COLLOQUIUM MATHEMATICUM

VOL. 74

1997

NO. 1

ON LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS

BY

AGNIESZKA KAŁAMAJSKA (WARSZAWA)

We give a new short proof of the Morrey–Acerbi–Fusco–Marcellini Theorem on lower semicontinuity of the variational functional $\int_{\Omega} F(x, u, \nabla u) dx$. The proofs are based on arguments from the theory of Young measures.

1. Introduction and statement of results. Let Ω be a bounded open domain in \mathbb{R}^n . Define the functional

(1)
$$I(u) = \int_{\Omega} F(x, u, \nabla u) \, dx \quad \text{ for } u \in W^{1, p}(\Omega, \mathbb{R}^m).$$

Such functionals are related to questions of nonlinear elasticity and Skyrme's model for meson fields and have been investigated by many authors (see e.g. [1], [2], [4], [6], [10]–[17], [19], [20], [22], [23]).

We give a short proof of the following theorem due to Morrey, Acerbi, Fusco, and Marcellini (see [22], [1], [19]; the definition of quasiconvexity is given in Section 2).

THEOREM 1.1. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain, $1 \leq p \leq \infty$, and let $F: \Omega \times \mathbb{R}^m \times \mathbb{R}^m_n \to [0,\infty]$ satisfy

(i) $F(x, s, \lambda)$ is a Carathéodory function (i.e. measurable in $x \in \Omega$ and continuous in $(s, \lambda) \in \mathbb{R}^m \times \mathbb{R}^m_n$),

(ii) there exists a Carathéodory function $E(\cdot, \cdot)$ such that, for almost every x and all (s, λ) , $|F(x, s, \lambda)| \leq E(x, s)g(\lambda)$ if $p = \infty$, for some continuous function g, and $|F(x, s, \lambda)| \leq E(x, s)(1 + |\lambda|^p)$ if $p < \infty$,

(iii) for almost every x and all s, the mapping $\lambda \mapsto F(x, s, \lambda)$ is quasiconvex.

If $u^j \to u$ in $L^p(\Omega, \mathbb{R}^m)$ and $\nabla u^j \to \nabla u$ in $L^p(\Omega, \mathbb{R}^m_n)$ as $j \to \infty$ $(\nabla u^j \stackrel{*}{\to} \nabla u$ in $L^{\infty}(\Omega, \mathbb{R}^m_n)$ if $p = \infty$) then the functional (1) satisfies (2) $I(u) \leq \liminf_{j \to \infty} I(u^j).$

1991 Mathematics Subject Classification: Primary 49J45.

[71]

Our proof of Theorem 1.1 is based on the theory of Young measures, and will be obtained as an easy consequence of the following Jensen-type inequalities for Young measures.

THEOREM 1.2. Let $\Omega \subseteq \mathbb{R}^n$ be any bounded domain and $1 \leq p \leq \infty$. Suppose that $\{\nu_x\}_{x\in\Omega}$ is the Young measure (see Definition 3.2) generated by the sequence ∇u^j where $u^j \in W^{1,p}(\Omega, \mathbb{R}^m)$, and $\nabla u^j \to \nabla u$ in $L^p(\Omega, \mathbb{R}^m_n)$ as $j \to \infty$ ($\nabla u^j \stackrel{*}{\to} \nabla u$ in $L^\infty(\Omega, \mathbb{R}^m_n)$ if $p = \infty$). If $F : \Omega \times \mathbb{R}^m_n \to [-\infty, \infty]$ satisfies

(i) $F(x,\lambda)$ is a Carathéodory function (for $x \in \Omega, \lambda \in \mathbb{R}_n^m$),

(ii) there exists a mesurable function $E(\cdot)$ such that, for almost every x and all λ , $|F(x,\lambda)| \leq E(x)g(\lambda)$ if $p = \infty$, for some continuous function g, and $|F(x,\lambda)| \leq E(x)(1+|\lambda|^p)$ if $p < \infty$,

(iii) the mapping $\lambda \mapsto F(x, \lambda)$ is quasiconvex for almost every x,

then the following Jensen-type inequality is satisfied for almost every $x \in \Omega$:

(3)
$$F\left(x, \int_{\mathbb{R}_n^m} \lambda \, \nu_x(d\lambda)\right) \leq \int_{\mathbb{R}_n^m} F(x, \lambda) \, \nu_x(d\lambda)$$

and $\nabla u(x) = \int_{\mathbb{R}^m_n} \lambda \, \nu_x(d\lambda).$

It is known that Theorems 1.1 and 1.2 are equivalent (see e.g. [6], [15]–[17]), but as far as I know a direct proof of Theorem 1.2 is missing in the literature. The known proof of Theorem 1.2 requires Theorem 1.1, or its slightly less general version due to Acerbi and Fusco [1]. Theorem 1.1 in the formulation given here was obtained by Marcellini [19]. He did not use Young measures, but the proof was rather long. We want to show that a direct application of Young measures is a useful tool and can abbreviate the already known reasonings.

2. Preliminaries and notation. We use standard notation for the well known function spaces $W^{1,p}(\Omega)$ (Sobolev space), $C_0(\mathbb{R}^l)$ (continuous functions vanishing at infinity), $C(\Omega)$ (continuous functions), $\operatorname{Lip}(\Omega)$ (Lipschitz functions), and $\mathcal{M}(\Omega)$ (Radon measures). If $f \in C(\Omega)$ and $\mu \in \mathcal{M}(\Omega)$, then (f,μ) will stand for $\int_{\Omega} f(\lambda) \mu(d\lambda)$. We write $\oint_A f \, dx$ for $|A|^{-1} \int_A f \, dx$. We denote by Q(x,r) the cube with center x and edges of length r. If x_n, x are elements of a Banach space then we denote by $x_n \to x$ the strong (norm) convergence, by $x_n \to x$ the weak convergence and by $x_n \stackrel{*}{\to} x$ the weak *convergence. By C we denote the general constant, which can change even in the same line.

The following theorem is well known and has many extensions (see e.g. [9, Theorem 13], [18], [21], [7], [8]).

THEOREM 2.1. Let $\Omega \subseteq \mathbb{R}^n$ be an open set and $1 \leq p < \infty$. Then for any $u \in W^{1,p}(\Omega)$ and any $\lambda > 0$ there exists a closed set $F_{\lambda} \subseteq \Omega$ and a mapping $u_{\lambda} \in \operatorname{Lip}(\Omega)$ such that

(i) $\lambda^p |\Omega \setminus F_\lambda| \to 0 \text{ as } \lambda \to \infty$,

(ii) $\nabla u = \nabla u_{\lambda}$ for almost every $x \in F_{\lambda}$,

(iii) $|\nabla u_{\lambda}(x)| < C\lambda$ for almost every $x \in \Omega$, with C independent of x and λ ,

(iv) $\|\nabla u - \nabla u_{\lambda}\|_{L^{p}(\Omega)} \to 0 \text{ as } \lambda \to \infty.$

We recall the fundamental theorem of Young (see [3]).

THEOREM 2.2. Let $\Omega \subseteq \mathbb{R}^n$ be a measurable bounded set. Assume that $u^j : \Omega \to \mathbb{R}^m, j = 1, 2, ..., is$ a sequence of measurable functions satisfying the following tightness condition:

$$\sup_{j} |\{x \in \Omega : |u^{j}(x)| \ge k\}| \to 0 \quad as \ k \to \infty.$$

Then there exists a subsequence $\{u^k\}$ and a family $\{\nu_x\}_{x\in\Omega}$ of probability measures, $\nu_x \in \mathcal{M}(\mathbb{R}^m)$, such that

(i) for every $f \in C_0(\mathbb{R}^m)$ the function $x \mapsto (f, \nu_x)$ is measurable,

(ii) if $K \subseteq \mathbb{R}^n$ is a closed set, and for every j and almost every x, $u^j(x) \in K$, then $\operatorname{supp} \nu_x \subseteq K$ for almost every x,

(iii) if $A \subseteq \Omega$ is measurable and $f: \Omega \times \mathbb{R}^m \to \mathbb{R}$ satisfies

- f is a Carathéodory function,
- the sequence $\{f(x, u^k(x))\}$ is sequentially weakly relatively compact in $L^1(A)$,

then $\{f(x, u^k(x))\}$ converges weakly in $L^1(A)$ to \overline{f} given by

$$\overline{f}(x) = \int_{\mathbb{R}^m} f(x,\lambda) \, \nu_x(d\lambda).$$

DEFINITION 2.1. We say that u^j generates the Young measure $\{\nu_x\}_{x\in\Omega}$ if $\{\nu_x\}_{x\in\Omega}$ satisfies (i) and for any $f \in C_0(\mathbb{R}^m)$, $f(u^j) \stackrel{*}{\rightharpoonup} \overline{f} = (f, \nu_x)$ in $L^{\infty}(\Omega)$.

The following useful fact is a generalization of that given in [6, Lemma 2.2]. Although this form is not required for our needs, for completeness, and to show some particular techniques, we try to give a possibly general formulation and include a detailed proof.

THEOREM 2.3. Suppose that $u^j = (w^j, v^j) : \Omega \to \mathbb{R}^m \times \mathbb{R}^k$ satisfy the tightness condition and generate the Young measure $\{\mu_x\}_{x \in \Omega}$. Suppose further that $w^j \to w$ in measure and that $\{v^j\}_{j \in \mathbb{N}}$ generates the Young measure $\{\nu_x\}_{x \in \Omega}$. Then for almost every $x \in \Omega$ we have $\mu_x = \delta_{w(x)} \otimes \nu_x$, which means that for any $f \in C_0(\mathbb{R}^m \times \mathbb{R}^k)$ and almost every $x \in \Omega$,

A. KAŁAMAJSKA

(4)
$$\int_{\mathbb{R}^m \times \mathbb{R}^k} f(s,\lambda) \, \mu_x(ds,d\lambda) = \int_{\mathbb{R}^k} f(w(x),\lambda) \, \nu_x(d\lambda).$$

If f is a Carathéodory function on $\Omega \times (\mathbb{R}^m \times \mathbb{R}^k)$ and $|f(z, s, \lambda)| \leq C(z)g(s, \lambda)$ with some measurable function C and a continuous function g such that for almost all $x \in \Omega$,

(5)
$$\int_{\mathbb{R}^m \times \mathbb{R}^k} g(s,\lambda) \, \mu_x(ds,d\lambda) < \infty \quad and \quad \int_{\mathbb{R}^k} g(w(x),\lambda) \, \nu_x(d\lambda) < \infty,$$

then for almost every $x \in \Omega$,

(6)
$$\int_{\mathbb{R}^m \times \mathbb{R}^k} f(x, s, \lambda) \, \mu_x(ds, d\lambda) = \int_{\mathbb{R}^k} f(x, w(x), \lambda) \, \nu_x(d\lambda).$$

Proof. Let $f \in C_0(\mathbb{R}^m \times \mathbb{R}^k)$ and set $h^j = f(w^j, v^j) - f(w, v^j)$. Since f is uniformly continuous, it follows that $h^j \to 0$ in measure, and moreover $|h^j| \leq 2||f||_{L^{\infty}(\mathbb{R}^m \times \mathbb{R}^k)}$. Thus, by the Lebesgue Dominated Convergence Theorem we have $h^j \to 0$ strongly in $L^1(\Omega)$, while on the other hand, by Theorem 2.2 it converges to $(f, \mu_x) - (f(w(x), \cdot), \nu_x)$ weakly in $L^1(\Omega)$. Hence $(f, \mu_x) - (f(w(x), \cdot), \nu_x) = 0$ almost everywhere, from which (4) follows. To prove (6) we consider three cases: 1) f does not depend on x, 2) $C(z) \leq K < \infty$ and f is continuous on $\Omega \times \mathbb{R}^m \times \mathbb{R}^k$, and 3) the general case.

In the first case define $\phi : [0, \infty) \to \mathbb{R}$ by $\phi(t) = 1$ on [0, 1], $\phi(t) = -t + 2$ on [1, 2] and $\phi(t) = 0$ for t > 2. Since $f^j(s, \lambda) = f(s, \lambda)\phi(|(s, \lambda)|/j) \in C_0(\mathbb{R}^m \times \mathbb{R}^k)$, it follows that the formula

(7)
$$\int_{\mathbb{R}^m \times \mathbb{R}^k} f^j(s,\lambda) \, \mu_x(ds,d\lambda) = \int_{\mathbb{R}^k} f^j(w(x),\lambda) \, \nu_x(d\lambda)$$

holds everywhere on a set $\Omega(j)$ of full measure. In particular, (7) holds everywhere on the set $\widetilde{\Omega} = \bigcap_j \Omega(j)$, which is still of full measure. We can assume additionally that (5) holds for all $x \in \widetilde{\Omega}$. Since $|f^j| \leq |f|$, we can let j tend to infinity, apply the Lebesgue Dominated Convergence Theorem, and verify that (6) holds everywhere on $\widetilde{\Omega}$.

In the second case choose a dense countable subset $\{B^j\} \subseteq \Omega$ and consider the functions $F^j(s,\lambda) = f(B^j, s, \lambda)$. Since by Case 1 the equality (6) is satisfied with $f = F^j$ on a set $\Omega_1(j)$ of full measure we see that

$$\int_{\mathbb{R}^m \times \mathbb{R}^k} f(B^j, s, \lambda) \, \mu_x(ds, d\lambda) = \int_{\mathbb{R}^k} f(B^j, w(x), \lambda) \, \nu_x(d\lambda)$$

on the set $\Omega_1 = \bigcap_j \Omega_1(j)$, which is still of full measure and does not depend on j. Take an arbitrary $x \in \Omega_1$ and a sequence $B^{j_k} \to x$ as $k \to \infty$. Now it suffices to check that by the Lebesgue Dominated Convergence Theorem the left hand side of the equality tends to $\int_{\mathbb{R}^m \times \mathbb{R}^k} f(x, s, \lambda) \mu_x(ds, d\lambda)$, while the right hand side tends to $\int_{\mathbb{R}^k} f(x, w(x), \lambda) \nu_x(d\lambda)$. Finally, in the last case we use the Scorza Dragoni Theorem and Lusin Theorem (see e.g. [13]) and bite off sets Ω_{ε} of arbitrarily small measure such that f is continuous on $(\Omega \setminus \Omega_{\varepsilon}) \times \mathbb{R}^m \times \mathbb{R}^k$ and C is bounded on $\Omega \setminus \Omega_{\varepsilon}$. Thus (6) is satisfied almost everywhere on $\Omega \setminus \Omega_{\varepsilon}$, and hence it is satisfied almost everywhere on $\Omega \setminus \Omega_{\varepsilon}$.

Let us state Chacon's Biting Lemma (see e.g. [5]).

THEOREM 2.4 [Biting Lemma]. Let $\Omega \subseteq \mathbb{R}^n$, $|\Omega| < \infty$ and suppose that $\{f^j\}$ is a bounded sequence in $L^1(\Omega)$. Then there exists a subsequence $\{f^\nu\}$, a function $f \in L^1(\Omega)$ and a decreasing family of measurable sets E_k such that $|E_k| \to 0$ as $k \to \infty$ and for any k,

$$f^{\nu} \rightharpoonup f$$
 in $L^1(\Omega \setminus E_k)$ as $\nu \to \infty$.

DEFINITION 2.2 (see e.g. [24]). We will say that $\{f^j\}$ converges to f in the biting sense $(f^j \stackrel{b}{\rightharpoonup} f)$ whenever there is a set E of arbitrarily small measure such that $f^j \rightarrow f$ in $L^1(\Omega \setminus E)$.

Finally, we recall the known definition of quasiconvexity.

DEFINITION 2.3. The function $F : \mathbb{R}^m_n \to \mathbb{R}$ is quasiconvex if for any $A \in \mathbb{R}^m_n$, any cube $Q \subseteq \mathbb{R}^n$ and any $\phi \in C_0^{\infty}(Q, \mathbb{R}^m)$,

(8)
$$F(A) \le \oint_Q F(A + \nabla \phi) \, dx.$$

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. We can assume that Ω is a ball (if $h_1 \leq h_2$ almost everywhere on every ball $B \subseteq \Omega$ then $h_1 \leq h_2$ almost everywhere on Ω). If we take $f(\lambda) = \lambda$, $f : \mathbb{R}_n^m \to \mathbb{R}_n^m$ and apply the Young Theorem to every coordinate of $f(\nabla u^j)$ we immediately derive $\int_{\mathbb{R}_n^m} \lambda \nu_x(d\lambda) = \nabla u(x)$, for almost every x.

We distinguish the following cases: 1) $F = F(\lambda)$ and $p = \infty$, 2) $F = F(\lambda)$ and $1 \le p < \infty$, and 3) the general case.

Case 1. Let $x \in \Omega$ and r > 0 be such that $Q(x,r) \subseteq \Omega$. Take $0 < \sigma < r$ and choose $\phi_{\sigma} \in C_0^{\infty}(Q(x,r)), \phi_{\sigma} \equiv 1$ on $Q(x,r-\sigma)$. By standard arguments the function $w_{\sigma}^j = \phi_{\sigma}(u^j - u)$ can be substituted in (8). That gives for arbitrary $A \in \mathbb{R}_n^m$,

$$F(A) \leq \oint_{Q(x,r)} F(A + \nabla \phi_{\sigma} \cdot (u^{j} - u) + \phi_{\sigma} (\nabla u^{j} - \nabla u)) \, dy = I(x, r, \sigma, j).$$

Since $\{F(A+\nabla w_{\sigma}^{j})\}_{j}$ is relatively compact in $L^{1}(\Omega)$, by the Young Theorem applied to the sequence $(u^{j}-u, \nabla u^{j})$ and by Theorem 2.3,

A. KAŁAMAJSKA

$$I(x,r,\sigma,j) \to \oint_{Q(x,r)} \int_{\mathbb{R}^m_n} F(A + \phi_\sigma(y)(\lambda - \nabla u(y))) \nu_y(d\lambda) \, dy = I(x,r,\sigma)$$

as $j \to \infty$ and ν_y is supported on a bounded set. Hence, if we apply the Lebesgue Dominated Convergence Theorem and let $\sigma \to 0$, we see that

$$I(x,r,\sigma) \to \oint_{Q(x,r)} \iint_{\mathbb{R}_n^m} F(A + \lambda - \nabla u(y)) \,\nu_y(d\lambda) \, dy$$

By the Lebesgue Differentiation Theorem for any $A \in \mathbb{R}_n^m$ there is a set $\Omega(A) \subseteq \Omega$ such that $|\Omega \setminus \Omega(A)| = 0$, and for each $x \in \Omega(A)$,

(9)
$$F(A) \leq \int_{\mathbb{R}_n^m} F(A + \lambda - \nabla u(x)) \nu_x(d\lambda).$$

We can additionally assume that $|\nabla u(x)| < \infty$ for every $x \in \Omega(A)$. Let $\{A^j\}$ be a countable dense subset in \mathbb{R}_n^m . Since $\Omega_1 = \bigcap_j \Omega(A^j)$ is still of full measure in Ω , for every $x \in \Omega_1$ the inequality (9) is satisfied with $A = A^j$, for arbitrary j. Take $x \in \Omega_1$ and let $A^{j_k} \to \nabla u(x)$ as $k \to \infty$. Now it suffices to note that $F(A^{j_k}) \to F(\nabla u(x))$, and

$$\int_{\mathbb{R}_n^m} F(A^{j_k} - \nabla u(x) + \lambda) \,\nu_x(d\lambda) \to \int_{\mathbb{R}_n^m} F(\lambda) \,\nu_x(d\lambda)$$

Case 2. We apply Theorem 2.1 and find u_{λ} such that $\|\nabla u_{\lambda}\|_{L^{\infty}(\Omega)} \leq C\lambda$ and $\nabla u_{\lambda} = \nabla u$ almost everywhere on F_{λ} , where $\lambda^{p}|\Omega \setminus F_{\lambda}| \to 0$ as $\lambda \to \infty$. Let $\lambda_{k} = k$, and let $\{\nu_{x}^{k}\}$ be the Young measure generated by a subsequence of $\{\nabla u_{k}^{j}\}_{j}$. Note that for any k we have $F(\lambda, \nu_{x}^{k}) \leq (F, \nu_{x}^{k})$ almost everywhere. Thus it suffices to apply the following lemma.

LEMMA 3.1. Let $f = f(\lambda)$ with $|f(\lambda)| \leq C(1 + |\lambda|^p)$, and $\{\nu_x\}_{x \in \Omega}$ and $\{\nu_x^k\}_{x \in \Omega}$ be as above. Then for every $\varepsilon > 0$ we can find a set $E \subseteq \Omega$ such that $|E| < \varepsilon$ and $(f, \nu_x^k) \to (f, \nu_x)$ in $L^1(\Omega \setminus E)$ as $k \to \infty$.

Proof. Take $\varepsilon > 0$. According to Theorems 2.4 and 2.2 we find a set $E \subseteq \Omega$ such that $|E| < \varepsilon$ and $f(\nabla u^j) \rightharpoonup (f, \nu_x)$ weakly in $L^1(\Omega \setminus E)$. We have

$$\begin{split} \int_{\Omega \setminus E} |(f, \nu_x^k) - (f, \nu_x)| \, dx \\ &= \sup_{\|\phi\|_{L^{\infty}(\Omega)} \le 1} \Big| \int_{\Omega \setminus E} \phi(x) ((f, \nu_x^k) - (f, \nu_x)) \, dx \Big| \\ &= \sup_{\|\phi\|_{L^{\infty}(\Omega)} \le 1} \Big| \lim_{j \to \infty} \int_{\Omega \setminus E} \phi(x) (f(\nabla u_k^j) - f(\nabla u^j)) \, dx \Big| \\ &\le \sup_j \int_{(\Omega \setminus E) \setminus F_k} |f(\nabla u_k^j)| + \sup_j \int_{(\Omega \setminus E) \setminus F_k} |f(\nabla u^j)| \, dx \xrightarrow{k \to \infty} 0. \end{split}$$

The convergence follows from the estimates on f and the Dunford–Pettis Theorem. \blacksquare

Case 3. We use exactly the same arguments as in the proof of Theorem 2.3, cases 2 and 3. \blacksquare

Proof of Theorem 1.1. Suppose that $\{u^j\}_{j\in\mathbb{N}}$ satisfies the assumptions of Theorem 1.1. Let $\alpha = \liminf_{j\to\infty} I(u^j)$. If $\alpha = \infty$ the assertion is satisfied. Suppose that $\alpha < \infty$. In this case the sequence $\{F(x, u^j, \nabla u^j)\}_{j\in\mathbb{N}}$ is bounded in $L^1(\Omega)$. By Theorems 2.2–2.4 we find a subsequence $\{u^l\}$ with the properties: 1) $I(u^l) \to \alpha$ as $l \to \infty$, 2) the sequence $\{\nabla u^l\}$ generates the Young measure $\{\nu_x\}_{x\in\Omega}$, 3) there exists a family $\{E_k\}$ of sets such that $|E_k| \to 0$ and $\{F(x, u^l, \nabla u^l)\}_l$ is weakly convergent in $L^1(\Omega \setminus E_k)$ to $\int_{\mathbb{R}^m} F(x, u(x), \lambda) \nu_x(d\lambda)$.

Since $F_u(x,\lambda) = F(x,u(x),\lambda)$ satisfies the assumptions of Theorem 1.2, we have $\int_{\mathbb{R}^m_n} F(x,u(x),\lambda) \nu_x(d\lambda) \geq F(x,u(x),\nabla u(x))$ for almost every x. Now it suffices to note that

$$\begin{aligned} \alpha &= \lim_{l \to \infty} \int_{\Omega} F(x, u^l, \nabla u^l) \, dx \ge \lim_{l \to \infty} \int_{\Omega \setminus E_k} F(x, u^l, \nabla u^l) \, dx \\ &= \int_{\Omega \setminus E_k} \int_{\mathbb{R}_n^m} F(x, u(x), \lambda) \, \nu_x(d\lambda) \ge \int_{\Omega \setminus E_k} F(x, u(x), \nabla u(x)) \, dx. \quad \bullet \quad \end{aligned}$$

Remark 3.1. It has been proved by Kristensen [17] that the Jensen inequalities of Theorem 1.2 can be generalized to a certain class of functions which are Borel measurable with respect to the last variable.

REFERENCES

- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), 125–145.
- [2] L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur. 105 (1987), 1–42.
- [3] J. M. Ball, A version of the fundamental theorem for Young measures, in: PDE's and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod (eds.), Lecture Notes in Phys. 344, Springer, Berlin, 1989.
- [4] —, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337–403.
- [5] J. M. Ball and F. Murat, Remarks on Chacon's Biting Lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663.
- [6] J. M. Ball and K. W. Zhang, Lower semicontinuity of multiple integrals and the Biting Lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367–379.
- B. Bojarski, Remarks on some geometric properties of Sobolev mappings, in: Functional Analysis and Related Topics, S. Koshi (ed.), World Scientific, Singapore, 1991, 65–76.

A. KAŁAMAJSKA

- [8] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77–92.
- [9] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, ibid. 20 (1961), 171–225.
- B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989.
- M. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys. 105 (1986), 571–591.
- [12] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CMBS Regional Conf. Ser. in Math. 74, Amer. Math. Soc., Providence, R.I., 1990.
- [13] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.
- [14] A. D. Ioffe, On lower semicontinuity of integral functionals, I, II, SIAM J. Control Optim. 15 (1977), 521–538, 991–1000.
- [15] D. Kinderlehrer and P. Pedregal, Characterisation of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329–365.
- [16] —, —, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. (to appear).
- [17] J. Kristensen, Lower semicontinuity of variational integrals, Ph.D. Thesis, Mathematical Institute, The Technical University of Denmark, 1994.
- [18] F. C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645–651.
- [19] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, Manuscripta Math. 51 (1985), 1–28.
- [20] N. G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational functionals of any order, Trans. Amer. Math. Soc. 119 (1965), 125–149.
- [21] J. Michael and W. Ziemer, A Lusin type approximation of Sobolev functions by smooth functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 135–167.
- [22] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin, 1966.
- [23] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.
- [24] K. Zhang, Biting theorems for Jacobians and their applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 345–365.

Institute of Mathematics University of Warsaw Banacha 2 00-097 Warszawa, Poland E-mail: kalamajs@mimuw.edu.pl

> Received 1 April 1996; revised 27 November 1996