COLLOQUIUM MATHEMATICUM

VOL. 74

1997

NO. 1

MOMENTS OF SOME RANDOM FUNCTIONALS

 $_{\rm BY}$

K. URBANIK (WROCŁAW)

The paper deals with nonnegative stochastic processes $X(t,\omega)$ $(t \ge 0)$, not identically zero, with stationary and independent increments, rightcontinuous sample functions, and fulfilling the initial condition $X(0,\omega)$ = 0. The main aim is to study the moments of the random functionals $\int_0^{\infty} f(X(\tau,\omega)) d\tau$ for a wide class of functions f. In particular, a characterization of deterministic processes in terms of the exponential moments of these functionals is established.

1. Preliminaries and notation. We denote by \mathcal{M} the set of all nonnegative bounded measures defined on Borel subsets of the half-line $\mathbb{R}_+ = [0, \infty)$, and by \mathcal{P} the subset of \mathcal{M} consisting of probability measures. The probability measure concentrated at the point c is denoted by δ_c . Given $s \in (-\infty, \infty)$ we denote by \mathcal{P}_s the subset of \mathcal{P} consisting of measures μ with finite moment $m_s(\mu) = \int_0^\infty x^s \mu(dx)$. Given $M \in \mathcal{M}$ by \widehat{M} and $\langle M \rangle$ we denote the Laplace and the Bernstein transformation of M respectively, i.e.

$$\widehat{M}(z) = \int_{0}^{\infty} e^{-zx} M(dx) \quad \text{and} \quad \langle M \rangle(z) = \int_{0}^{\infty} \frac{1 - e^{-zx}}{1 - e^{-x}} M(dx)$$

for $z \ge 0$. For x = 0 the last integrand is assumed to be z.

Let $\mu \in \mathcal{P}$. By standard calculations we get the formulae

(1.1)
$$m_{-s}(\mu) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \widehat{\mu}(z) z^{s-1} dz \quad (s > 0)$$

and

(1.2)
$$m_q(\mu) = \frac{q}{\Gamma(1-q)} \int_0^\infty \frac{1-\widehat{\mu}(z)}{z^{1+q}} dz \quad (0 < q < 1).$$

In the sequel distr ξ will denote the probability distribution of a random variable ξ .

¹⁹⁹¹ Mathematics Subject Classification: Primary 60H05. Research supported by KBN grant 2P03A01408.

^[101]

Let \mathcal{X} be the class of nonnegative stochastic processes $X = \{X(t, \omega) : t \geq 0\}$, not identically zero, with stationary and independent increments, right-continuous sample functions and fulfilling the initial condition $X(0, \omega) = 0$. It is well known that to every process X from \mathcal{X} there corresponds a measure M from \mathcal{M} with $M(\mathbb{R}_+) > 0$ satisfying the condition

(1.3)
$$p_t(z) = e^{-t\langle M \rangle(z)}$$

where $p_t = \text{distr } X(t, \omega)$ $(t \ge 0)$. This uniquely determined measure M is called the *representing measure* for X. We note that each measure M from \mathcal{M} with $\mathcal{M}(\mathbb{R}_+) > 0$ is the representing measure for a process from \mathcal{X} .

A stochastic process X from \mathcal{X} is said to be *deterministic* if $X(t, \omega) = ct$ with probability 1 for a positive constant c or, equivalently, $c\delta_0$ is the representing measure for X.

A stochastic process X from \mathcal{X} with the representing measure M is said to be a *compound Poisson process* if

$$0 < c = \int_{0}^{\infty} (1 - e^{-x})^{-1} M(dx) < \infty.$$

Setting for Borel subsets E of \mathbb{R}_+ ,

$$Q(E) = c^{-1} \int_{E} (1 - e^{-x})^{-1} M(dx)$$

we have in this case $Q \in \mathcal{P}$ and

(1.4)
$$p_t = e^{-ct} \sum_{n=0}^{\infty} \frac{(ct)^n}{n!} Q^{*n}$$

where Q^{*n} for $n \ge 1$ is the *n*th convolution power of Q and $Q^{*0} = \delta_0$. The set of all processes X satisfying (1.4) will be denoted by Poiss(c, Q).

Throughout this paper π_s (s > 0) will denote the exponential distribution on \mathbb{R}_+ with parameter s, i.e. $\pi_s(dx) = se^{-sx}dx$. We shall often refer to the following representation of processes X from Poiss(c, Q) ([2], Chapter IV, 2):

(1.5)
$$X(t,\omega) = 0 \qquad \text{for } t \in [0,\vartheta_0),$$

(1.6)
$$X(t,\omega) = \sum_{j=1}^{k} \xi_j \quad \text{for } t \in \left[\sum_{j=0}^{k-1} \vartheta_j, \sum_{j=0}^{k} \vartheta_j\right]$$

for $k \geq 1$ where the random variables $\vartheta_0, \vartheta_1, \ldots, \xi_1, \xi_2, \ldots$ are independent, $\vartheta_0, \vartheta_1, \ldots$ have probability distribution π_c and ξ_1, ξ_2, \ldots have probability distribution Q. It is well known that for processes from \mathcal{X} the potential

$$\varrho(E) = \int_{0}^{\infty} p_t(E) \, dt$$

is finite on bounded Borel subsets E of \mathbb{R}_+ ([1], Prop. 14.1). Moreover, the Laplace transform of the potential is given by the formula

(1.7)
$$\widehat{\varrho}(z) = \langle M \rangle^{-1}(z) \quad (z > 0)$$

where M is the representing measure of the process in question.

2. Integral functionals. Denote by \mathcal{F} the set of all nonnegative, continuous, decreasing functions f defined on \mathbb{R}_+ , not identically zero, satisfying the condition $\int_0^{\infty} f(x) dx < \infty$. Given $r \in (0, 1]$ we denote by \mathcal{F}_r the subset of \mathcal{F} consisting of functions fulfilling the condition $\int_0^{\infty} f^r(x) dx < \infty$. Put $(T_a f)(x) = f(x + a)$. Obviously $T_a \mathcal{F} \subset \mathcal{F}$ for $a \ge 0$.

Let $X \in \mathcal{X}$. It was shown in [4] that for every $f \in \mathcal{F}$ the random functional

$$[X, f] = \int_{0}^{\infty} f(X(\tau, \omega)) \, d\tau$$

is well defined. Moreover, setting $\mu_a = \mathrm{distr}[X,T_af]~(a\geq 0)$ we have the equation

(2.1)
$$\widehat{\mu}_a(z) = 1 - z \int_0^\infty f(a+y)\widehat{\mu}_y(z) \,\varrho(dy)$$

where ρ is the potential for the process in question ([3], Th. 2.4).

If $X \in \text{Poiss}(c, Q)$, then, by (1.5) and (1.6), we have the formula

$$[X, f] = f(0)\vartheta_0 + \sum_{k=1}^{\infty} f(\xi_1 + \ldots + \xi_k)\vartheta_k$$

Consequently, introducing the notation

 $\mathbb{R}^{\infty}_{+} = \mathbb{R}_{+} \times \mathbb{R}_{+} \times \dots, \quad y = (y_1, y_2, \dots) \in \mathbb{R}^{\infty}_{+}, \quad Q^{\infty}(dy) = Q(dy_1) Q(dy_2) \dots$ and

$$\Phi(y,z) = (1+c^{-1}f(0)z)^{-1}\prod_{k=1}^{\infty} (1+c^{-1}f(y_1+\ldots+y_k)z)^{-1}$$

we get the formula

(2.2)
$$\widehat{\mu}_0(z) = \int_{\mathbb{R}_+} \Phi(y, z) \, Q^\infty(dy).$$

LEMMA 2.1. Let ϱ be the potential of a process X from \mathcal{X} , $f \in \mathcal{F}$, $\mu_a = \operatorname{distr}[X, T_a f]$ and 0 < q < 1. Then

(2.3)
$$m_{1-q}(\mu_0) = (1-q) \int_0^\infty f(y) m_{-q}(\mu_y) \,\varrho(dy).$$

Proof. We have, by (2.1),

$$(1 - \widehat{\mu}_0(z))z^{-1} = \int_0^\infty f(y)\widehat{\mu}_y(z)\,\varrho(dy)$$

Multiplying both sides of the above equation by $(1-q)\Gamma(q)^{-1}z^{q-1}$ and integrating from 0 to ∞ we get, by (1.1) and (1.2), the assertion of the lemma.

THEOREM 2.1. For every $X \in \mathcal{X}$, $f \in \mathcal{F}$ and s > -1 we have $\operatorname{distr}[X, f] \in \mathcal{P}_s$.

Proof. Put $\mu_a = \text{distr}[X, T_a f]$ $(a \ge 0)$. By Lemma 2.2 and Corollary 2.1 in [4] we conclude that

(2.4)
$$m_s(\mu_0) < \infty \quad \text{for } s \ge 0.$$

Suppose that 0 < q < 1. Observe that $T_y f \leq f$ for $y \geq 0$. Consequently, $[X, T_y f] \leq [X, f]$, which yields the inequality $m_{-q}(\mu_y) \geq m_{-q}(\mu_0)$. Applying (2.3) we get the inequality

$$m_{1-q}(\mu_0) \ge (1-q)m_{-q}(\mu_0)\int_0^\infty f(y)\,\varrho(dy).$$

Since, by (2.4), $m_{1-q}(\mu_0) < \infty$, we have $m_{-q}(\mu_0) < \infty$, which completes the proof.

In what follows e_a (a > 0) will denote the family of exponential functions, i.e. $e_a(x) = e^{-ax}$. Obviously $e_a \in \mathcal{F}$.

THEOREM 2.2. Let $X \in \mathcal{X}$, a > 0, $p_a = \operatorname{distr} X(a, \omega)$ and $\nu_a = \operatorname{distr} [X, e_a]$. Then $m_{-1}(\nu_a) = m_1(p_a)$.

Proof. Observe that $T_y e_a = e^{-ay} e_a$, which yields the formula $[X, T_y e_a] = e^{-ay}[X, e_a]$. Consequently, by (1.7) and (2.3) with $f = e_a$, we have the formula

$$m_{1-q}(\nu_a) = (1-q)m_{-q}(\nu_a)\widehat{\varrho}((1-q)a) = (1-q)m_{-q}(\nu_a)\langle M \rangle ((1-q)a)^{-1}$$

where 0 < q < 1 and M is the representing measure for X. Now taking into account (1.3) and letting $q \to 1$ we get our assertion.

EXAMPLE 2.1. Given $0 < \alpha < 1$ we denote by Z_{α} the α -stable stochastic process from \mathcal{X} with $\langle M \rangle(z) = z^{\alpha}$. Obviously $m_1(p_a) = \infty$ for a > 0. If

 $\nu_a = \operatorname{distr}[Z_{\alpha}, e_a]$, then, by Theorem 2.2, $m_{-1}(\nu_a) = \infty$. Thus $\operatorname{distr}[Z_{\alpha}, e_a] \notin \mathcal{P}_{-1}$, which shows that Theorem 2.1 cannot be sharpened.

EXAMPLE 2.2. Let Y_1 be a compound Poisson process from Poiss $(1, \pi_1)$. Given $f \in F$ we put $\lambda = \text{distr}[Y_1, f]$. It was shown in [3] (Example 3.1) that

(2.5)
$$\widehat{\lambda}(z) = (1 + f(0)z)^{-1} \exp\left(-z \int_{0}^{\infty} (1 + f(u)z)^{-1} f(u) \, du\right).$$

In particular, setting $f = e_a$ (a > 0) we get $\widehat{\lambda}(z) = (1+z)^{-1-1/a}$. Thus $\lambda(dx) = e^{-x} x^{1/a} dx$, which shows that distr $[Y_1, e_a] \in P_r$ if and only if r > -1 - 1/a.

Given 0 < s < 1 we put

(2.6)
$$f_s(x) = (1 + x^{1/s})^{-1}.$$

It is clear that $f_s \in \mathcal{F}$. Setting $\lambda_s = \operatorname{distr}[Y_1, f_s]$ we have, by (2.5),

(2.7)
$$\widehat{\lambda}_s(z) = (1+z)^{-1} \exp(-c_s z (1+z)^{s-1})$$

where $c_s = s\pi/\sin s\pi$. By (1.1) we get $\operatorname{distr}[Y_1, f_s] \in \mathcal{P}_r$ for all $r \in \mathbb{R}$.

3. Exponential moments. Given p > 0 we denote by \mathcal{A}_p the subset of \mathcal{P} consisting of measures μ for which the exponential moment

$$n_{p,r}(\mu) = \int_{0}^{\infty} e^{rx^{-p}} \mu(dx)$$

is finite for some r > 0. Let ξ be a nonnegative random variable. It is clear that distr $\xi \in \mathcal{A}_p$ if and only if the Laplace transform of distr ξ^{-p} can be extended to an analytic function in a neighbourhood of the origin.

LEMMA 3.1. Let p > 0 and s = p/(1+p). Then $\mu \in \mathcal{A}_p$ if and only if $\int_0^\infty \widehat{\mu}(z) e^{cz^s} dz < \infty$ for some c > 0.

Proof. Applying (1.1) we get the formula

$$n_{p,r}(\mu) = 1 + \sum_{k=1}^{\infty} \frac{r^k}{k!} m_{-kp}(\mu) = 1 + \int_{0}^{\infty} \widehat{\mu}(z) g(p,r,z) \, dz$$

where $g(p,r,z) = prz^{p-1}h(p,rz^p)$ and

$$h(p,z) = \sum_{k=0}^{\infty} \frac{z^k}{k! \Gamma(pk+1+p)}.$$

E. M. Wright proved in [5] and [6], Th. 1, that for some positive constants a_p and b_p the limit

$$\lim_{z \to \infty} h(p, z) z^{(p+1/2)/(1+p)} \exp(-b_p z^{1/(1+p)}) = a_p$$

exists. Consequently,

$$\lim_{z \to \infty} g(p, r, z) \, z^{(p+1/2)/(1+p)} \exp(-b_p r^{1/(1+p)} z^s) = p r^{1/(2+2p)} a_p$$

which yields our assertion.

LEMMA 3.2. Let X_1 and X_2 be processes from \mathcal{X} with the representing measures M_1 and M_2 respectively. If $M_1 \ge M_2$ and $\operatorname{distr}[X_1, f] \in \mathcal{A}_p$ for some $f \in \mathcal{F}$ and p > 0, then $\operatorname{distr}[X_2, f] \in \mathcal{A}_p$.

Proof. Setting $M_3 = M_1 - M_2$ we have $M_3 \in \mathcal{M}$. If $M_3(\mathbb{R}_+) > 0$, then M_3 is the representing measure of a process X_3 from \mathcal{X} . In the remaining case $M_3(\mathbb{R}_+) = 0$ we put $X_3 = 0$. Without loss of generality we may assume that the processes X_2 and X_3 are independent. Hence the process $Y = X_2 + X_3$ belongs to \mathcal{X} and M_1 is its representing measure. Consequently, distr $X_1(t, \omega) = \text{distr } Y(t, \omega)$ for all $t \geq 0$, which yields the equality distr $[X_1, f] = \text{distr}[Y, f]$ for every $f \in \mathcal{F}$. Moreover, $[X_2, f]^{-p} \leq [Y, f]^{-p}$, which yields the assertion of the lemma.

We are now in a position to prove the following rather unexpected result.

THEOREM 3.1. Let
$$p > 0$$
, $s = p/(1+p)$, $X \in \mathcal{X}$ and

$$(3.1) f \in \mathcal{F}_s.$$

If distr $[X, f] \in \mathcal{A}_p$, then the process X is deterministic.

Proof. Suppose the contrary. Then the representing measure M for X is not concentrated at the origin. Thus $M([a,\infty)) > 0$ for a certain a > 0. Setting $N(E) = M(E \cap [a,\infty))$ for Borel subsets E of \mathbb{R}_+ we get the representing measure for a process Y from \mathcal{X} . By Lemma 3.2, $\operatorname{distr}[Y, f] \in \mathcal{A}_p$. Observe that Y is a compound Poisson process. Assume that $Y \in \operatorname{Poiss}(q, Q)$ and put $\mu_0 = \operatorname{distr}[Y, f]$. By Lemma 3.1, we have

$$\int_{0}^{\infty} \widehat{\mu}_{0}(z) \, e^{cz^{s}} dz < \infty$$

for some c > 0. Using formula (2.2) we conclude that

(3.2)
$$\int_{0}^{\infty} \Phi(y,z) e^{cz^{s}} dz < \infty$$

for Q^{∞} -almost all $y \in \mathbb{R}^{\infty}_+$. Denote by B_1 the subset of \mathbb{R}^{∞}_+ consisting of all y fulfilling condition (3.2). By the strong law of large numbers we infer that

(3.3)
$$\lim_{n \to \infty} \frac{1}{n} (y_1 + \ldots + y_n) = \int_0^\infty x \, Q(dx)$$

for Q^{∞} -almost all $y = (y_1, y_2, \ldots) \in \mathbb{R}^{\infty}_+$. Of course $0 < \int_0^{\infty} x Q(dx) \le \infty$. Denote by B_2 the subset of \mathbb{R}^{∞}_+ consisting of all y fulfilling condition (3.3). Let $u = (u_1, u_2, \ldots) \in B_1 \cap B_2$. Given $0 < b < \int_0^\infty x Q(dx)$ we can find an index $k_0 > 1$ such that

(3.4)
$$\frac{1}{k}(u_1 + \ldots + u_k) > b \quad \text{for } k \ge k_0.$$

Since $f \in \mathcal{F}_s$ we may also assume that

 \sim

(3.5)
$$s^{-1}q^{-s} \sum_{k=k_0}^{\infty} f^s(kb) < c/2.$$

Put

$$\Psi_1(z) = \bigcap_{k=k_0}^{\infty} (1+q^{-1}f(kb)z)^{-1},$$

$$\Psi_2(z) = (1+q^{-1}f(0)z)^{-1} \bigcap_{k=1}^{k_0-1} (1+q^{-1}f(u_1+\ldots+u_k)z)^{-1}.$$

Since the function f is decreasing we conclude, by (3.4), that $f(u_1 + ... + u_k) \leq f(kb)$ for $k \geq k_0$. Consequently, $\Phi(u, z) \geq \Psi_1(z)\Psi_2(z)$. Applying the inequality $1 + y \leq \exp s^{-1}y^s$ ($y \geq 0$, 0 < s < 1) we get, by (3.5),

$$\Psi_1(z) \ge \exp\left(-s^{-1}q^{-s}z^s\sum_{k=k_0}^{\infty}f^s(kb)\right) \ge \exp(-cz^s/2).$$

This yields, by (3.2), $\int_0^\infty e^{cz^s/2}\Psi_2(z)dz < \infty$, which is a contradiction. The theorem is thus proved.

We note that condition (3.1) of the above theorem is essential. In fact, taking the process Y_1 from Example 2.2 and the function f_s (0 < s < 1) defined by formula (2.6) we infer that $f_s \in \mathcal{F}_r$ for r > s and $f_s \notin \mathcal{F}_s$. Using (2.7) and Lemma 3.1 we conclude that distr $[Y_1, f_s] \in \mathcal{A}_p$ where s = p/(1+p).

REFERENCES

- [1] C. Berg and G. Forst, *Potential Theory on Locally Compact Abelian Groups*, Springer, Berlin, 1975.
- [2] I. I. Gikhman and A. V. Skorokhod, Theory of Random Processes, Vol. II, Nauka, Moscow, 1973 (in Russian).
- K. Urbanik, Functionals on transient stochastic processes with independent increments, Studia Math. 103 (1992), 299-315.
- [4] —, Stability of stochastic processes defined by integral functionals, ibid. 103 (1992), 225–238.
- [5] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc. 10 (1935), 286-293.

 [6] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, Proc. London Math. Soc. 46 (1940), 389–408.

Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland E-mail: urbanik@math.uni.wroc.pl

Received 3 December 1996

108