not of polynomial growth. The algebra Γ given by
the following quiver and relations:

q qq

q
q
q
q

��	

��	 @@R

@@R ��	

@@R

S
S
Sw

�
�
�/

is tame (see [14, (3.9)]) with all proper convex subcategories representation-
finite (hence of polynomial growth) but does not satisfy (i).

In order to save space in the theorem below and to make the list below
more accessible we write down only the possible frames. Given such a frame,
we allow the following admissible operations:

(i) Replacing each subgraph

q qq
��

@@

ppp
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by

q qq�
�

@@

or q
q

q




�

J
JĴ

@@R
···

��	

(ii) Choice of arbitrary orientations in non-oriented edges.
(iii) Constructing the opposite algebra.

Theorem 3.2.An algebra A is pg-critical if and only if it is obtained from
a frame in the following list by admissible operations:

(1) q
q

q



�

J
Ĵ
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(6)
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(22)
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(30)
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q
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(31) qqq
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q
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q
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?

?
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···

��	 B
B
B
B
B
B
B
B
BBN

�
�
�	

S
S
S
S
S
SSw

��	
···

��	

B
B
B
B
B
B
B
B
BBN

�
�
�	

S
S
S
S
S
SSw

@@R
· · ·
@@R qXXXXXXXz q- · · · -

··········································································· ······· ······· ······· ·······

P r o o f. Let B be a representation-infinite tilted algebra of type D̃n,
n ≥ 4, with a complete slice in its preinjective component. Then B can be
obtained from a concealed algebra C (of type Ãm or type D̃m, m ≤ n) by
adding branches L1, . . . , Lr in the extension vertices ω1, . . . , ωr of a multi-
ple one-point extension C[E1][E2] . . . [Er] of C by pairwise non-isomorphic
simple regular C-modules E1, . . . , Er. In this process we create two tubes
with 2 rays, one tube with n − 2 rays and the remaining tubes (of rank 1)
are not changed (see [15, Section 4]). Moreover, if C is of type Ãm, then B

contains a convex, tilted subcategory C of type D̃s, m < s ≤ n, isomorphic
to one of the following:

qq
q qq
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··········
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In this case, the structure of indecomposable regular C-modules of regular
length at most 2 is well known. In the case when C is of type D̃m, the inde-
composable regular C-modules of regular length at most 2 are completely
described in [12].

Let now A be a pg-critical algebra of one of the forms B[M ] or B[N, t].
Then a direct analysis shows that every proper convex subcategory of B is
of polynomial growth if and only if A is a minimal non-polynomial growth
algebra of one of the forms
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D(U) =
[
K U
0 C

]
, E(V ) =

K 0 V
0 K V
0 0 C

 , F (V ) =
[
Λ V r

0 C

]
, or

G(V ) =



K K K . . . K W
K K . . . K V

K . . . K V
. . .

...
...

0 K V
C

 ,

where C = C if C is of type D̃m, U is an indecomposable regular C-module
of regular length 2 lying in a tube with s − 2 rays, V is a simple regular
C-module lying in a tube with s− 2 rays, W is the direct successor of V (in
ΓC), Λ is given by one of the following quivers:

q q q qq· · · ��

@@
w a

q q · · · q
q

q




�

J
JĴ

@@R
···

��	

w a

(possibly w = a, but no loop) and such that F (N)(x, y) = N(y)⊗K Λ(x,w)
for any object x in Λ and any object y in C. Therefore it remains to describe
the bound quivers of minimal non-polynomial growth algebras of the above
types D(U), E(V ), F (V ), G(V ) and their duals.

The strongly simply connected algebras of the form D(U), E(V ), F (V ),
and their duals, have been described by the authors in [12]. All such alge-
bras are minimal non-polynomial growth, hence pg-critical, and appear in
the families (1)–(16). Further, a direct analysis of the remaining possibil-
ities, using the known structure of the indecomposable regular C-modules
of regular length at most 2, leads to A being given by one of the frames
(1)–(31) or by one of the following forms:

(r1)

qq

q q q
q

q
q q

q
��	
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···
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··········

(r2) q

q

q

q

q
q q
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�
�
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HHj · · ·
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TAME NON-POLYNOMIAL GROWTH ALGEBRAS 313

(r3)
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JĴ

J
JĴ
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The above algebras (r1)–(r6) contain a proper convex subcategory of one

of the forms

(s1)

q
q q
q
q

@@R

���

?

?

� �

� �
(s2) q qqq

@@R��	

��	@@R

� �

� �
which are not of polynomial growth. Indeed, the universal Galois coverings of
these algebras (with infinite cyclic group) admit convex subcategories given
by pg-critical trees. Therefore, applying Proposition 3.1 and the properties
of the associated push down functors [9], we deduce that (s1) and (s2) are
not of polynomial growth. Hence the algebras (r1)–(r6) are not pg-critical.
This finishes the proof.

Corollary 3.3. Let A be a pg-critical algebra. Then

(i) A is simply connected.
(ii) gl.dimA = 2.

(iii) Aop is pg-critical.



314 R. NÖRENBERG AND A. SKOWROŃSKI

P r o o f. This follows from the shape of the frames (1)–(31) and the fact
that the algebras B[M ] and B[N, t], defining the pg-critical algebras, have
global dimension 2.

It is shown in [21] that a strongly simply connected algebra A is of
polynomial growth if and only if A does not contain a convex subcategory
which is hypercritical or pg-critical. The hypercritical algebras (which are
the preprojective tilts of minimal wild hereditary tree algebras) have been
classified by quivers and relations (cf. [22]). This together with the corollary
below gives a handy criterion for a strongly simply connected algebra to be
of polynomial growth.

Corollary 3.4. Let A be an algebra. The following are equivalent :

(i) A is tame minimal non-polynomial growth strongly simply connected.
(ii) A is strongly simply connected pg-critical.

(iii) A is obtained from one of the frames (1)–(16) by admissible opera-
tions.

P r o o f. This follows from Theorem 3.2, and Theorem 4.1 in [21].

Following [7] a triangular algebra A is called completely separating if it
is Schurian (that is, dimK(PA(x), PA(y)) ≤ 1 for all vertices x and y of QA)
and every convex subcategory of A has the separation property. We then get
the following consequence of the above corollary:

Corollary 3.5.Let A be a completely separating algebra. Then A is tame
minimal of non-polynomial growth if and only if A is obtained from one of
the frames (1)–(11) by applying admissible operations.

4. The tilting classes of pg-critical algebras. Recall that the Euler
form χA of an algebra A is called positive semi-definite if χA(z) ≥ 0 for all
z ∈ K0(A). In this case, the radical radχA of χA is the set of all z ∈ K0(A)
satisfying χA(z) = 0. Moreover, radχA is then a subgroup of K0(A) and its
rank is said to be the radical rank of χA.

For every n ≥ 4 denote by Λn the following pg-critical algebra of type
(13):

n+ 2

1 2

3

4

n− 2

n− 1

n

n+ 1
�

�
�

��	
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@
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which we call a canonical pg-critical algebra. Since gl.dimΛn = 2, for x ∈
K0(Λn) = Zn+2, we have

χΛn
(x) =

n+2∑
i=1

x2
i −

n−2∑
i=3

xixi+1

−x1x3 − x2x3 − x1xn+2 − x2xn+2 − xn−1xn − xn−1xn+1

−xnxn+2 − xn+1xn+2 + x3xn+2 + xn−1xn+2

=
(
x1 − 1

2x3 − 1
2xn+2

)2 +
(
x2 − 1

2x3 − 1
2xn+2

)2
+

1
2

n−2∑
i=3

(xi − xi+1)2

+
1
2

(xn−1 − xn − xn+1 + xn+2)2 +
1
2

(xn − xn+1)2.

Hence χΛn
is positive semi-definite and radχΛn

is the free abelian subgroup
of K0(Λn) generated by the vectors h∞ = (1, 1, 0, 0, . . . , 0, 0, 1, 1, 2) and h =
(1, 1, 1, 1, . . . , 1, 1, 1, 1, 1).

Observe that h∞ is the positive generator of radχH∞ , where H∞ is the
tame hereditary convex subcategory of Λn given by the vertices 1, 2, n, n+ 1,
n + 2. Further, consider also the tame hereditary convex subcategory H0 of
Λn given by the vertices 1, 2, 3, . . . , n− 1, n, n+ 1, and the positive generator
h0 = (1, 1, 2, 2, . . . , 2, 2, 1, 1, 0) of radχH0 . Then 2h = h0 + h∞, and hence
h0 and h∞ generate a subgroup of radχΛn

of index 2.
We say that an algebra Λ can be obtained from an algebra Γ by a se-

quence of tilts if there is a finite sequence of algebras Γ = Γ0, Γ1, . . . , Γr+1 = Λ
and tilting Γi-modules Ti, 0 ≤ i ≤ r, such that, for each i, Γi+1 is isomorphic
to EndΓi

(Ti).
The aim of this section is to prove the following theorem:

Theorem 4.1. Let A be a pg-critical algebra and n be the rank of K0(A).
Then

(i) Λn−2 can be obtained from A by a sequence of tilts.
(ii) A can be obtained from Λn−2 by a sequence of tilts.
(iii) χA is positive semi-definite with radical rank 2.

In order to prove the theorem we need the following two lemmas.

Lemma 4.2. Let H be a hereditary algebra of type D̃n, n ≥ 4, let T
be a tilting H-module without non-zero preinjective direct summands, and
B = EndH(T ). Let M be an indecomposable regular B-module of regular
length 2 lying in a tube of ΓB with n − 2 rays, let R be the indecomposable
regular H-module of regular length 2 such that M = HomH(T,R), and let
Λ be the one-point extension Λ = H[R] of H by R, say with the extension
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vertex w. Then T ′ = T ⊕ PΛ(w) is a tilting Λ-module and EndΛ(T ′) is
isomorphic to the one-point extension B[M ] of B by M .

P r o o f. Observe that the number of pairwise non-isomorphic indecom-
posable direct summands of T ′ is equal to the rank of the Grothendieck group
K0(Λ) ∼= K0(H) ⊕ Z. Clearly, pdΛ T ′ ≤ 1, because pdΛ T = pdH T ≤ 1.
Moreover, Ext1Λ(T ′, T ′) = 0 since Ext1Λ(T, T ) = Ext1H(T, T ) = 0, PΛ(w) is
projective, and Ext1Λ(T, PΛ(w)) = Ext1H(T,R) = 0, because R belongs to
the torsion class of the tilting theory in modH determined by T . Finally,
we get

EndΛ(T ′) ∼=
(
K HomH(T,R)
0 HomH(T, T )

)
=
(
K M
0 B

)
= B[M ].

Lemma 4.3. Let H be a hereditary algebra of Euclidean type and R1,
R2 two indecomposable regular H-modules lying in the same τH-orbit of
ΓH , say R2 = τ−mH R1 for some m ≥ 0. Consider the one-point exten-
sions Λ1 = H[R1] and Λ2 = H[R2], say with the extension vertices w1

and w2, respectively. Then T = τ−mH H ⊕ PΛ2(w2) is a tilting Λ2-module and
EndΛ2(T ) ∼= Λ1.

P r o o f. Clearly, pdΛ2
(T ) ≤ 1 and T has the correct number of pairwise

non-isomorphic indecomposable direct summands. Moreover,

Ext1Λ2
(τ−mH H, τ−mH H) ∼= Ext1H(H,H) = 0,

PΛ2(w2) is projective and

Ext1Λ2
(τ−mH H,PΛ2(w2)) ∼= DHomΛ2(PΛ2(w2), τΛ2(τ−mH H))

∼= DHomΛ2(PΛ2(w2), τH(τ−mH H)) = 0.

Further,

R1 = HomH(H,R1) ∼= HomH(τ−mH H, τ−mH R1)
= HomH(τ−mH H,R2) = HomH(τ−mH H,PΛ2(w2)).

Therefore,
EndΛ2(T ) ∼=

(
K R1

0 H

)
= Λ1.

P r o o f o f T h e o r e m 4.1. (i) First observe that if A is of type B[N, t]
then applying the APR-tilting module [2] associated with one of the two
simple projective A-modules which are not B-modules, we get a pg-critical
algebra of type B′[M ′]. Hence we may assume that A is of type B[M ]. Now
applying Lemmas 4.2 and 4.3 we infer that after one or two tilts we may pass
to an algebra H[R], where H is the hereditary algebra given by the quiver

2

1

3 4 n− 1

n

n+ 1

@@R

���

� � ··· � ��	

@@I
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and R is an arbitrary indecomposable regular H-module of regular length
2 lying in a tube of ΓH of rank n − 2. For n ≥ 5 we have only one tube of
rank n − 2 in ΓH and this contains the following indecomposable module of
regular length 2:

K

K

K2 K K

K

K

@
@R

�
��

� � ··· �
�
�	

@
@I

(−1
−1

)
(
1
0

)
(
0
1

)
1 1

1

1

Taking this module as R we find that H[R] is isomorphic to Λn.
For n = 4, ΓH has three tubes of rank 2, which contain the following

indecomposable modules of regular length 2:

K2

K K

K K

@@R ��	

��� @@I

(−1
−1

)
(
1
0

)
(
0
1

)
(
0
1

) K2

K K

K K

@@R ��	

��� @@I

(
0
1

)
(
1
0

)
(−1
−1

)
(
0
1

) K2

K K

K K

@@R ��	

��� @@I

(
0
1

)
(
1
0

)
(
0
1

)
(−1
−1

)
Taking any of these modules as R we deduce that H[R] is isomorphic to Λ4.
This proves (i).

(ii) From Corollary 3.3 we know that Aop is also a pg-critical algebra.
Further, by (i), there exists a sequence of algebras Aop = Γ0, Γ1, . . . , Γr+1 =
Λn−2 and tilting Γi-modules Ti such that Γi+1 = EndΓi

(Ti) for 0 ≤ i ≤ r.
Then each Ti is also a tilting Γ op

i+1-module and Γ op
i = EndΓ op

i+1
(Ti). There-

fore we get a sequence of tilts Λn−2 = Λop
n−2 = Γ op

r+1, Γ
op
r , . . . , Γ op

1 , Γ op
0 =

(Aop)op = A leading from Λn−2 to A.
(iii) Since A can be obtained from Λn−2 by a sequence of tilts, the forms

χA and χΛn−2 are Z-congruent (see [15, (4.1)(7)]). Hence χA is positive
semi-definite with radical rank 2, by the above description of the properties
of χΛn−2 .

5. The Coxeter matrix. Let A be a triangular algebra and P1, . . . , Pn
a complete set of pairwise non-isomorphic indecomposable A-modules. The
Cartan matrix CA of A is the (n × n)-matrix whose (i, j)-entry is given by
dimK HomA(Pi, Pj). Then CA is invertible over Z and we get a symmetric
bilinear form (−,−)A on K0(A), given by (x, y)A = 1

2x(C−1
A + C−TA )yT ,

such that χA(x) = (x, x)A. Further, the matrix ΦA = −C−TA CA is called
the Coxeter matrix of A. The characteristic polynomial of ΦA is called the
Coxeter polynomial of A. Note also that, for χA positive semi-definite, we
have {x ∈ K0(A) | χA(x) = 0} = {x ∈ K0(A) | xΦA = x}.
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Theorem 5.1. Let A be a pg-critical algebra and n be the rank of K0(A).
Then

(i) Φ2(n−5)
A is the identity matrix.

(ii) The Coxeter polynomial of A is of the form (Tn−5+1)(T−1)2(T+1)3.

In particular , the spectral radius of ΦA is 1.
P r o o f. It follows from Section 4 that A is in the same tilting class as an

algebra Λ = Λm, m ≥ 4. Then, by [15, (4.1)(7)], there exists an invertible
matrix Ψ such that ΦA = ΨΦΛΨ

−1. Therefore it is sufficient to prove the
claim for Λ. This can be done by elementary calculations. In fact, the Cartan
matrix CΛm is by definition given by

CΛm =



1 0 0 0 0 · · · 0 0 0 0 1
0 1 0 0 0 · · · 0 0 0 0 1
1 1 1 1 1 · · · 1 1 1 1 2

1 1 · · · 1 1 1 1 1
1 · · · 1 1 1 1 1

0
. . .

...
...

...
...

...

0 1 1 1 1 1
1 1 1 1

1 0 1
0 0 0 1 1

0 0 1



.

Its inverse C−1
Λm

, depending on m, is, for m = 4,

C−1
Λ4

=


1 0 0 0 0 −1
0 1 0 0 0 −1
−1 −1 1 −1 −1 2

1 0 −1
0 0 1 −1

0 0 1

 ,
and for m > 4,

C−1
Λm

=



1 0 0 0 0 · · · 0 0 0 −1
0 1 0 0 0 · · · 0 0 0 −1
−1 −1 1 −1 0 · · · 0 0 0 1

1 −1 0 · · · 0 0 0 0

1 −1
. . .

...
...

...
...

0
. . .

. . . 0 0 0 0
0 1 −1 0 0 0

1 −1 −1 1

1 0 −1
0 0 0 1 −1

0 0 1



.
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Thus the Coxeter matrix ΦΛm = −C−TΛm
CΛm is, for m = 4,

ΦΛ4 =


0 1 1 1 1 1
1 0 1 1 1 1
−1 −1 −1 −1 −1 −2

1 1 1 0 1 1
1 1 1 1 0 1
−1 −1 −2 −1 −1 −1

 ,
and for m > 4,

ΦΛm
=



0 1 1 1 · · · 1 1 1 1
1 0 1 1 · · · 1 1 1 1
−1 −1 −1 −1 · · · −1 −1 −1 −2

1 1 1 0 · · · 0 0 0 1
0 0 0 1 0 · · · 0 0 0 0
...

...
...

. . .
. . .

...
...

...
...

0 0 0 0 1 0 0 0 0
0 0 0 0 · · · 0 1 0 1 0
0 0 0 0 · · · 0 1 1 0 0
0 0 −1 −1 · · · −1 −2 −1 −1 0


.

Now (i) is a matter of direct verification, while (ii) follows by induction and
expansion, using the (m− 1)st row of the corresponding determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T −1 −1 −1 · · · −1 −1 −1 −1
−1 T −1 −1 · · · −1 −1 −1 −1

1 1 T + 1 1 · · · 1 1 1 2

−1 −1 −1 T · · · 0 0 0 −1
0 0 0 −1 T · · · 0 0 0 0
...

...
...

. . .
. . .

...
...

...
...

0 0 0 0 −1 T 0 0 0
0 0 0 0 · · · 0 −1 T −1 0
0 0 0 0 · · · 0 −1 −1 T 0
0 0 1 1 · · · 1 2 1 1 T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

6. The Auslander–Reiten quiver. The main aim of this section is to
describe the structure of non-regular components of the Auslander–Reiten
quiver of a pg-critical algebra. Moreover, we give a view on the structure of
the category of indecomposable modules over such an algebra.

Let A be a pg-critical algebra. If A = B[M ] we put B0 = B and denote
by w the extension vertex of A = B0[M ]. Assume now A = B[N, t]. Then
QA consists of QB and the quiver

q q q qqw

a

b
c

- - · · · - ���

@@R
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and N is the restriction of PA(w) to B. Denote by B0 the convex subcate-
gory of A given by all objects of A except a. Then B0 is a tilted algebra of
type D̃n+t having a complete slice in the preinjective component, contain-
ing B as a convex subcategory, and A is the one-point coextension of B0

by the injective module IB0(c). In both cases, B0 is a tubular extension of
tubular type (2, 2, r), with r = n or r + n + t, of its unique tame concealed
convex subcategory C0 (of type Ãm or D̃m). It follows from [15, (4.9)] that
ΓB0 consists of a preprojective component P0, formed by the indecompos-
able preprojective C0-modules, a P1(K)-family T (λ)

0 , λ ∈ P1(K), of pairwise
orthogonal ray tubes, and a preinjective component I0, containing all inde-
composable injective B0-modules. In (T (λ)

0 )λ∈P1(K) two tubes have 2 rays,
one has r − 2 rays, and the remaining ones are homogeneous (stable tubes
of rank 1). Without loss of generality, we may assume that T (0)

0 and T (1)
0

are tubes with 2 rays and T (∞)
0 is the tube with r − 2 rays containing a

module which is a direct predecessor (if A = B[M ]) or direct successor (if
A = B[N, t]) of PA(a) in ΓA.

Since Aop is also pg-critical, by Corollary 3.3, we conclude that A is also
of one of the forms

[M ′]B′ =
[
B′ D(M ′)
0 K

]
, [t′, N ′]B′ =



B′ 0 0 0 · · · 0 D(N ′)
K 0 K · · · K K

K K · · · K K

K · · · K K

0 . . .
...

...
K K

K


,

where B′ is a representation-infinite tilted algebra of type D̃n′ with a com-
plete slice in the preprojective component, M ′ (respectively, N ′) is an inde-
composable regular B′-module of regular length 2 (respectively, 1) lying in
a tube of ΓB′ with n′ − 2 corays, and t′ + 1 (t ≥ 2) is the number of objects
of [t′, N ′]B′ which are not in B′.

If A = [M ′]B′ we put B∞ = B′ and denote by a′ the coextension vertex
of A = [M ′]B∞. Assume now that A = [t′, N ′]B′. Then the quiver QA of A
consists of QB′ and the quiver,

q q q qqw′

a′

b′
c′

� � · · · � ��	

@@I

and N ′ is the restriction of IA(w′) to B′. Denote by B∞ the convex subcat-
egory of A given by all objects of A except a′. Then B∞ is a tilted algebra
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of type D̃n′+t′ having a complete slice in the preprojective component, con-
taining B′ as a convex subcategory, and A′ is the one-point extension of B∞
by the projective module PB∞(c′). In both cases, B∞ is a tubular coexten-
sion of tubular type (2, 2, r), with r = n′ or r = n′ + t′, of its unique tame
concealed convex subcategory C∞ (of type Ãm′ or D̃m′).

It follows from [15, (4.9)] that ΓB∞ consists of a preinjective component
Q∞, formed by the indecomposable preinjective C∞-modules, a P1(K)-family
T (λ)
∞ , λ ∈ P1(K), of pairwise orthogonal coray tubes, and a preprojective

component P ′∞ containing all indecomposable projective B∞-modules. In
(T (λ)
∞ )λ∈P1(K) two tubes have 2 corays, one has r − 2 corays and the re-

maining ones are homogeneous. We may assume that T (0)
∞ , T (1)

∞ are tubes
with 2 corays and T (∞)

∞ is the tube with r−2 corays containing a module which
is a direct successor (if A = [M ′]B′) or a direct predecessor (if A = [t′, N ′]B′)
of IA(a′) in ΓA.

Further, denote by T0 the tubular K-family T (λ)
0 , λ ∈ K, by T∞ the

tubular K-family T (λ)
∞ , λ ∈ K, by Q0 the class of indecomposable A-modules

whose restrictions to B0 have no non-zero direct summands from P0 and T0,
and by P∞ the class of indecomposable A-modules whose restrictions to B∞
have no non-zero direct summands from T∞ and Q∞. Finally, denote by ∆
the following quiver of type D∞:

q
q q q q q@@I

��	

- - - · · ·

Theorem 6.1. Let A be a pg-critical algebra. Then

(i) ΓA = P0∨T0∨Q0∩P∞∨T∞∨Q∞, where Q0∩P∞ is a disjoint union
of regular components and one non-regular component C, and the ordering
from left to right indicates that there are non-zero maps (in modA) only
from any of these families to itself or to the families to its right.

(ii) The regular components in Q0∩P∞ consist entirely of modules whose
restrictions to B0 have non-zero preinjective direct summands and whose re-
strictions to B∞ have non-zero preprojective direct summands.

(iii) The component C has the following properties:

(a) C contains all modules of T (∞)
0 and T (∞)

∞ .
(b) The stable part of C is of the form ZA∞.
(c) C admits a full translation subquiver R = (−N)∆ which is closed

under successors in C and consists of modules whose restrictions to B0 are
direct sums of modules from T (∞)

0 and whose restrictions to B∞ are direct
sums of preprojective modules.
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(d) C admits a full translation subquiver L = N∆op which is closed under
predecessors in C and consists of modules whose restrictions to B0 are direct
sums of preinjective modules and whose restrictions to B∞ are direct sums of
modules from T (∞)

∞ .
(e) HomA(L,R) = 0 and HomA(R,L) 6= 0.

P r o o f. Assume first that A = B[N, t]. Then, in the above notation,
AA = P ′⊕SA(a). Consider the APR-tilting A-module T = P ′⊕τ−A SA(a) and
the algebra A′ obtained from A by reversing the arrow c→ a to c← a. Then
A′ = EndA(T ) is a pg-critical algebra of the form B0[PB0(c)]. Moreover,
by [2], the functor HomA(T,−) : modA → modA′ induces an equivalence
between the full subcategory of modA formed by all modules without direct
summands isomorphic to SA(a) and the full subcategory of modA′ formed
by all modules without direct summands isomorphic to SA′(a). Moreover,
ΓA′ is obtained from ΓA by replacing

SA(b)

SA(a) PA(c)

s
s
s
s@

@R
-

�
��

�
��

-

@
@R

@
@R
-

�
��

and s���-
@
@R

IA(b)

IA(a)

s
@
@R
-

�
��

IA(c)
@
@

by

SA′(b)
@
@R

�
��

PA′(c) -
�
��

@
@R

PA′(a)

s

s
-

@
@R

�
��

s and s���-
@
@R

IA′(b)

s
s
@
@R
-

�
��

IA′(c) -IA′(a)
@
@

respectively. Therefore, in order to prove the theorem, we may assume that
A is of the form B[M ]. We identify the objects of modB[M ] = modA with
the triples (V,X, ϕ), where V is a (finite-dimensional) vector space over K,
X an object of modB and ϕ : V → HomB(M,X) is a K-linear map. Then
the B-modules X are the triples (0, X, 0). Moreover, a B[M ]-homomorphism
(V,X, ϕ) → (W,Y, ψ) consists of a pair (α, f), where α : V → W is a K-
linear map, f : X → Y a B-homomorphism, and ψα = HomB(M,f)ϕ. It

is known that if 0 → X
f→ Y

g→ Z → 0 is an Auslander–Reiten sequence in
modB then in modB[M ] we have an Auslander–Reiten sequence

0→ (|X|, X, 1|X|)
(1|X|,f)
−−−→ (|X|, Y, |f |)→ Z → 0,

where |X| = HomB(M,X) and |f | = HomB(M,f) (see [15, (2.5)(6)]). Since
in our situation HomB(M,P0∨T0) = 0, we conclude that ΓA = P0∨T0∨Q0.
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Denote by C0 the connected component of ΓA containing PA(a). Observe
that the restriction of the vector space category HomB(M,modB) to the
tube T (∞)

0 is the K-linear category of the partially ordered set given by the
following full translation subquiver:

M = X0 X1 X2

Y1 Y2 Y3

6 6 6

- - -

- - -

· · ·

· · ·

of T (∞)
0 given by the corresponding two parallel rays of T (∞)

0 . We get the
indecomposable A-modules

Xi = (|Xi|, Xi, 1Xi
), Y i = (|Yi|, Yi, 1Yi

), i ≥ 1,
where |Xi| = |Yi| = K. Clearly, PA(a) = (|X0|, X0, 1X0). Moreover, since
HomB(M,Xi) and HomB(M,Yi) are, for i ≥ j, orthogonal objects of
HomB(M,modB), we get (see [16, (2.4)]) the indecomposable A-modules

Zi,j = (K,Xi ⊕ Yj , ∆i,j), i ≥ j,
where ∆i,j : HomB(M,Xi ⊕ Yj) = K2 are the diagonal maps. Applying
the above formula for Auslander–Reiten sequences in modB[M ] with the
right terms being B-modules, and calculating the corresponding cokernels,
we infer that C0 has a full translation subquiver R of the form

X0

X1

X2

X3

X4

Y1

Z11

Z21

Z31

Z41

X1

Z22

Z32

Z42

Y3

Z33

Z43

X3

Z44PA(a) Y2 X2 Y4
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�
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�
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�
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�
��

�
��

�
��

�
��

�
��

�
��
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@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

- - - - - - - - - · · ·

· · ·
· · ·

· · ·
· · ·

· · ·
formed by the modules X0, PA(a), Xi, Xi for i ≥ 1, Yj for j ≥ 1, and Zi,j
for 1 ≤ j ≤ i. Obviously, R ∼= (−N)∆ and is closed under successors in
C0. Consider also the modules Ui = τ−B Yi, i ≥ 1. Observe that, if T (∞)

0 has
only two rays, then Ui+1 = Xi for i ≥ 0. Calculating the Auslander–Reiten
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sequences with right terms Ui, i ≥ 1, we conclude that C0 admits a full
translation subquiver of the form

Y 1

Y 2

Y 3

Y 4

U1

U2

U3

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

�
��

�
��

�
��

· · ·
· · ·

Moreover, the Auslander–Reiten sequences in modB with right terms in
T (∞)

0 but different from the modules Yi, Ui, i ≥ 1, are Auslander–Reiten
sequences in modB[M ] = modA. Hence all rays of T (∞)

0 except the one con-
taining the modules Yi, i ≥ 1, form infinite sectional paths also in C0. This
also shows that C0 contains all indecomposable projective A-modules which
do not belong to P0 ∨ T0. Further, the stable part of C0 is then isomorphic
to ZA∞. Finally, observe that, if L is an indecomposable A-module whose
restriction to B0 is a direct sum of modules from T (∞)

0 , then L belongs to
C0. This is clear if L is a B-module. Suppose L is not a B-module. Then L =
(V,Z, ϕ) for some vector space V , Z ∈ modB, and ϕ : V → HomB(M,Z).
By our assumption, V 6= 0, ϕ 6= 0 and Z is a direct sum of modules of
the form Xi, i ≥ 0, and Yj , j ≥ 1. Then the structure of indecomposable
representations of partially ordered sets of width 2 (see [16, (2.4)]) implies
that L is one of the modules PA(a) = X0, Xi, Y i, i ≥ 1, or Zi,j , 1 ≤ j ≤ i,
and we are done.

Applying dual arguments for the one-point coextension (extension) lead-
ing from B∞ to A, we infer that ΓA = P∞ ∨ T∞ ∨Q∞. Therefore

(∗) ΓA = P0 ∨ T0 ∨Q0 ∩ P∞ ∨ T∞ ∨Q∞.

Further, the connected component, say C∞, of ΓA containing the module
IA(a′) admits a full translation subquiver L which is isomorphic to N∆op and
is closed under predecessors in C∞. Moreover, C∞ contains all indecompos-
able A-modules whose restrictions to B∞ are direct sums of modules from
T (∞)
∞ . All corays of T (∞)

∞ except one (whose modules are distributed in L)
are infinite sectional paths in C∞. Finally, C∞ contains all indecomposable
injective A-modules which do not belong to T∞ ∨Q∞, and the stable part of
C∞ is isomorphic to ZA∞.

It follows from the above considerations and the decomposition (∗) that
R consists of modules whose restrictions to B∞ are direct sums of preprojec-
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tive B∞-modules and the restrictions to B0 are direct sums of modules from
T (∞)

0 . Similarly, L consists of modules whose restrictions to B0 are direct
sums of preinjective B0-modules and the restrictions to B∞ are direct sums
of modules from T (∞)

∞ . In particular, HomA(L,R) = 0 and HomA(R,L) 6= 0.
Moreover, the regular components of Q0 ∩ P∞ consist entirely of modules
whose restrictions to B0 have non-zero preinjective direct summands and
the restrictions to B∞ have non-zero preprojective direct summands. Conse-
quently, in order to complete the proof, it is enough to show that C0 = C∞.
For this we have several cases to consider, depending on the shape of the
quiver of A. We will not go through all these cases in detail, but rather
discuss one example, which essentially describes all situations that occur in
a complete analysis.

Consider the following algebra A of type (16):

x1 x2 xk−1 xk w

xk+1

xk+2w′

x−1x0

�
�	
�����

@
@R

HH
HHj

- - · · · - - �

?

?
�� ···

········································

Then A is of the form A = B0[M ], where B0 is the full subcategory created
by all objects except w, and M = PB0(xk)/PB0(xk+2). Further, in the above
notation, Y0 = PB0(xk)/PB0(xk+1) = PA(xk)/PA(xk+1). Also, A is of the
form A = [M ′]B∞, where B∞ is the full subcategory created by all objects
except w′. There are essentially three cases, depending on k.

In case k > 2, any of the simple modules SA(xj), i < j < 2, lies in T (∞)
0

as well as in T (∞)
∞ , and thus in C0 ∩ C∞.

For k ≤ 2, consider the module

L = τ−B Y0 = PB0(xk−1)/PB0(xk) = PA(xk−1)/PA(xk).

Then L lies in T (∞)
0 , thus in C0, and τAL = PA(w)/PA(xk+1).

In case k = 2, τAL = PA(w)/PA(x3) lies in T (∞)
∞ , thus in C∞. So C0 and

C∞ are connected to each other, thus coincide.
In case k = 1, τAL = PA(w)/PA(x2) is neither a module over B0 nor

over B∞. However, τ2
AL = PA(x1)/(PA(x0) q PA(x−1)) again lies in T (∞)

0

and C∞, so that C0 and C∞ coincide. This completes the proof.

Recall that the component quiver ΣΛ of an algebra Λ is defined as follows
[18]: the vertices of ΣΛ are the connected components of ΓA, and two com-
ponents D and E are connected in ΣΛ by an arrow D → E if rad∞(X,Y ) 6= 0
for some modules X ∈ D and Y ∈ E . Here, rad∞(X,Y ) denotes the inter-
section of all finite powers radi(X,Y ) of the radical rad(X,Y ).
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From Theorem 6.1 we get the following information on the component
quiver of a pg-critical algebra.

Corollary 6.2. Let A be a pg-critical algebra. Then, in the above
notation, the following statements hold :

(i) P0 is a unique source of ΣA and there are arrows from P0 to all
remaining vertices of ΣA.

(ii) Q∞ is a unique sink of ΣA and there are arrows from all remaining
vertices of ΣA to Q∞.

(iii) For each λ ∈ K, there are arrows in ΣA from T (λ)
0 to all components

of (Q0 ∩P∞)∨T∞ ∨Q∞, and P0 → T (λ)
0 is a unique arrow with target T (λ)

0 .
(iv) For each λ ∈ K, there are arrows in ΣA from all components of

P0 ∨ T0 ∨ (Q0 ∩ P∞) to T (λ)
∞ , and T (λ)

∞ → Q∞ is a unique arrow with source
in T (λ)

∞ .
(v) For each regular component D in Q0 ∩ P∞, there are arrows C → D

and D → C in ΣA.
(vi) ΣA admits a loop C → C.

P r o o f. We know that there are only finitely many indecomposable B0-
modules (respectively, B∞-modules) whose restrictions to C0 (respectively,
C∞) are zero. The statements (i)–(iv) follow from Theorem 4.1 and the facts
that (T (λ)

0 )λ∈P1K separates P0 from I0 in indB0, and (T (λ)
∞ )λ∈P1K separates

P ′∞ from Q∞ in indB∞. Moreover, (vi) follows from HomA(R,L) 6= 0 and
the fact that C has no oriented cycles. Take now an arbitrary regular compo-
nent D in Q0 ∩ P∞. For (v) it is enough to show that HomA(PA(a), X) 6= 0
and HomA(Y, IA(a)) 6= 0 for some modules X and Y in D. Suppose that
HomA(PA(a), X) = 0 for all X in D. Then D consists of B0-modules which,
by Theorem 6.1, must be preinjective. But then D is not regular, a contra-
diction. We get a similar contradiction assuming HomA(Y, IA(a)) = 0 for all
y ∈ D. This finishes the proof.

It follows from the decomposition ΓA = P0∨T0∨Q0∩P∞∨T∞∨Q∞ that
HomA(D(A),P0 ∨ T0) = 0 and HomA(T∞ ∨ Q∞, A) = 0. Hence pdAX ≤ 1
for all modules X in P0 ∨ T0 and idAY ≤ 1 for all modules Y in T∞ ∨ Q∞
(see [15, (2.4)]). We also have the following information on the homological
behaviour of the non-regular component C of Q0 ∩ P∞.

Corollary 6.3. Let A be a pg-critical algebra. Then

(i) pdAX ≤ 1 for all modules X in R.
(ii) idAY ≤ 1 for all modules Y in L.

(iii) There are infinitely many indecomposable modules Z in C with pdA Z
= 2 and idAZ = 2.
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P r o o f. (i) From the structure of C described in Theorem 6.1 we know
that if X belongs to R then the restriction of τAX to B0 is a direct sum of
modules from T (∞)

0 . On the other hand, the restriction of any indecompos-
able injective A-module to B0 is a direct sum of indecomposable preinjective
B0-modules. Hence HomA(D(A), τAX) = 0, and so pdAX ≤ 1.

The proof of (ii) is dual.
(iii) It follows from the proof of Theorem 6.1 that HomA(D(A), τAY i) 6= 0

for all i ≥ 1. Hence pdA Y i = 2 for all i ≥ 1. On the other hand, there is
an infinite sequence 1 < i1 < i2 < . . . such that, for each s ≥ 1, there is a
sectional path Yis → Lis → . . . → R, with R an indecomposable projective
B0-module (if A = B[M ] and M is directing) or the radical of PA(a). More-
over, Lis = τ−1

A Y is−1 for any s ≥ 1. Hence Hom(τ−1
A Y is−1 , A) 6= 0 for s ≥ 1,

as the composition of irreducible maps forming a sectional path is non-zero.
Consequently, idAY is−1 = 2. We then have an infinite family Y is−1 , s ≥ 1,
of modules in C with both projective and injective dimension equal to 2.

We shall now present an example illustrating the above considerations.

Example 6.4. Let A be the algebra given by the bound quiver

1

2

3 4

6

5

7
@@R

���

?
- ���

@@R

····································································································

······································································

Let B0 = C0 be the convex subcategory of A given by all objects of A except
7. Then B0 is a concealed algebra of type D̃5 and A is a one-point extension
B0[M ] of B0 by an indecomposable regular B0-module lying in the following
stable tube T (∞)

0 of rank 3 in ΓB0 :

0 0

01

0 0

0 0

10

0 0

1 1

11

1 1

0 0

01

0 0

0 0

11

0 0

1 1

21

1 1

1 1
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1 1

1 1
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1 1
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1 1
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1 1
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@@R @@R @@R

@@R @@R @@R
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· · · · · · · · ·

= M

where we represent a module by its dimension vector in K0(B0) and the
vertical lines have to be identified in order to obtain a tube. Hence A is
a pg-critical algebra. Observe also that A = [M ′]B∞, where B∞ is the
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convex subcategory of A given by all vertices except 6, and M ′ is given by

the dimension vector
10

11

1 0

in K0(B∞). Further, B∞ is a tubular one-point

coextension of the concealed convex convex subcategory given by the objects
1, 2, 3, 4, and 7, and its unique tube T (∞)

∞ with 3 corays is of the form

01
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0 0

10

11

1 1

= IB∞(5)
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where again the modules are represented by their dimension vectors in
K0(B∞), and the vertical lines have to be identified in order to obtain a
(coray) tube. Then

ΓA = P0 ∨ T0 ∨Q0 ∨ P∞ ∨ T∞ ∨Q∞,

where P0 is the preprojective component of type D̃5, T0 (respectively, T∞)
consists of the two stable tubes of rank 2 and the homogeneous tubes, Q∞
is the preinjective component of type D̃4, and the non-regular component C
of Q0 ∨ P∞ is of the form

q qq q q q q q q q qq q q q q q q q qq q q q q q qq q q q q q qq q q q q q qq q q q q q q
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We end the paper with an example showing the possible shapes of regular
components of the Auslander–Reiten quiver of a pg-critical algebra.

Example 6.5. Let A be the pg-critical algebra given by the bound
quiver

1 4 7

2 3 5 6 8 9

� �

�
���
A
AAK

�
���
A
AAK

�
���
A
AAK

Then A admits an automorphism group G of order 2 generated by the twist
g such that g(1) = 1, g(2) = 3, g(3) = 2, g(4) = 4, g(5) = 6, g(6) = 5,
g(7) = 7, g(8) = 9, and g(9) = 8. Assume that the characteristic of K is not
equal to 2. Then the twisted group algebra B = A[G] (in the sense of [13])
is given by the following bound quiver:r r r

r r r
r r r

� -

� -

� -

J
J
JĴ







�







�

J
J
JĴ

Hence, B is a string (special biserial) algebra and the regular components
in ΓB are of the form ZA∞∞ and ZA∞/(τ) (see [6]). Then, applying [11]
or [13], we find that the regular components of ΓA are of the form ZA∞∞,
ZD∞, ZA∞/(τ) and ZA∞/(τ2). In fact, there are infinitely many regular
components in ΓA of each of these types.
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[1] I. Assem and A. Skowroński, On some classes of simply connected algebras,
Proc. London Math. Soc. 56 (1988), 417–450.

[2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without
diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46.
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