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ON LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS

BY

AGNIESZKA K A  L A M A J S K A (WARSZAWA)

We give a new short proof of the Morrey–Acerbi–Fusco–Marcellini Theo-
rem on lower semicontinuity of the variational functional

T
Ω

F (x, u,∇u) dx.
The proofs are based on arguments from the theory of Young measures.

1. Introduction and statement of results. Let Ω be a bounded
open domain in R

n. Define the functional

(1) I(u) =
\
Ω

F (x, u,∇u) dx for u ∈ W 1,p(Ω, Rm).

Such functionals are related to questions of nonlinear elasticity and
Skyrme’s model for meson fields and have been investigated by many authors
(see e.g. [1], [2], [4], [6], [10]–[17], [19], [20], [22], [23]).

We give a short proof of the following theorem due to Morrey, Acerbi,
Fusco, and Marcellini (see [22], [1], [19]; the definition of quasiconvexity is
given in Section 2).

Theorem 1.1. Let Ω ⊆ R
n be a bounded domain, 1 ≤ p ≤ ∞, and let

F : Ω × R
m × R

m
n → [0,∞] satisfy

(i) F (x, s, λ) is a Carathéodory function (i.e. measurable in x ∈ Ω and

continuous in (s, λ) ∈ R
m × R

m
n ),

(ii) there exists a Carathéodory function E(·, ·) such that , for almost

every x and all (s, λ), |F (x, s, λ)| ≤ E(x, s)g(λ) if p = ∞, for some contin-

uous function g, and |F (x, s, λ)| ≤ E(x, s)(1 + |λ|p) if p < ∞,

(iii) for almost every x and all s, the mapping λ 7→ F (x, s, λ) is quasi-

convex.

If uj → u in Lp(Ω, Rm) and ∇uj ⇀ ∇u in Lp(Ω, Rm
n ) as j → ∞

(∇uj ∗
⇀ ∇u in L∞(Ω, Rm

n ) if p = ∞) then the functional (1) satisfies

(2) I(u) ≤ lim inf
j→∞

I(uj).
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Our proof of Theorem 1.1 is based on the theory of Young measures,
and will be obtained as an easy consequence of the following Jensen-type
inequalities for Young measures.

Theorem 1.2. Let Ω ⊆ R
n be any bounded domain and 1 ≤ p ≤ ∞.

Suppose that {νx}x∈Ω is the Young measure (see Definition 3.2) generated by

the sequence ∇uj where uj ∈ W 1,p(Ω, Rm), and ∇uj ⇀ ∇u in Lp(Ω, Rm
n )

as j → ∞ (∇uj ∗
⇀ ∇u in L∞(Ω, Rm

n ) if p = ∞). If F : Ω×R
m
n → [−∞,∞]

satisfies

(i) F (x, λ) is a Carathéodory function (for x ∈ Ω, λ ∈ R
m
n ),

(ii) there exists a mesurable function E(·) such that , for almost every x
and all λ, |F (x, λ)| ≤ E(x)g(λ) if p = ∞, for some continuous function g,
and |F (x, λ)| ≤ E(x)(1 + |λ|p) if p < ∞,

(iii) the mapping λ 7→ F (x, λ) is quasiconvex for almost every x,

then the following Jensen-type inequality is satisfied for almost every x ∈ Ω:

(3) F
(
x,
\

Rm
n

λ νx(dλ)
)
≤
\

Rm
n

F (x, λ) νx(dλ)

and ∇u(x) =
T
Rm

n
λ νx(dλ).

It is known that Theorems 1.1 and 1.2 are equivalent (see e.g. [6], [15]–
[17]), but as far as I know a direct proof of Theorem 1.2 is missing in the
literature. The known proof of Theorem 1.2 requires Theorem 1.1, or its
slightly less general version due to Acerbi and Fusco [1]. Theorem 1.1 in
the formulation given here was obtained by Marcellini [19]. He did not use
Young measures, but the proof was rather long. We want to show that a
direct application of Young measures is a useful tool and can abbreviate the
already known reasonings.

2. Preliminaries and notation. We use standard notation for the well
known function spaces W 1,p(Ω) (Sobolev space), C0(R

l) (continuous func-
tions vanishing at infinity), C(Ω) (continuous functions), Lip(Ω) (Lipschitz
functions), and M(Ω) (Radon measures). If f ∈ C(Ω) and µ ∈ M(Ω), then
(f, µ) will stand for

T
Ω

f(λ)µ(dλ). We write
4
A

f dx for |A|−1
T
A

f dx. We
denote by Q(x, r) the cube with center x and edges of length r. If xn, x are
elements of a Banach space then we denote by xn → x the strong (norm)

convergence, by xn ⇀ x the weak convergence and by xn
∗
⇀ x the weak ∗

convergence. By C we denote the general constant, which can change even
in the same line.

The following theorem is well known and has many extensions (see e.g.
[9, Theorem 13], [18], [21], [7], [8]).
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Theorem 2.1. Let Ω ⊆ R
n be an open set and 1 ≤ p < ∞. Then for

any u ∈ W 1,p(Ω) and any λ > 0 there exists a closed set Fλ ⊆ Ω and a

mapping uλ ∈ Lip(Ω) such that

(i) λp|Ω \ Fλ| → 0 as λ → ∞,
(ii) ∇u = ∇uλ for almost every x ∈ Fλ,
(iii) |∇uλ(x)| < Cλ for almost every x ∈ Ω, with C independent of x

and λ,
(iv) ‖∇u −∇uλ‖Lp(Ω) → 0 as λ → ∞.

We recall the fundamental theorem of Young (see [3]).

Theorem 2.2. Let Ω ⊆ R
n be a measurable bounded set. Assume that

uj : Ω → R
m, j = 1, 2, . . . , is a sequence of measurable functions satisfying

the following tightness condition:

sup
j

|{x ∈ Ω : |uj(x)| ≥ k}| → 0 as k → ∞.

Then there exists a subsequence {uk} and a family {νx}x∈Ω of probability

measures, νx ∈ M(Rm), such that

(i) for every f ∈ C0(R
m) the function x 7→ (f, νx) is measurable,

(ii) if K ⊆ R
n is a closed set , and for every j and almost every x,

uj(x) ∈ K, then suppνx ⊆ K for almost every x,
(iii) if A ⊆ Ω is measurable and f : Ω × R

m → R satisfies

• f is a Carathéodory function,
• the sequence {f(x, uk(x))} is sequentially weakly relatively com-

pact in L1(A),

then {f(x, uk(x))} converges weakly in L1(A) to f given by

f(x) =
\

Rm

f(x, λ) νx(dλ).

Definition 2.1. We say that uj generates the Young measure {νx}x∈Ω

if {νx}x∈Ω satisfies (i) and for any f ∈ C0(R
m), f(uj)

∗
⇀ f = (f, νx) in

L∞(Ω).

The following useful fact is a generalization of that given in [6, Lemma
2.2]. Although this form is not required for our needs, for completeness,
and to show some particular techniques, we try to give a possibly general
formulation and include a detailed proof.

Theorem 2.3. Suppose that uj = (wj , vj) : Ω → R
m × R

k satisfy the

tightness condition and generate the Young measure {µx}x∈Ω . Suppose fur-

ther that wj → w in measure and that {vj}j∈N generates the Young mea-

sure {νx}x∈Ω. Then for almost every x ∈ Ω we have µx = δw(x) ⊗νx, which

means that for any f ∈ C0(R
m × R

k) and almost every x ∈ Ω,
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(4)
\

Rm×Rk

f(s, λ)µx(ds, dλ) =
\

Rk

f(w(x), λ) νx(dλ).

If f is a Carathéodory function on Ω × (Rm × R
k) and |f(z, s, λ)| ≤

C(z)g(s, λ) with some measurable function C and a continuous function

g such that for almost all x ∈ Ω,

(5)
\

Rm×Rk

g(s, λ)µx(ds, dλ) < ∞ and
\

Rk

g(w(x), λ) νx(dλ) < ∞,

then for almost every x ∈ Ω,

(6)
\

Rm×Rk

f(x, s, λ)µx(ds, dλ) =
\

Rk

f(x,w(x), λ) νx(dλ).

P r o o f. Let f ∈ C0(R
m × R

k) and set hj = f(wj , vj) − f(w, vj). Since
f is uniformly continuous, it follows that hj → 0 in measure, and moreover
|hj | ≤ 2‖f‖L∞(Rm×Rk). Thus, by the Lebesgue Dominated Convergence

Theorem we have hj → 0 strongly in L1(Ω), while on the other hand, by
Theorem 2.2 it converges to (f, µx)−(f(w(x), ·), νx) weakly in L1(Ω). Hence
(f, µx)− (f(w(x), ·), νx) = 0 almost everywhere, from which (4) follows. To
prove (6) we consider three cases: 1) f does not depend on x, 2) C(z) ≤
K < ∞ and f is continuous on Ω × R

m × R
k, and 3) the general case.

In the first case define φ : [0,∞) → R by φ(t) = 1 on [0, 1], φ(t) = −t+2
on [1, 2] and φ(t) = 0 for t > 2. Since f j(s, λ) = f(s, λ)φ(|(s, λ)|/j) ∈
C0(R

m × R
k), it follows that the formula

(7)
\

Rm×Rk

f j(s, λ)µx(ds, dλ) =
\

Rk

f j(w(x), λ) νx(dλ)

holds everywhere on a set Ω(j) of full measure. In particular, (7) holds

everywhere on the set Ω̃ =
⋂

j Ω(j), which is still of full measure. We can

assume additionally that (5) holds for all x ∈ Ω̃. Since |f j | ≤ |f |, we can
let j tend to infinity, apply the Lebesgue Dominated Convergence Theorem,
and verify that (6) holds everywhere on Ω̃.

In the second case choose a dense countable subset {Bj} ⊆ Ω and con-
sider the functions F j(s, λ) = f(Bj, s, λ). Since by Case 1 the equality (6)
is satisfied with f = F j on a set Ω1(j) of full measure we see that\

Rm×Rk

f(Bj , s, λ)µx(ds, dλ) =
\

Rk

f(Bj, w(x), λ) νx(dλ)

on the set Ω1 =
⋂

j Ω1(j), which is still of full measure and does not depend

on j. Take an arbitrary x ∈ Ω1 and a sequence Bjk → x as k → ∞. Now
it suffices to check that by the Lebesgue Dominated Convergence Theorem
the left hand side of the equality tends to

T
Rm×Rk f(x, s, λ)µx(ds, dλ), while

the right hand side tends to
T
Rk f(x,w(x), λ) νx(dλ).
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Finally, in the last case we use the Scorza Dragoni Theorem and Lusin
Theorem (see e.g. [13]) and bite off sets Ωε of arbitrarily small measure such
that f is continuous on (Ω \ Ωε) × R

m × R
k and C is bounded on Ω \ Ωε.

Thus (6) is satisfied almost everywhere on Ω \ Ωε, and hence it is satisfied
almost everywhere on Ω.

Let us state Chacon’s Biting Lemma (see e.g. [5]).

Theorem 2.4 [Biting Lemma]. Let Ω ⊆ R
n, |Ω| < ∞ and suppose that

{f j} is a bounded sequence in L1(Ω). Then there exists a subsequence {fν},
a function f ∈ L1(Ω) and a decreasing family of measurable sets Ek such

that |Ek| → 0 as k → ∞ and for any k,

fν ⇀ f in L1(Ω \ Ek) as ν → ∞.

Definition 2.2 (see e.g. [24]). We will say that {f j} converges to f

in the biting sense (f j b
⇀ f) whenever there is a set E of arbitrarily small

measure such that f j ⇀ f in L1(Ω \ E).

Finally, we recall the known definition of quasiconvexity.

Definition 2.3. The function F : R
m
n → R is quasiconvex if for any

A ∈ R
m
n , any cube Q ⊆ R

n and any φ ∈ C∞
0 (Q, Rm),

(8) F (A) ≤
<
Q

F (A + ∇φ) dx.

3. Proofs of Theorems 1.1 and 1.2

P r o o f o f T h e o r e m 1.2. We can assume that Ω is a ball (if h1 ≤ h2

almost everywhere on every ball B ⊆ Ω then h1 ≤ h2 almost everywhere on
Ω). If we take f(λ) = λ, f : R

m
n → R

m
n and apply the Young Theorem to

every coordinate of f(∇uj) we immediately derive
T
Rm

n
λ νx(dλ) = ∇u(x),

for almost every x.

We distinguish the following cases: 1) F = F (λ) and p = ∞, 2) F = F (λ)
and 1 ≤ p < ∞, and 3) the general case.

C a s e 1. Let x ∈ Ω and r > 0 be such that Q(x, r) ⊆ Ω. Take
0 < σ < r and choose φσ ∈ C∞

0 (Q(x, r)), φσ ≡ 1 on Q(x, r − σ). By
standard arguments the function wj

σ = φσ(uj −u) can be substituted in (8).
That gives for arbitrary A ∈ R

m
n ,

F (A) ≤
<

Q(x,r)

F (A + ∇φσ · (uj − u) + φσ(∇uj −∇u)) dy = I(x, r, σ, j).

Since {F (A+∇wj
σ)}j is relatively compact in L1(Ω), by the Young Theorem

applied to the sequence (uj − u,∇uj) and by Theorem 2.3,
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I(x, r, σ, j) →
<

Q(x,r)

\
Rm

n

F (A + φσ(y)(λ −∇u(y))) νy(dλ) dy = I(x, r, σ)

as j → ∞ and νy is supported on a bounded set. Hence, if we apply the
Lebesgue Dominated Convergence Theorem and let σ → 0, we see that

I(x, r, σ) →
<

Q(x,r)

\
Rm

n

F (A + λ −∇u(y)) νy(dλ) dy.

By the Lebesgue Differentiation Theorem for any A ∈ R
m
n there is a set

Ω(A) ⊆ Ω such that |Ω \ Ω(A)| = 0, and for each x ∈ Ω(A),

(9) F (A) ≤
\

Rm
n

F (A + λ −∇u(x)) νx(dλ).

We can additionally assume that |∇u(x)| < ∞ for every x ∈ Ω(A). Let
{Aj} be a countable dense subset in R

m
n . Since Ω1 =

⋂
j Ω(Aj) is still of full

measure in Ω, for every x ∈ Ω1 the inequality (9) is satisfied with A = Aj ,
for arbitrary j. Take x ∈ Ω1 and let Ajk → ∇u(x) as k → ∞. Now it
suffices to note that F (Ajk) → F (∇u(x)), and\

Rm
n

F (Ajk −∇u(x) + λ) νx(dλ) →
\

Rm
n

F (λ) νx(dλ).

C a s e 2. We apply Theorem 2.1 and find uλ such that ‖∇uλ‖L∞(Ω) ≤
Cλ and ∇uλ = ∇u almost everywhere on Fλ, where λp|Ω \ Fλ| → 0 as
λ → ∞. Let λk = k, and let {νk

x} be the Young measure generated by a
subsequence of {∇uj

k}j . Note that for any k we have F (λ, νk
x ) ≤ (F, νk

x)
almost everywhere. Thus it suffices to apply the following lemma.

Lemma 3.1. Let f = f(λ) with |f(λ)| ≤ C(1 + |λ|p), and {νx}x∈Ω and

{νk
x}x∈Ω be as above. Then for every ε > 0 we can find a set E ⊆ Ω such

that |E| < ε and (f, νk
x) → (f, νx) in L1(Ω \ E) as k → ∞.

P r o o f. Take ε > 0. According to Theorems 2.4 and 2.2 we find a set
E ⊆ Ω such that |E| < ε and f(∇uj) ⇀ (f, νx) weakly in L1(Ω \ E). We
have \

Ω\E

|(f, νk
x) − (f, νx)| dx

= sup
‖φ‖L∞(Ω)≤1

∣∣∣
\

Ω\E

φ(x)((f, νk
x ) − (f, νx)) dx

∣∣∣

= sup
‖φ‖L∞(Ω)≤1

∣∣∣ lim
j→∞

\
Ω\E

φ(x)(f(∇uj
k) − f(∇uj)) dx

∣∣∣

≤ sup
j

\
(Ω\E)\Fk

|f(∇uj
k)| + sup

j

\
(Ω\E)\Fk

|f(∇uj)| dx
k→∞
−→ 0.
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The convergence follows from the estimates on f and the Dunford–Pettis
Theorem.

C a s e 3. We use exactly the same arguments as in the proof of Theorem
2.3, cases 2 and 3.

P r o o f o f T h e o r e m 1.1. Suppose that {uj}j∈N satisfies the assump-
tions of Theorem 1.1. Let α = lim infj→∞ I(uj). If α = ∞ the assertion is
satisfied. Suppose that α < ∞. In this case the sequence {F (x, uj ,∇uj)}j∈N

is bounded in L1(Ω). By Theorems 2.2–2.4 we find a subsequence {ul} with
the properties: 1) I(ul) → α as l → ∞, 2) the sequence {∇ul} generates
the Young measure {νx}x∈Ω , 3) there exists a family {Ek} of sets such
that |Ek| → 0 and {F (x, ul,∇ul)}l is weakly convergent in L1(Ω \ Ek) toT
Rm

n
F (x, u(x), λ) νx(dλ).

Since Fu(x, λ) = F (x, u(x), λ) satisfies the assumptions of Theorem 1.2,
we have

T
Rm

n
F (x, u(x), λ) νx(dλ) ≥ F (x, u(x),∇u(x)) for almost every x.

Now it suffices to note that

α = lim
l→∞

\
Ω

F (x, ul,∇ul) dx ≥ lim
l→∞

\
Ω\Ek

F (x, ul,∇ul) dx

=
\

Ω\Ek

\
Rm

n

F (x, u(x), λ) νx(dλ) ≥
\

Ω\Ek

F (x, u(x),∇u(x)) dx.

R e m a r k 3.1. It has been proved by Kristensen [17] that the Jensen
inequalities of Theorem 1.2 can be generalized to a certain class of functions
which are Borel measurable with respect to the last variable.
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