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A REMARK ON VAPNIK–CHERVONIENKIS CLASSES

BY

AGATA SMOKTUNOWICZ (WARSZAWA)

We show that the family of all lines in the plane, which is a VC class
of index 2, cannot be obtained in a finite number of steps starting with
VC classes of index 1 and applying the operations of intersection and union.
This confirms a common belief among specialists and solves a question asked
by several authors.

Notations and definitions. For an abstract set I the family of all
subsets of I is denoted by 2I . The indicator function of a set A is denoted
by χA; #A denotes the cardinality of A and A′ stands for I \A. If F ,G ⊂ 2I

then we put F ′ = {A′ : A ∈ F}, F ∧ G = {A ∩ B : A ∈ F , B ∈ G},
F ∨ G = {A ∪ B : A ∈ F , B ∈ G}. If A ⊂ I and F ⊂ 2I then F ∧ A =
F ∧ {A} = {A ∩B : B ∈ F}.

If F ∧ A = 2A then we say that F shatters A. The index of F is
defined by vc(F) = sup{#A : A ⊂ I, F shatters A}. We will say that F is
a VC class if vc(F) < ∞.

A family F ⊂ 2I is said to be a chain (on I) if F is linearly ordered by
inclusion, i.e., for each A,B ∈ F either A ⊂ B or B ⊂ A. If F1, . . . ,Fp are
chains on I then F1 ∧ . . . ∧ Fp is called a p-chain.

If J is a finite set and f, g are functions on J then 〈f, g〉 =
∑

a∈J f(a)g(a).

Introduction. The concept of VC class, with a different notation, was
introduced by Vapnik and Chervonienkis for purposes of the theory of em-
pirical distributions and it plays an important role there (cf. [1], also [5],
Ch. XIV). Later on, it found applications in other branches of mathematics.
It is a fundamental concept in the theory of learning and in the theory of
additive processes. Knowledge of the structure of VC classes would have
many strong consequences for these theories. However, this seems to be a
rather hopeless task. Only in the case of VC classes of index 1 we know a
complete description of their structure (cf. [1], Sect. 4.4). If F is a chain
then vc(F) = 1; conversely, if ∅, I ∈ F and vc(F) = 1 then F is a chain.
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If F ,G are VC classes then F ′, F∧G, F∨G are also VC classes. Therefore
a natural question is whether each VC class can be obtained by the opera-
tions ′, ∧, ∨ starting from families with lower index. If so, then we would
be able to obtain each VC class applying the operations ∧, ∨ and starting
with chains, because as will be shown in the next section, for each VC class
F of index 1 there are chains G1,G2,G3,G4 such that F ⊂ (G1∧G2)∨G3∨G4.

The following question was asked by S. Kwapień [4]:
Is it true that for each VC class F there exist k ∈ N and k-chains

G1, . . . ,Gk such that F ⊂ G1 ∨ . . . ∨ Gk?
A more general question was asked by J. Hoffmann-Jørgensen, K.-L. Su,

and R. L. Taylor [3] (cf. Remark (2) after Theorem 2.5):
Is it true that for each VC class F of subsets of I there are numbers

k ∈ N, r > 0 and a k-chain G such that for each finite subset J ⊂ I and
each A ∈ F we can find real numbers λi and Bi ∈ G, i = 1, . . . ,m, with∑m

i=1 |λi| ≤ r such that

(1) χA∩J =
m∑

i=1

λiχBi∩J ?

To see that it is really more general assume that F ⊂ G1 ∨ . . . ∨ Gp where
Gi, i = 1, . . . , p, are p-chains. If A = B1 ∪ . . . ∪ Bp where A ∈ F , Bi ∈ Gi,
i = 1, . . . , p, then

χA =
p∑

i=1

(−1)i+1
∑

l1>...>li

χBl1∩...∩Bli

and Bl1 ∩ . . . ∩ Bli ∈ G1 ∧ . . . ∧ Gp if I ∈ Gi, i = 1, . . . , p, which can be
assumed without loss of generality; thus χA has the representation (1) with
r = 2p, k = p2 and G = G1 ∧ . . . ∧ Gp, which is a p2-chain.

The aim of the paper is to show that the above questions have negative
answers.

Deriving VC classes from chains. Let L denote the family of all
lines in the plane R2. It is a VC class of index 2. We will show that it is
a counterexample to the questions from the introduction. Namely, we will
prove the following

Theorem. Let G be a k-chain of subsets of R2 and r > 0. If p and
n are integers such that p > rk, n > (4p4k)2k and J = {(i, j) ∈ R2 : i =
1, . . . , n, j = 1, . . . , p} then there exists a line L ∈ L such that the indicator
function χL∩J cannot be written in the form χL∩J =

∑m
i=1 λiχBi∩J where∑m

i=1 |λi| ≤ r and Bi ∈ G.

P r o o f. The well known Erdős–Szekeres Theorem [2] states that each
sequence of numbers of length N contains a monotone subsequence of length
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at least
√

N . Since each maximal chain on a set T may be identified with
a linear ordering of T this theorem can be interpreted as follows: given two
maximal chains F0, F1 on T there exists a subset T0 ⊂ T with #T0 ≥

√
#T

such that either F1 ∧ T0 = F0 ∧ T0 or F1 ∧ T0 = F ′
0 ∧ T0. Hence by an

easy induction we can prove that if F0,F1, . . . ,Fk are chains on T and F0 is
maximal then there exists T0 ⊂ T with #T0 ≥ (#T )1/2k

such that for each
i = 1, . . . , k we have either Fi ∧ T0 ⊂ F0 ∧ T0 or Fi ∧ T0 ⊂ F ′

0 ∧ T0. Let
G = F1 ∧ . . . ∧ Fk where F1, . . . ,Fk are chains on R2 defining G. Applying
the above we deduce that for each q ≥ 2, q ∈ N we can split J into disjont
sets: J = J0∪J1∪ . . .∪Jl such that #J0 < q2k

, #Jj = q for j = 1, . . . , l and
either Fi ∧ Jj ⊂ F0 ∧ Jj or Fi ∧ Jj ⊂ F ′

0 ∧ Jj where F0 is a fixed maximal
chain on J .

Let K = {L ∩ J : L ∈ L, #L ∩ J = p}. If 1 ≤ i, j ≤ n are integers such
that 1−i

p−1 ≤ j − i ≤ n−i
p−1 then the line L which contains the points (i, 1) and

(j, 2) satisfies L ∩ J ∈ K. Therefore

(2) #K ≥ n

[
n− 1
p− 1

]
≥ n2

p
.

We will show that not for all K ∈ K,

(3) χK =
m∑

i=1

λiχBi∩J ,

where
∑m

i=1 |λi| ≤ r, Bi ∈ G, i = 1, . . . ,m.
Assume the contrary; we will show that it leads to a contradiction

with (2).
Let K0 = {K ∈ K : K ∩ J0 6= ∅}. Then #K0 is less than the number of

pairs of elements in J such that the first one is in J0.
Hence #K0 ≤ #J0#J ≤ q2k

np. For K ∈ K define a function gK on J
by gK =

∑
a∈K(χ{a} − χ{a∗}) where a and a∗ are in the same Ji, a∗ is the

immediate successor of a in the linear order on Ji defined by F0 if a is not
the last element of Ji, and a∗ is the immediate predecessor of a otherwise.

Let K = {K ∈ K \ K0 : 〈χK , gK〉 =
∑

a∈J χK(a)gK(a) < p}.
If K ∈ K then a∗ ∈ K for some a ∈ K and therefore #K is less than or

equal to the number of pairs {a, a∗} such that a ∈ Ji for some i = 1, . . . , l.
Thus #K ≤ ql ≤ np. Finally, let K ∈ K \ (K0 ∪ K ). Then assuming
a representation as in (3) we obtain p ≤ 〈χK , gK〉 =

∑m
i=1 λi〈χBi∩J , gK〉.

Since
∑m

i=1 |λi| ≤ r we have |〈χBi∩J , gK〉| ≥ p/r > k for some 1 ≤ i ≤ m.
Let Bi = A1 ∩ . . . ∩ Ak where Aj ∈ Fj , j = 1, . . . , k. If 〈χBi∩J , gK〉 =∑

a∈K(χBi∩J(a) − χBi∩J(a∗)) > k then there exists 1 ≤ j ≤ k such that
for at least two elements a ∈ K we have a ∈ Aj and a∗ 6∈ Aj . Similarly,
if 〈χBi∩J , gK〉 < −k then there exists 1 ≤ j ≤ k such that for at least two
elements a ∈ K we have a 6∈ Aj and a∗ ∈ Aj . Therefore #K\(K0∪K ) is at
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most the number of pairs {a, b} ⊆ J \J0 such that there exist 1 ≤ j ≤ k and
A ∈ Fj such that either a, b ∈ A and a∗, b∗ 6∈ A, or a, b 6∈ A and a∗, b∗ ∈ A.

If 1 ≤ t, s ≤ l and 1 ≤ j ≤ k are fixed integers then the number of
pairs {a, b} such that a ∈ Jt, b ∈ Js and either a, b ∈ A, a∗, b∗ 6∈ A or
a, b 6∈ A, a∗, b∗ ∈ A for some A ∈ Fj does not exceed 2q. This is so because
if A is fixed then there is at most one such pair and since Fj is a chain,
#Fj ∧ (Js ∪ Jt) ≤ #Js + #Jt ≤ 2q. Thus #K \ (K0 ∪ K ) ≤ l2k2q. Since
l ≤ np/q we finally obtain

#K ≤ q2k

np + np + 2k(np)2/q

and this contradicts (2) if we choose q such that

16kp3 < q <

(
1
4

n

p2

)1/(2k)

.

To prove the statement opening the paper we have to prove the claim
about VC classes of index 1 from the introduction which is contained in the
following

Proposition. Let F be a VC class of index 1 of subsets of I. If ∅ ∈ F
then there exists a 2-chain G on I such that F ⊂ G. In general , there are
2-chains G1,G2 on I such that F ⊂ G1 ∨ G′2.

P r o o f. If F is a VC class of index 1 and A ∈ F then F ∧A′ and F ′ ∧A
are VC classes of index 1 which contain ∅; moreover, F ⊂ (F ∧A′)∨ ((F ′ ∧
A)′∧A). Thus the second statement is an easy consequence of the first one.

In the case when I is a finite set the first statement can be proved by
induction on the number of elements in F as follows. If #F = 2 there is
nothing to prove. If #F > 2 choose A,B ∈ F such that B\A 6= ∅ and A∩B
is maximal in {F ∩ G : F,G ∈ F , F 6= G}, i.e. A ∩ B is strictly contained
in no other member of that family. Using the fact that vc(F) = 1 and that
∅ ∈ F we prove easily that D = (A \ B) ∪ (B \ A) is disjoint from each
C ∈ F , C 6= A,B. By the induction assumption there exist chains P1,P2

such that F \ {A} ⊂ P1 ∧ P2. Let B = P1 ∩ P2 where Pi ∈ Pi, i = 1, 2.
Define two new chains on I:

Q1 = {P \D : P ∈ P1, P ⊂ P1} ∪ {P1 \ (A \B)}
∪ {P ∪D : P ∈ P1, P1 ⊂ P},

Q2 = {P \D : P ∈ P2, P ⊂ P2} ∪ {(P2 ∪ (A \B)) \ (B \A)}
∪ {P ∪D : P ∈ P2, P2 ⊂ P}.

For Ri ∈ Pi, i = 1, 2, put

R∼
i =

{
Ri \D if Ri ⊂ Pi,
R∼

i = Ri ∪D if Pi ⊂ Ri and Pi 6= Ri.
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Since A = (P1∪D)∩((P2∪(A\B))\(B\A)) ∈ Q1∧Q2, B = (P1\(A\B))∩
(P2 ∪D) ∈ Q1 ∧Q2 and since for each C ∈ F , C 6= A,B with C = R1 ∩R2,
where Ri ∈ Pi, i = 1, 2, we have C = R∼

1 ∩ R∼
2 ∈ Q1 ∧ Q2; this is because

by the maximality of A ∩ B at least one of the inclusions Ri ⊂ Pi, i = 1, 2,
holds and C ∩D = ∅. Thus F ⊂ Q1 ∧Q2 and the induction is completed.

To prove the case of infinite I it is enough to prove that if F is a family
on I such that for each finite J ⊂ I there are chains P1

J ,P2
J on J with

F ∧ J ⊂ P1
J ∧ P2

J then F is contained in a 2-chain on I. The proof follows
easily by the method of ultrafilters. Let H = {J ⊂ I : #J < ∞} and let h
be an ultrafilter on H, i.e., h is any family of subsets of H which satisfies:

0. ∅ 6∈ h,
1. if J ∈ H then {K ∈ H : J ⊂ K} ∈ h,
2. if G1,G2 ∈ h then G1 ∩ G2 ∈ h,
3. if G ⊂ H then either G ∈ h or H \ G ∈ h.

Given any family (AJ)J∈H of sets we define Limh AJ = {(aJ)J∈H :
aJ ∈ AJ for each J ∈ H} where we identify two elements (aJ)J∈H, (bJ)J∈H
whenever {J ∈ H : aJ = bJ} ∈ h.

If AJ is a class of subsets of AJ for each J ∈ H then we can identify
LimhAJ with a class of subsets of Limh AJ ; the identification is given by
the relation

(aJ)J∈H ∈ (AJ)J∈H ≡ {J ∈ H : aJ ∈ AJ} ∈ h.

Let I = Limh J , F = Limh F ∧ J and for i = 1, 2 let Pi = Limh Pi
J . It

is very easy to check that Pi, i = 1, 2, are chains on I and F ⊂ P1 ∧ P2.
Moreover, I can be identified with a subset of I by the relation

i = (iJ)J∈H ≡ {J ∈ H : i = iJ} ∈ h.

We check easily that with this identification, F ⊂ F ∧ I.

Corollary. The class L of index 2 cannot be obtained by applying the
operations ∧,∨ a finite number times to VC classes of index 1.

R e m a r k. We do not know if there is a VC class of index 3 which cannot
be obtained from VC classes of index 2 by applying the operations ∧,∨ a
finite number times. It seems that the family of all planes in R3 is a good
candidate.
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