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Dedicated to Professor Czes law Ryll-Nardzewski

Introduction. This paper is an extension of a talk given at the con-
ference at Wierzba on the occasion of the 70th anniversary of Prof. Ryll-
Nardzewski. It surveys some new developments concerning the Hadamard
product of holomorphic functions of one complex variable. Throughout
the paper we assume that G1 and G2 are domains in C containing 0. Let
f : G1 → C and g : G2 → C be holomorphic functions. If f(z) =

∑∞
n=0 anz

n

and g(z) =
∑∞
n=0 bnz

n are the Taylor series then the Hadamard product of
f and g is defined by f ∗ g(z) =

∑∞
n=0 anbnz

n. In 1899 Jacques Hadamard
published his famous multiplication theorem stating that f ∗ g extends to a
holomorphic function on a domain G3 which is the complement of the set
Gc

1 · Gc
2. A rigorous proof of this general result (without the assumption

in [12] that G1, G2 are simply connected) was recently given by J. Müller,
whereas in [3] and [13] only starlike domains have been considered. The
most general approach to Hadamard’s multiplication theorem leads to the
definition of a coefficient multiplier given in [10, 17]: Let G1, G2 be domains
containing 0. A power series g(z) =

∑∞
n=0 bnz

n is a coefficient multiplier

if g ∗ f ∈ H(G2) for all f ∈ H(G1), i.e., Tg(f) = g ∗ f defines a linear
mapping Tg : H(G1) → H(G2). In the first section we give a proof of a
result stated in [17], namely that a power series g(u) :=

∑∞
n=0 bnu

n is a
coefficient multiplier if and only if for every w ∈ Gc

1 the power series g has a
holomorphic extension to the domain 1

w
G2. For the case G := G1 = G2 one

infers that H(G) is always a module (with respect to Hadamard multiplica-

tion) over the algebra H(Ĝ), where Ĝ is given by
⋃
w∈Gc

1
w
G. A domain G

of C containing 0 is called admissible if for all f, g ∈ H(G) the Hadamard
product f ∗ g extends to a (unique) function of H(G), i.e., H(G) is a com-
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mutative algebra. It follows that G is admissible iff Gc is a multiplicative
semigroup.

The results of Section 1 lead to a natural embedding of H(Ĝ) into the
multiplier algebra. In Section 2 it is shown that for a simply connected
domain this embedding is an isomorphism if and only if G is α-starlike.
Recall that a domain G is α-starlike (with respect to 0 and a given real
number α) if {t1+iα · g : t ∈ [0, 1], g ∈ G} ⊂ G. This characterization is
related to a result of Arakelyan stating that G is α-starlike if and only if G
is a domain of efficient summability.

In the third section we give a survey of the algebraic properties of H(G)
which have been investigated by a number of authors [1, 6, 8, 9, 18, 22, 27].
The fourth and last section is devoted to the question when two algebras
H(G1) and H(G2) or their multiplier algebras are algebraically isomorphic.
Surprisingly, this is indeed the case if and only if G1 is equal to G2.

Let us introduce some notations. The set of all multipliers T : H(G1) →
H(G2) is denoted by M(H(G1),H(G2)). In the case of G = G1 = G2 we
just write M(H(G)). The interior of a set K is denoted by int(K). The
distance of a point z from Gc is given by dist(z,Gc) := inf{|z−w| : w ∈ Gc}.
If γ is a path its trace is denoted by sp(γ) := {γ(t) : t ∈ [a, b]}. If Γ is a
cycle the index n(Γ, z) is defined by

n(Γ, z) :=
1

2πi

\
Γ

1

ξ − z
dξ.

By D we denote the open unit ball. More generally, Dr denotes the open
ball with center 0 and radius r > 0.

1. Hadamard’s multiplication theorem. Let G be a domain con-
taining 0. Then H(G) is a Fréchet space, i.e. a completely metrizable
locally convex vector space where the (semi)norms are given by |f |K :=
supz∈K |f(z)| for an arbitrary compact subset K of G. The (continu-
ous) functionals δn : H(G) → C defined by δn(f) := an (where f(z) =∑∞
n=0 anz

n locally) are called the Dirac functionals. Coefficient multipliers
can be characterized in the following way (see [24]).

1.1. Theorem. Let T : H(G1) → H(G2) be a linear operator. Then the

following statements are equivalent :

(a) T is a coefficient multiplier.

(b) δn ◦ T = bnδn for all n ∈ N0 and suitable bn ∈ C.

(c) T is continuous and T (f ∗ exp) = T (f) ∗ exp for all f ∈ H(G1).
(d) There exist bn ∈ C, n ∈ N0, such that T (f)(z) =

∑∞
n=0 bnanz

n in a

neighborhood of zero for all f ∈ H(G1), f(z) =
∑∞
n=0 anz

n.

(e) T (f ∗ zn) = T (f) ∗ zn for all f ∈ H(G1) and n ∈ N0.
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We are going to prove a generalized version of Hadamard’s multiplication
theorem which was already stated in [17] (for D := Gc

1 under the redundant
assumption 1 6∈ G1). It seems that the proof in [17] has a serious gap
depending on an incorrect use of the monodromy theorem.

1.2. Theorem. LetD be a dense subset of Gc
1. A power series

∑∞
n=0 bnu

n

induces a coefficient multiplier if and only if the function g(u) :=
∑∞
n=0 bnu

n

possesses a holomorphic extension on 1
w
G2 for all w ∈ D.

P r o o f. Suppose that T (f) := g ∗ f defines a linear map between
H(G1) and H(G2). Since γw(z) := w

w−z ∈ H(G1) we can define gw(u) :=

T (γw)(wu) for u ∈ w−1G2, which is a domain containing zero. By Theorem
1.1(a)⇒(d) we have T (γw)(z) =

∑∞
n=0 bn(

z
w

)n, i.e., gw(u) = T (γw)(wu) =∑∞
n=0 bnu

n. It follows that each gw, w ∈ Gc
1, is a holomorphic extension of∑∞

n=0 bnu
n on the domain 1

w
G2.

For the converse let gw be the holomorphic extension on 1
w
G2 (w ∈ Gc

1)
of g(u) =

∑∞
n=0 bnu

n. Roughly speaking, we want to define a linear map
T : H(G1) → H(G2) by the Parseval integral representation

(1) T (f)(z) =
1

2πi

\
Γ

g

(
z

t

)
f(t)

dt

t
,

where Γ is a cycle in G1 very near to Gc
1 and z varies in a given compact

subset K of G2. The main obstacle is the fact that we do not have a function
g, i.e., that g( z

t
) := gw( z

t
) is not uniquely defined. This difficulty is solved

by decomposing Γ into small line segments Γi which are contained in a
suitable 1

wi

G2. We proceed to the proof: Let w̃0 ∈ Gc
1 be an element such

that |w̃0| = inf{|w| : w ∈ Gc
1} and let w0 ∈ D with |w0/w̃0| < 2. For δ > 0

we define Bδ := {z ∈ C : |z| < δ}. Clearly, there exists 1 > δ2 > 0 such
that Bδ2 ⊂ 1

w0
G2, and there exists 1

2 > δ1 > 0 such that B2δ1 ⊂ G1. Let
K be a compact connected subset of G2 containing 0 as an interior point

and let r > 1 be so large that |z|
r−1 < δ2 < 1 for all z ∈ K, in particular

K ⊂ G2 ∩Br. By continuity of the map (λ, z) → λz there exists ε > 0 such
that λ · z ∈ G2 ∩ Br for all z ∈ K and λ ∈ Bε(1) := {z ∈ C : |z − 1| < ε}.
We now construct a cycle Γ “very near” to Gc

1. Choose 0 < η < 1 so small
that η < ε · δ1 and Bδ1 ⊂ L := {y ∈ G1 ∩ Br : dist(y, (G1 ∩ Br)

c) ≥ η
3}.

By Satz 3.3 in [11, p. 112] there exists a cycle Γ in (G1 ∩Br) \L such that
n(Γ, y) = 1 for all y ∈ L and n(Γ, y) = 0 for all y ∈ (G1 ∩Br)

c. Clearly, we
have |t| ≥ δ1 for all t ∈ sp(Γ ). Moreover, Γ is composed by finitely many
polygons consisting of horizontal and vertical line segments Γi, which will
be numbered by i = 1, . . . , n. We can assume that the length of Γi is smaller
than η/3. Moreover, we have dist(t, (G1 ∩Br)

c) < η/3 for all t ∈ sp(Γ ) by
the definition of the compact set L. We claim that for each i = 1, . . . , n
there exists wi ∈ D with sp(Γi) ⊂

1
wi

G2. In the first case suppose that, for
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given i, there exists ti ∈ sp(Γi) and w̃i ∈ Gc
1 with |ti − w̃i| < η/3. Since D

is dense there exists wi ∈ D with |wi − w̃i| < η/3. Then |t− wi| < η for all
t ∈ sp(Γi) since Γi has length at most η

3 . It follows that wi

t
∈ Bε(1) for all

t ∈ sp(Γi) since |wi

t
− 1| = 1

t
· |wi − t| ≤ η

δ1
< ε. Thus we have proved that

z
t

= wi

t
· z · 1

wi

∈ 1
wi

G2 for all t ∈ sp(Γi) and for all z ∈ K. In the second
case we know that there exist t0 ∈ sp(Γi) and w ∈ Bc

r with |t0 − w| < η/3.
Hence |t| ≥ r − |t0 − w| − |t − t0| ≥ r − 2η

3 ≥ r − 1 for all t ∈ sp(Γi). It

follows that | z
t
| ≤ |z|

r−1 < δ2. In this case we have z
t
∈ Bδ2 ⊂ 1

w0
G2. For

each i = 1, . . . , n we define

(2) Ti(f)(z) :=
1

2πi

\
Γi

gwi

(
z

t

)
f(t)

dt

t
,

which is well-defined since sp(Γi) ⊂
1
wi

G2 and gwi
is a holomorphic function

on 1
wi

G2. It follows that Ti(f) is holomorphic at each point of the interior

of K. Thus T (f) :=
∑n
i=1 Ti(f) is holomorphic in the interior of K. Now

we compute the power series of T (f) at z = 0: Since 0 ∈ 1
wi

G2 for all

i = 1, . . . , n there exists δ > 0 with Bδ ⊂
1
wi

G2 for all i = 1, . . . , n. Choose

ε1 > 0 so small that | z
t
| < δ for all t ∈ sp(Γi), i = 1, . . . , n and |z| < ε1.

Then gwi
( z
t
) is given by the Taylor expansion and we obtain

(3) T (f)(z) =
n∑

i=1

1

2πi

\
Γi

gwi

(
z

t

)
f(t)

dt

t
=

∞∑

k=0

bkz
k 1

2πi

\
Γ

(
1

t

)k+1

f(t) dt.

Furthermore, Γ is a cycle in G1 with n(Γ, y) = 0 for all y ∈ Gc
1 and f :

G1 → C is holomorphic. Cauchy’s Theorem and (3) imply that T (f)(z) =∑∞
k=0 akbkz

k. It follows that T (f) is an analytic continuation of f ∗ g on
the component containing 0 (of the interior of K). Passing to a sequence of
compact connected subsets Kn containing 0 as an interior point satisfying
G2 =

⋃∞
n=1 int(Kn) we infer that T (f) defines a function on G2.

In the following we discuss the consequences of Theorem 1.2: Let G1,
G2 be domains containing 0. As already pointed out in [17] every function
g holomorphic on the set

(4) Ĝ1G2 := {z ∈ C : ∃w ∈ Gc
1 with zw ∈ G2} =

⋃

w∈Gc

1

w−1G2

induces a multiplier (since g restricted to 1
w
G2 is a holomorphic extension)

but the converse does not hold; cf. the example in [17] or consider Theo-
rem 2.1 below for a simply connected domain which is not α-starlike. It
is easy to see that Ĝ1G2 is a domain since G2 is connected and each 1

w
G2

contains 0.
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1.3. Theorem. The map L : H(Ĝ1G2) →M(H(G1),H(G2)) defined by

L(g)(f) = g ∗ f is a linear monomorphism. If 1
w1

G2 ∩ 1
w2

G2 is connected

for all w1, w2 ∈ Gc
1 then L is an isomorphism.

P r o o f. Let g ∈ H(Ĝ1G2) and f ∈ H(G1). Then g is holomorphic on
each set 1

w
G2 with w1 ∈ Gc

1. By Theorem 1.2, g∗f is a holomorphic function
on G2. Clearly, L is linear and injective: L(g) = 0 implies g ∗ zn = 0 for
all n ∈ N0 and therefore g = 0. For the surjectivity let T be a multiplier
and g(u) :=

∑∞
n=0 bnu

n the induced power series. For each w ∈ Gc
1 there

exists a holomorphic extension gw on 1
w
G. Then g(u) := gw(u), w ∈ Gc

1,
u ∈ w−1G2, is well-defined by the identity theorem and by the fact that
1
w1

G2 ∩
1
w2

G2 is connected. Clearly, L(g) ∗ f = T (f) for all f ∈ H(G1).

Theorem 1.3 shows that there exists a bilinear map ∗ : H(Ĝ1G2) ×
H(G1) → H(G2), (f, g) 7→ f∗g, for given domainsG1, G2. Since the bilinear
map is separately continuous it is continuous by Corollary 1 in [25, p. 88].
Often one wants to define a bilinear map ∗ : H(G1) ×H(G2) → H(G3) for
given domains G1, G2 and a suitable domain G3. Clearly, this is possible
if G1 ⊃ Ĝ2G3. This in turn is equivalent to Gc

1 ⊂ 1
w
Gc

3 for all w ∈ Gc
2.

This is equivalent to the statement that u ∈ Gc
1 and w ∈ Gc

2 imply that
uw ∈ Gc

3. Consequently, we have proved the sufficiency part of the following
result, which is probably the most elegant form of Hadamard’s multiplication
theorem.

1.4. Theorem. There exists an extension of the Hadamard product as a

bilinear map ∗ : H(G1) × H(G2) → H(G3) iff u ∈ Gc
1 and w ∈ Gc

2 imply

that uw ∈ Gc
3.

P r o o f. For the necessity consider f(z) = u
u−z and g(z) = w

w−z and
observe that f ∗ g(z) = uw

uw−z .

Assume now that G = G1 = G2. Instead of ĜG we write Ĝ. It is
an important observation due to Arakelyan (Lemma 2.1 in [2]) that Ĝc is

always a semigroup and therefore H(Ĝ) is an algebra. By Theorem 1.3,

H(G) is always a module over the ring (or algebra) H(Ĝ).

2. Approximate identities and summability methods. Let G be a
domain in C with 0 ∈ G. Then G is called a domain of efficient summability

if there exists an infinite set I having a limit point δ0 such that for each
δ ∈ I there exists a sequence of complex numbers C = (cn(δ))n∈N with the
following two properties:

(i) The function Cδ(z) :=
∑∞
n=0 cn(δ)zn converges for all z ∈ C with

|z| < RG/rG, where RG := sup{|z| : z ∈ G} and rG := inf{|w| : w ∈ Gc}.
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(It follows that Cδ ∗ f has convergence radius at least RG; hence Cδ ∗ f ∈
H(G) for all f ∈ H(G).)

(ii) For δ → δ0 the function Cδ ∗ f converges to f in the topology of
compact convergence in G.

We remind that H(G) is a module over the algebra A := H(Ĝ). A net
(ej)j∈J in A is called an approximate identity if (ej ∗ f)j converges to f for
each f ∈ H(G). The equivalence of (b), (d) and (e) in the following result
is due to Arakelyan. Roughly speaking, it says that only α-starlike domains
are domains of efficient summability. It seems that the purely topological
characterizations (f) and (g) are unknown in the literature.

2.1. Theorem. Let G be a domain containing 0. Then the following

statements are equivalent :

(a) H(G) possesses an approximate identity (en)n∈N consisting of poly-

nomials.

(b) G is a domain of efficient summability.

(c) L : H(Ĝ) → M(H(G)) is an isomorphism and G is simply con-

nected.

(d) Ĝ is simply connected.

(e) G is α-starlike.

(f) There exists a path γ : [0, 1] → C with γ(0) = 0, γ(1) = 1 and such

that γ(t) · g ∈ G for all t ∈ [0, 1] and g ∈ G.

(g) G is simply connected and 1
w1
G ∩ 1

w2
G is connected for all w1, w2

∈ Gc.

(h) There exists a simply connected domain G̃ with Ĝ ⊂ G̃ and 1 ∈ G̃c.

P r o o f. (a)⇒(b) is obvious. For (b)⇒(c) suppose that G is not simply
connected. Then there exists a non-empty compact component K in Gc. By
[19, p. 257] there exists a closed path Γ in G with n(Γ, z) = 1 for all z ∈ K.
For w0 ∈ K the function γw0

∗ ej has convergence radius at least RG and
therefore

T
Γ
γw0

∗ ej dξ = 0. On the other hand, the last integrals converge
to
T
Γ
γw0

dξ 6= 0 since γw0
∗ ej converge compactly to γw0

in G and Γ is
contained in G, a contradiction. We now show that L is an isomorphism.
Let T be a multiplier on H(G) and g(u) =

∑∞
n=0 bnu

n be the associated
power series (cf. Theorem 1.2). Note that the convergence radius of g is at

least 1. It suffices to show that for u ∈ Ĝ of the form u = g1
w1

= g2
w2

the value
g(u) is identical, i.e., that T (γw1

)(g1) = T (γw2
)(g2). By assumption γwi

∗ej
converges to γwi

and therefore T (γwi
∗ ej) converges to T (γwi

). Hence it
suffices to show that T (γw1

∗ ej)(g1) = T (γw2
∗ ej)(g2). Let

∑∞
l=0 cl(j)z

l

be the power series of T (ej), which converges for all |z| ≤ RG/rG since
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T (ej) = g ∗ ej . Then

(5) T (γw1
∗ ej)(g1) = γw1

∗ T (ej)(g1) =

∞∑

l=0

cl(j)

wl1
gl1.

Since g1/w1 = g2/w2 the last term equals γw2
∗T (ej)(g2) = T (γw2

∗ ej)(g2).

For (c)⇒(d) suppose that Ĝ is not simply connected. By Lemma 1 in

[9], 1 ∈ Ĝc is isolated. Hence q2(z) = 1/(1 − z)2 is not invertible in H(Ĝ),

since the formal inverse f(z) =
∑∞
n=1

1
n
zn is log(1/(1 − z)) 6∈ H(Ĝ). On

the other hand, f(z) defines a multiplier T on H(G) by Theorem 1.2 and
clearly it is the inverse of L(q2), a contradiction.

For (d)⇒(a) let (pn)n be a sequence of polynomials converging to γ(z) =
1/(1 − z) (the Runge approximation theorem). In Section 1 we have seen

that there exists a continuous Hadamard product ∗ : H(Ĝ)×H(G) → H(G).
Hence f ∗ pn converges to f ∗ γ = f in the domain G.

Hence (a) to (d) are equivalent. The implication (d)⇒(e) is due to

Arakelyan: if Ĝ is simply connected the point 1 ∈ Ĝc cannot be isolated.
By Lemma 2.2 in [2] there exists α ∈ R such that L+

α := {t1+iα : t ∈

[1,∞)} ⊂ Ĝc. It follows that L+
α ⊂ 1

w
Gc for all w ∈ Gc. It is easy to

see that G is α-starlike. The implications (e)⇒(f)⇒(g) are easy and left
to the reader. For (g)⇒(c) use Theorem 1.3. Further, (d)⇒(h) is trivial.

For (h)⇒(a) let pn be polynomials approximating γ(z) on G̃. Clearly, pn
approximate γ on Ĝ ⊂ G̃ as well. Now proceed as in (d)⇒(a).

The following result is a direct consequence of Theorem 2.1(d)⇒(e) since

Ĝ is homeomorphic to the simply connected domain G. The converse of
Theorem 2.2 is not true as simple examples show.

2.2. Theorem. Let G be a simply connected domain. If Ĝ is equal to

some 1
w
G with w ∈ Gc then G is α-starlike.

3. The algebra H(G) with the Hadamard product. In 1992
R. Brück and J. Müller started the investigation of the algebra H(G) en-
dowed with the Hadamard product. A detailed discussion for the special
case of the open unit disk was already given by R. Brooks in [6, 7]. Most of
the presented results can be found in [22]. Recall that a topological algebra
is a B0-algebra if the topology is locally convex and completely metrizable.

3.1. Theorem.LetG be an admissible domain. Then H(G) is a semisim-

ple B0-algebra and each multiplicative functional on H(G) is continuous. It

is a Fréchet algebra iff it is non-unital iff 1 ∈ G.

3.2. Theorem. Let G be an admissible domain with 1 6∈ G. Then the

set of non-invertible elements is dense in H(G).
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An admissible domain G always contains the open unit disk. There are
three different types of admissible domains. In the first case the number
1 is in the domain: Then G must contain the closed unit disk (otherwise
Gc∩{z ∈ C : |z| = 1} is either a finite subgroup or a dense subset of the unit
circle, contradicting the assumption 1 ∈ G). It can be shown that H(G) is a
so-called Q-algebra with respect to the norm given by ‖f‖N := supn∈N0

|an|.
In the second case 1 is in Gc. Then H(G) possesses a unit element given
by γ(z) := 1

1−z and we have to consider two completely different cases: first
suppose that 1 is not isolated in Gc. By Lemma 1 in [9], G is α-starlike, in
particular simply connected. This property is the key to very simple proofs
for characterizing the closed maximal ideals of H(G); cf. [9] or [22]. In
particular, the multiplicative functionals are of the form δn for some n ∈ N0.
Very interesting results and open problems concerning closed principal and
finitely generated ideals in H(G) can be found in [8, 9, 27].

3.3. Theorem. Let G be an admissible simply connected domain with

1 ∈ Gc and let M be an ideal of H(G). Then the following statements are

equivalent :

(a) M is a prime ideal which is contained in a closed ideal.

(b) M is a closed prime ideal.

(c) M is a closed maximal ideal.

(d) There exists n ∈ N0 with M = ker(δn).

If M is a closed ideal and B := {n ∈ N0 : δn(a) = 0 for all a ∈M} then

M =
⋂
n∈B ker(δn) =: MB.

It remains to consider the case where 1 is an isolated point in Gc. This
case is more involved and completely different from the previous one. First,
it is clear that A := Gc ∩ {z ∈ C : |z| = 1} is a finite subgroup of the unit
circle and therefore A is the set of all kth roots of unity for a suitable k ∈ N.
Then G̃ := G ∪ A is an admissible domain containing the closed unit disk.
Identifying f ∈ H(G̃) with f |G we can see H(G̃) as a subalgebra of H(G).
By separating the singularities one obtains a topological linear isomorphism

(6) T : H(G) → Hk ⊕H(G̃), T f = f1 + f2

(cf. [9] for details), where Hk denotes the set of all holomorphic functions

f : Ĉ \ A → C with f(∞) = 0 and G̃ ⊃ G contains the closed unit disk.
Hence the study of H(G) can be reduced to the algebra Hk and the first
case where the domain contains the closed unit disk. Moreover, it is easy to
see that Hk and the direct sum

⊕k
j=1H1 are isomorphic topological vector

spaces (see [9]). Thus investigating H1 is the key to the general case.
Let M(r, f) := max|z|=r |f(z)| be the maximum modulus of f . An entire

function f is said to be of exponential type τ if lim supr→∞ log(M(r, f))/r ≤
τ . An equivalent definition is that for every ε>0 and sufficiently large |z| we
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have |f(z)| ≤ exp((τ+ε)|z|). Of special interest are functions of exponential
type zero. We just mention the following property: A function of exponential

type zero is either constant or surjective. (Proof: If f omits the value 0 then f
is of the form f = exp(ϕ) with an entire function ϕ. Since f is of exponential
type zero this leads to M(r,Re(ϕ)) = o(r). It follows that ϕ = const.)
Clearly, f is in the algebra H1 if and only if there exists an entire function
g with g(1/(1 − z)) = f(z) and g(0) = 0. It is known that the algebra
H1 is topologically and algebraically isomorphic to the algebra E0 of all
entire functions of zero exponential type with pointwise multiplication and
a suitable topology. The isomorphism is given by the Theorem of Wigert:

for f ∈ H1 there exists a unique function f̂ ∈ E0 interpolating the Taylor
coefficients of f in the sense that f̂(n) = an for all n ∈ N0. As worked
out in [9] the multiplicative functionals of H1 are given by point evaluation,

i.e. f 7→ f̂(α) for α ∈ C. In the following we indicate a quite elementary

approach which shows that the interpolating function f̂ ∈ E0 is just the
Gelfand transform of f ∈ H1.

An important observation is the fact that the algebra H1 is generated by
the element q2 := (1−z)−2; cf. formula (7) below, where qn(z) := (1−z)−n =∑∞
k=0

(
k+n−1
n−1

)
zk for n ∈ N. It follows that a continuous multiplicative func-

tional δ is determined by the value α := δ(q2) (note that δ(q1) = δ(γ) = 1).
For later reasons this multiplicative functional will be denoted by δα−1. An
elementary calculation yields the equality

qn =
1

n− 1

[
q2 ∗ qn−1 + (n− 2)qn−1

]
(7)

=
1

n− 1

[
q2 − q1

]
∗ qn−1 + qn−1

for all n ≥ 2. More generally, one can show that pα := q2−αγ is a generating
element for each α ∈ C. The binomial coefficients are defined by

(
β

n

)
:= β(β − 1) . . . (β − (n− 1))/n!

and
(
β
0

)
:= 1 for β ∈ C. Then

(
α+ n− 2

n− 1

)
= α(α + 1) . . . (α+ (n− 2))/(n − 1)!.

Every element f ∈ H1 is of the form f(z) =
∑∞
n=1 anqn(z), where∑∞

n=1 anz
n is an entire function. Define

(8) δα(f) :=

∞∑

n=1

an

(
α+ n− 1

n− 1

)
.

This number exists for all f ∈ H1 and α ∈ C since
∣∣(α+n−1

n−1

)∣∣ ≤ (|α|+1)n−1
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and therefore |δα(f)| ≤
∑∞
n=1 |an|(|α| + 1)n−1 < ∞. Clearly, δα : H1 → C

defined by formula (8) is a linear functional with δα(γ) = δα(q1) = 1. The
following theorem can be proved by elementary methods (see [22]). More
generally, closed ideals of H1 have already been characterized in [18].

3.4. Theorem. Let I be an ideal of H1 which contains pα := q2 − αγ.

Then I is generated by pα and I is the kernel of the continuous multiplicative

functional δα−1 : H1 → C. If φ is a multiplicative functional then φ is con-

tinuous and φ = δα−1 for α := φ(q2). Hence the multiplicative functionals

are exactly the functionals δα with α ∈ C.

3.5. Corollary. Let f ∈ H1 with f(z) =
∑∞
n=1 anqn. Then the Gelfand

transform f̂ defined by

(9) f̂(α) := δα(f) =

∞∑

n=1

an

(
α+ n− 1

n− 1

)

is of zero exponential type and f̂(n) is the nth coefficient of the Taylor

expansion of f(z) at z = 0.

3.6. Corollary. An element f ∈ H1 is invertible if and only if there

exists λ 6= 0 with f = λγ.

P r o o f. “⇒” Suppose that f is not a scalar multiple of γ. By Corol-
lary 3.5, f̂ : C → C is a non-constant function of exponential type zero and
therefore surjective. Hence f̂(α) = 0 for some α ∈ C. So δα(f) = 0, a
contradiction to the invertibility. The converse is trivial.

Let G be an admissible domain with 1 ∈ Gc and let T be the isomorphism
in (6). For each ζ ∈ Ak := {z ∈ C : |z| = 1} ∩ Gc there exists a natural
continuous algebra homomorphism Tζ : Hk → H1 defined by

(10) Tζ(f) = Tζ

( k−1∑

j=0

γj ∗ fj

)
:=

k−1∑

j=0

ζjfj

(Lemma 2 in [9]), where γj ∈ Hk is defined by γj(z) = γ(z/ξj) for each j =

0, . . . , k−1 with ξ = exp(2πi/k) and f is equal to
∑k−1
j=0 γj ∗fj with fj ∈ H1

(Laurent expansion). Using this decomposition of H(G) it is possible to
determine the set of all multiplicative functionals on H(G). This leads to
an invertibility criterion (proved in [9] for the case G = Dr \Ak with r > 1)
for an admissible domain G with 1 ∈ Gc isolated.

3.7. Theorem. Let G be an admissible domain with 1 ∈ Gc isolated.

Then for each multiplicative functional φ : H(G) → C either there exists

n ∈ N0 such that φ = δn, or there exist α ∈ C and ζ ∈ Ak such that

φ(f) = δα ◦ Tζ(f1), where f = f1 + f2 ∈ Hk ⊕H(G̃).
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3.8. Theorem. Let G be an admissible domain with 1 ∈ Gc isolated. For

f = f1 + f2 ∈ Hk ⊕H(G̃) and f2(z) =
∑∞
n=0 anz

n the following statements

are equivalent :

(a) f is invertible.

(b) φ(f) 6= 0 for all (continuous) multiplicative functionals φ.

(c) δα ◦ Tζ(f1) 6= 0 for all α ∈ C and ζ ∈ Ak and δn(f) 6= 0 for all

n ∈ N0.

(d) f1 is invertible in Hk and δn(f) 6= 0 for all n ∈ N0.

(e) There exist c0, . . . , ck−1 ∈ C with f1 =
∑k−1
j=0 cjγj and

∑k−1
j=0 cjζ

j

6= 0 for all ζ ∈ Ak and an 6= −
∑k−1
j=0 cjξ

−nj for all n ∈ N0.

Unfortunately, there is no simple invertibility criterion for admissible
simply connected domains G with 1 ∈ Gc, e.g. C− := C \ [1,∞). An
interesting result is the following special case of Theorem 3 of [8]:

3.9. Theorem (Brück and Müller). Let f(z) =
∑∞
n=0 anz

n ∈ H(C−)
with an 6= 0 for all n ∈ N0 and let H := {z ∈ C : Re(z) ≥ 0}. Then f is

invertible iff there exists a function Φ on H of inner exponential type 0 with

Φ(n) = an and a region Ω in H asymptotic in H such that Φ has no zero

in Ω and 1/Φ is of inner exponential type 0 on Ω.

It would be interesting to know even in the case C− whether a holomor-
phic function f(z) =

∑∞
n=0 anz

n ∈ H(G) is invertible provided that there
exists δ > 0 with δ ≤ |an| ≤ 1 for all n ∈ N0. Connected to this question is
the open problem posed in [9] whether the maximal ideal space of H(G) is
isomorphic to the Stone–Čech compactification of N0 (which is only proved
in [6] for the case of the open unit disk).

We finish this section with some results for the non-unital case. In this
case it is natural to consider the multiplier algebra. Theorem 1.1 shows
that multipliers and coefficient multipliers are equivalent concepts. Multi-
pliers can be characterized as translation-invariant operators. In contrast
to classical results in harmonic analysis, invariance for only one non-trivial
translation is already sufficient. A related result has been obtained in [17]
by J. Müller for a coefficient multiplier T : H(G1) → H(G2).

3.10. Definition. Let G be an admissible domain. For each w ∈ Gc and
f ∈ H(G) define the holomorphic function τwf by τwf(z) := f

(
z
w

)
(note

that z
w

∈ G since otherwise z
w

= b for some b ∈ Gc, hence z = wb ∈ Gc, a
contradiction). Note that τw : H(G) → H(G) is a linear mapping.

3.11. Theorem. Let G 6= C be an admissible domain with 1 ∈ G and

T : H(G) → H(G) be a linear continuous mapping. Then the following

statements are equivalent :
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(a) T is a multiplier.

(b) Tτw = τwT for all w ∈ Gc.

(c) Tτw = τwT for some w ∈ Gc with |w| > 1.

(d) T (f ∗ γw) = T (f) ∗ γw for all f ∈ H(G) and for all w ∈ Gc.

(e) T (f ∗ γw) = T (f) ∗ γw for all f ∈ H(G) and for some w ∈ Gc with

|w| > 1.

Recall that an approximate identity in a topological commutative algebra
A is a net (ej)j∈J such that (aej)j converges to a for each a ∈ A.

3.12. Theorem. Let G be an admissible domain with 1 ∈ G. Then H(G)
possesses an approximate identity if and only if G is α-starlike.

4. Permutation of power series and Hadamard isomorphisms.

Let G1, G2 be domains containing 0. We call a linear map Φ : H(G1) →
H(G2) a permutation operator if there exists a permutation ϕ : N0 → N0

such that for each function f(z) =
∑∞
n=0 anz

n in H(G1) the function Φ(f)
is locally of the form

(11) Φ(f)(z) =
∞∑

n=0

anz
ϕ(n).

Permutation operators arise naturally in the study of isomorphisms between
algebras with Hadamard multiplication (see [23], [20]). It is easy to see that
permutation operators are continuous. Note that a permutation operator
is always injective by the identity theorem. Mathematical intuition tells us
that permutation operators should be very rare. Nonetheless, the following
result is surprising:

4.1. Theorem. Let Φ : H(G1) → H(G2) be a surjective permutation

map. Then G1 = G2.

The proofs of the results of this section will appear in [24]. The fol-
lowing theorem and Theorem 4.4 gives a complete description of bijective
permutation operators:

4.2. Theorem. Let Φ : H(G1) → H(G2) be a surjective permutation

operator. Then there exists an isomorphism Φ̂ : M(H(G1)) → M(H(G2))
which extends Φ.

The number kG in the next definition will be a characteristic of the
domains:

4.3. Definition. Let G be a domain containing 0. For k ∈ N we denote
by Ak the set of all kth roots of unity. If there exists a largest natural
number k ∈ N such that

(12) ξw ∈ Gc for all ξ ∈ Ak, w ∈ Gc
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then this number is denoted by kG. Note that for k = 1 the condition is
always satisfied.

Suppose that the largest number does not exist. Then we can find a
sequence (kn)n satisfying (12). Let w0 ∈ Gc with |w0| ≤ |w| for all w ∈ Gc.
Then {w0ξ : ξ ∈ Akn

, n ∈ N} ⊂ Gc is dense in the circle of radius |w0|. It
follows that G is equal to {z ∈ C : |z| < |w0|}, i.e. G is an open disk. This
special case has already been discussed in [23] and is completely different
from the other domains; cf. Theorems 6.1, 6.2 and Theorem 2.6 in [23]. It
is not very difficult to see that the number kG is equal to the cardinality of
M := {z ∈ Ĝc : |z| = 1}.

4.4. Theorem. Let G1, G2 be domains containing 0 and different from

Dr for all r > 0. Let Ψ : M(H(G1)) → M(H(G2)) be an isomorphism.

Then k := kG1
= kG2

and there exist n0 ∈ N0 and b0, . . . , bk−1 ∈ Z such

that ψ(kn+j) = kn+bj for all nk+j ≥ n0 and for all j = 0, . . . , k−1, where

the permutation ψ : N0 → N0 is given by Ψ(zn) = zψ(n) for all n ∈ N0.

For an α-starlike domain G the algebra of all coefficient multipliers of
H(G) is isomorphic to an algebra of holomorphic functions on the domain

Ĝ. It is natural to ask whether different domains G̃ (instead of Ĝ) may lead
to better results (e.g. for more general domains G). This is not possible, as
the following uniqueness result shows:

4.5. Theorem. Let G be a domain containing 0. Suppose that there exists

an admissible domain G̃ ⊂ C such that H(G̃) is isomorphic to M(H(G)).

Then G̃ = Ĝ and the canonical injection L : H(Ĝ) → M(H(G)) is an

isomorphism.

4.6. Theorem. Let G1, G2 be admissible domains different from Dr for

all r > 0. Suppose that Φ : M(H(G1)) → M(H(G2)) is an isomorphism.

Then Ĝ1 = Ĝ2.

4.7. Corollary. Let G1, G2 be admissible domains such that H(G1)
and H(G2) are Hadamard-isomorphic. Then G1 = G2.

P r o o f. An isomorphism is a permutation operator.
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