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ON LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS

BY

AGNIESZKA KALAMAJSKA (WARSZAWA)

We give a new short proof of the Morrey—Acerbi—Fusco—Marcellini Theo-
rem on lower semicontinuity of the variational functional §, F(z,u, Vu) dz.
The proofs are based on arguments from the theory of Young measures.

1. Introduction and statement of results. Let {2 be a bounded
open domain in R™. Define the functional

(1) I(u) = S F(z,u,Vu)dz for u € WHP(02,R™).
Q

Such functionals are related to questions of nonlinear elasticity and
Skyrme’s model for meson fields and have been investigated by many authors
(see eg. [1], [2], [4], [6], [10]-17], [19], [20], [22], [23]).

We give a short proof of the following theorem due to Morrey, Acerbi,
Fusco, and Marcellini (see [22], [1], [19]; the definition of quasiconvexity is
given in Section 2).

THEOREM 1.1. Let £2 C R™ be a bounded domain, 1 < p < 0o, and let
F:02xR™xR"—[0,00] satisfy

(i) F(z,s,A) is a Carathéodory function (i.e. measurable in x € §2 and
continuous in (s,\) € R™ x R™),

(ii) there exists a Carathéodory function E(-,-) such that, for almost
every x and all (s, \), |F(z,s,A)| < E(x,s)g(\) if p= oo, for some contin-
uous function g, and |F(x,s,\)| < E(z,s)(1+|A]P) if p < oo,

(iii) for almost every x and all s, the mapping A — F(x,s,\) is quasi-
convez.

If W/ — w in LP(2,R™) and Vu/ — Vu in LP(2,R™) as j — oo
(Vu?d 5 Vu in L®(2,R™) if p = o0o) then the functional (1) satisfies

(2) I(u) < hjn_l)ggf I(u).
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Our proof of Theorem 1.1 is based on the theory of Young measures,
and will be obtained as an easy consequence of the following Jensen-type
inequalities for Young measures.

THEOREM 1.2. Let 2 C R"™ be any bounded domain and 1 < p < oo.
Suppose that {v, }zeqn is the Young measure (see Definition 3.2) generated by
the sequence Vu? where v/ € WHP(2,R™), and Vu? — Vu in LP(£2,R™)
as j — oo (V! = Vu in L®(2,R™) if p=o00). If F: QxR — [~00, ]
satisfies

(i) F(z, ) is a Carathéodory function (for x € 2, A € RI"),

(ii) there exists a mesurable function E(-) such that, for almost every x
and all N, |F(xz,\)| < E(x)g(\) if p = oo, for some continuous function g,
and |F(z,\)| < E(z)(1+[A]P) if p < oo,

(iii) the mapping X\ — F(z,\) is quasiconvex for almost every x,

then the following Jensen-type inequality is satisfied for almost every x € (2:

(3) F<x | Aux(dA)) < | Fla,\) v (d\)
R7

R
and Vu(z) = (., Avz(dX).

It is known that Theorems 1.1 and 1.2 are equivalent (see e.g. [6], [15]-
[17]), but as far as I know a direct proof of Theorem 1.2 is missing in the
literature. The known proof of Theorem 1.2 requires Theorem 1.1, or its
slightly less general version due to Acerbi and Fusco [1]. Theorem 1.1 in
the formulation given here was obtained by Marcellini [19]. He did not use
Young measures, but the proof was rather long. We want to show that a
direct application of Young measures is a useful tool and can abbreviate the
already known reasonings.

2. Preliminaries and notation. We use standard notation for the well
known function spaces W1P(£2) (Sobolev space), Co(R!) (continuous func-
tions vanishing at infinity), C'(§2) (continuous functions), Lip(§2) (Lipschitz
functions), and M(S2) (Radon measures). If f € C'(£2) and u € M(£2), then
(f, ) will stand for §,, f(X) u(dX). We write §, fdx for [A|71§, fdz. We
denote by Q(z,r) the cube with center x and edges of length r. If x,,, x are
elements of a Banach space then we denote by z,, — x the strong (norm)
convergence, by z,, — x the weak convergence and by z, — x the weak
convergence. By C' we denote the general constant, which can change even
in the same line.

The following theorem is well known and has many extensions (see e.g.
[9, Theorem 13|, [18], [21], [7], [8]).
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THEOREM 2.1. Let 2 C R"™ be an open set and 1 < p < oco. Then for
any u € WHP(2) and any X\ > 0 there exists a closed set F\ C §2 and a
mapping uy € Lip(§2) such that

(i) AW?[2\ F5\] — 0 as A — o0,
(il) Vu = Vuy for almost every x € Fy,
(iii) |Vux(z)] < CA for almost every x € §2, with C independent of =
and A,
(iv) [[Vu = Vuy|lLe (o) — 0 as A — oc.

We recall the fundamental theorem of Young (see [3]).

THEOREM 2.2. Let 2 C R"™ be a measurable bounded set. Assume that
w2 —R™ j=1,2,...,1is a sequence of measurable functions satisfying
the following tightness condition:

sup[{z € 2: |uf(z)| >k} — 0 ask — oo.
J

Then there exists a subsequence {u*} and a family {v,}.co of probability
measures, vy € M(R™), such that

(i) for every f € Co(R™) the function x — (f,v,) is measurable,
(ii) if K C R™ is a closed set, and for every j and almost every x,
uw/(x) € K, then suppr, C K for almost every x,
(iii) if A C £2 is measurable and f : 2 x R™ — R satisfies

e f is a Carathéodory function,
e the sequence {f(z,u”(z))} is sequentially weakly relatively com-
pact in L*(A),

then {f(x,u*(x))} converges weakly in L'(A) to f given by
Fo) = | fla ) walan).

Rm
DEFINITION 2.1. We say that u? generates the Young measure {v;}re0

if {v,}eeq satisfies (i) and for any f € Co(R™), f(v/) = f = (f,v,) in
L*>(9).

The following useful fact is a generalization of that given in [6, Lemma
2.2]. Although this form is not required for our needs, for completeness,
and to show some particular techniques, we try to give a possibly general
formulation and include a detailed proof.

THEOREM 2.3. Suppose that u/ = (w?,v7) : 2 — R™ x RF satisfy the
tightness condition and generate the Young measure {fi, }zeq. Suppose fur-
ther that w? — w in measure and that {vj}jeN generates the Young mea-
sure {Vy}pe. Then for almost every x € 2 we have p, = 5w(x) ®v,, which
means that for any f € Co(R™ x R¥) and almost every x € £2,
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(4) | F(sN) palds,dX) = | f(w(@), A) v (dN).

R™ X RF Rk
If f is a Carathéodory function on £2 x (R™ x R¥) and |f(z,5,\)| <
C(z)g(s,\) with some measurable function C and a continuous function
g such that for almost all x € (2,

B) | gls N palds,d)) <oo and | g(w(x), \) va(dN) < oo,
R™ xRk RK
then for almost every x € (2,

(6) | f@, s, A) pa(ds,dX) = | fla,w(@),\) va(dN).
R™ X RF RF

Proof. Let f € Co(R™ x R¥) and set h/ = f(w’,v?) — f(w,v?). Since
f is uniformly continuous, it follows that A/ — 0 in measure, and moreover
|h7| < 2[|fllLos m xmry- Thus, by the Lebesgue Dominated Convergence
Theorem we have h/ — 0 strongly in L!(§2), while on the other hand, by
Theorem 2.2 it converges to (f, i) — (f(w(x), ), vz ) weakly in L!(§2). Hence
(f,pz) — (f(w(x),-),vy) = 0 almost everywhere, from which (4) follows. To
prove (6) we consider three cases: 1) f does not depend on z, 2) C(z) <
K < oo and f is continuous on £2 x R™ x R* and 3) the general case.

In the first case define ¢ : [0,00) — R by ¢(t) = 1 on [0,1], ¢(t) = —t +2
on [1,2] and ¢(t) = 0 for t > 2. Since fI(s,\) = f(s,\)o(|(s,\)|/4) €
Co(R™ x R¥), it follows that the formula

(7) | F(s M) palds,d)) = | 7 (w(@), \) ve(dN)
R™ xRK RK

holds everywhere on a set {2(j) of full measure. In particular, (7) holds
everywhere on the set 2 = ; £2(j), which is still of full measure. We can
assume additionally that (5) holds for all € £2. Since |f7| < |f], we can
let j tend to infinity, apply the Lebesgue Dominated Convergence Theorem,
and verify that (6) holds everywhere on (2.

In the second case choose a dense countable subset {B’} C 2 and con-
sider the functions FV(s,\) = f(B7,s,)\). Since by Case 1 the equality (6)
is satisfied with f = F7 on a set §2;(j) of full measure we see that

| FB 50 palds, dN) = | F(B w(@), A) ve (dN)
R™ xRk RK
on the set 2 =, £21(j), which is still of full measure and does not depend

on j. Take an arbitrary = € 2, and a sequence B’ — z as k — co. Now
it suffices to check that by the Lebesgue Dominated Convergence Theorem
the left hand side of the equality tends to 5, i f(, 5, A) 1z (ds, dX), while

the right hand side tends to {3, f(z,w(z), \) v, (dX).
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Finally, in the last case we use the Scorza Dragoni Theorem and Lusin
Theorem (see e.g. [13]) and bite off sets {2, of arbitrarily small measure such
that f is continuous on (§2\ £2.) x R™ x R¥ and C is bounded on £\ (2..
Thus (6) is satisfied almost everywhere on 2\ (2., and hence it is satisfied
almost everywhere on (2. m

Let us state Chacon’s Biting Lemma (see e.g. [5]).

THEOREM 2.4 [Biting Lemma]. Let 2 CR"™, |£2| < co and suppose that
{f7} is a bounded sequence in L'(§2). Then there exists a subsequence {f*},
a function f € L*(£2) and a decreasing family of measurable sets Ej, such
that |Ex| — 0 as k — oo and for any k,

fY—f in LY\ E}) as v — oo.
DEFINITION 2.2 (see e.g. [24]). We will say that {f/} converges to f

in the biting sense ( fj LA f) whenever there is a set E of arbitrarily small
measure such that f/ — f in L'(2\ E).

Finally, we recall the known definition of quasiconvexity.

DEFINITION 2.3. The function F' : R” — R is quasiconvex if for any
A € R™ any cube @ C R™ and any ¢ € C§°(Q,R™),

(8) F(A) <Y F(A+ V¢)da.
Q

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. We can assume that {2 is a ball (if hy < hy
almost everywhere on every ball B C {2 then h; < ho almost everywhere on
2). If we take f(A) = A, f: R — R™ and apply the Young Theorem to
every coordinate of f(Vu’) we immediately derive (g, Av,(d)\) = Vu(z),
for almost every =x. !

We distinguish the following cases: 1) F' = F(\) and p = 00, 2) F = F(\)
and 1 < p < oo, and 3) the general case.

Case 1. Let z € {2 and r > 0 be such that Q(x,r) C (2. Take
0 < o < r and choose ¢, € C§°(Q(x,r)), ¢po = 1 on Q(z,r — o). By
standard arguments the function w? = ¢, (u’? —u) can be substituted in (8).
That gives for arbitrary A € R},

FA) < | FA+Ve, (v —u) + ¢ (Vi — Vu))dy = I(z,7,0, ).
Qz.r)

Since { F(A+Vw})}; is relatively compact in L'(§2), by the Young Theorem
applied to the sequence (v/ — u, Vu?) and by Theorem 2.3,
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I(,r,0) = § | F(A+ 6o (y)(\ = Vu(y))) vy (dX) dy = I(z,7,0)
Q(z,m) R}
as j — oo and v, is supported on a bounded set. Hence, if we apply the
Lebesgue Dominated Convergence Theorem and let ¢ — 0, we see that

I(z,r,0) — S S F(A+ X —Vu(y)) vy(dX) dy.
Qz,r) Ry
By the Lebesgue Differentiation Theorem for any A € R]* there is a set
2(A) C {2 such that |2\ 2(A)| =0, and for each = € 2(A),

(9) F(A) < | F(A+ )= Vu(@)) va(dN).
R
We can additionally assume that |Vu(z)| < oo for every x € 2(A). Let
{A’} be a countable dense subset in R™. Since 21 = ;02 (A7) is still of full
measure in {2, for every x € £2; the inequality (9) is satisfied with A = A7,

for arbitrary j. Take z € (2 and let A% — Vu(z) as k — oo. Now it
suffices to note that F(A/*) — F(Vu(z)), and

| F(A — Vu(z) + X) va(dX) — | F(A) vy (dA).
R Ry
Case 2. We apply Theorem 2.1 and find uy such that ||[Vuy||p~(g) <
CX and Vuy, = Vu almost everywhere on F)\, where A\P|2\ F)\| — 0 as
A — oo. Let A\, =k, and let {v*} be the Young measure generated by a

subsequence of {Vuj};. Note that for any k we have F(\,vF) < (F,vF)
almost everywhere. Thus it suffices to apply the following lemma.

LEMMA 3.1. Let f = f(N) with [f(N\)] < C(1+ |AP), and {vy}zen and
{vFY1eq be as above. Then for every e > 0 we can find a set E C §2 such
that |E| < e and (f,v¥) — (f,vy) in LY(2\ E) as k — .

Proof. Take € > 0. According to Theorems 2.4 and 2.2 we find a set
E C 2 such that |E| < e and f(Vu/) — (f,v,) weakly in L'(£2\ E). We
have

S |(f7’/£) - (f)yx)|d$

O\E

= s | § s@(f ) — (f)) de]

I8llzoe () <1 o 5

lim § 6(@)(f(Vul) ~ F(Vu?) de|

= sup ;
lollpoo (y<1 ' I00 O\E

<swp | IVl +sup | [f(Ved)|dz =
T (2\BE)\Fy T (2\B)\Fy
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The convergence follows from the estimates on f and the Dunford—Pettis
Theorem. m

Case 3. We use exactly the same arguments as in the proof of Theorem
2.3, cases 2 and 3. m

Proof of Theorem 1.1. Suppose that {u’};cy satisfies the assump-
tions of Theorem 1.1. Let o = liminf; . I(u?). If o = oo the assertion is
satisfied. Suppose that v < cc. In this case the sequence {F(x,u/, Vu/)}en
is bounded in L'(§2). By Theorems 2.2-2.4 we find a subsequence {u'} with
the properties: 1) I(u') — a as | — oo, 2) the sequence {Vu'} generates
the Young measure {v,},c, 3) there exists a family {Ej} of sets such
that |Ey| — 0 and {F(z,u’, Vu!)}; is weakly convergent in L'(£2\ Ej) to
SR:{L F(x,u(z),\) vy (dN).

Since Fy,(x,\) = F(z,u(x), \) satisfies the assumptions of Theorem 1.2,
we have (g, F(x,u(x),\) vy (dX\) > F(z,u(z), Vu(z)) for almost every z.
Now it suffices to note that

a = lim SF(:E,ul,Vul)d:L" > llim S F(x,ul, Vu') dz

feo Q\E,
= | | P u@),Nv(d)) > | F(ou(z), Vu(@)) do. =
O\E, R™ O\Ey

Remark 3.1. It has been proved by Kristensen [17] that the Jensen
inequalities of Theorem 1.2 can be generalized to a certain class of functions
which are Borel measurable with respect to the last variable.
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