The homotopy groups of the L_{2}-localization of a certain type one finite complex at the prime 3

by

Yoshitaka Nakazawa and Katsumi Shimomura (Tottori)

Abstract

For the Brown-Peterson spectrum $B P$ at the prime 3, v_{2} denotes Hazewinkel's second polynomial generator of $B P_{*}$. Let L_{2} denote the Bousfield localization functor with respect to $v_{2}^{-1} B P$. A typical example of type one finite spectra is the mod 3 Moore spectrum M. In this paper, we determine the homotopy groups $\pi_{*}\left(L_{2} M \wedge X\right)$ for the 8 skeleton X of $B P$.

1. Introduction. Let $B P$ denote the Brown-Peterson spectrum at the prime p and L_{2} the Bousfield localization functor from the category of spectra to itself with respect to $v_{2}^{-1} B P$. Here v_{2} is the polynomial generator of $B P_{*}=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right]$ with $\left|v_{k}\right|=2 p^{k}-2$. A p-local finite spectrum F is said to have type n if $K(n)_{*}(X) \neq 0$ and $K(n-1)_{*}(X)=0$ for the Morava K theories $K(i)_{*}(-)$ with coefficient ring $K(i)_{*}=K(i)_{*}\left(S^{0}\right)=(\mathbb{Z} / p)\left[v_{i}, v_{i}^{-1}\right]$. The Toda-Smith spectrum $V(n)$ characterized by

$$
B P_{*}(V(n))=B P_{*} /\left(p, v_{1}, \ldots, v_{n}\right)
$$

is a typical example of spectrum of type $n+1$ when it exists.
At the prime $3, V(1)$ exists and the homotopy groups $\pi_{*}\left(L_{2} V(1)\right)$ were recently computed by the second author [9]. Of course, the homotopy groups $\pi_{*}\left(L_{2} V(1)\right)$ at a prime >3 had already been computed by Ravenel (cf. [5]). In other words, we know the homotopy groups of the L_{2}-localization of a type two finite complex even at the prime 3. In this paper we compute the homotopy groups of the L_{2}-localization of a type one finite complex at the prime 3. At a prime >3, the homotopy groups of the L_{2}-localization of a type one complex and a type zero complex are computed in [7] and [11], respectively. At the prime $p=2$, without a finiteness condition, the homotopy groups of the L_{2}-localization of type two and type one complexes are computed in [3] and [8], respectively.

[^0]From now on, we fix a prime $p=3$. Let X denote the 8 -skeleton of $B P$ and $M=V(0)$ denote the mod 3 Moore spectrum. Then $M \wedge X$ is a spectrum of type one. Since we have the Adams map $\alpha: \Sigma^{4} M \rightarrow M$ such that $B P_{*}(\alpha)=v_{1}$, we see that $\pi_{*}\left(L_{2} M \wedge X\right)$ is a $k(1)_{*}$-module for $k(1)_{*}=(\mathbb{Z} / 3)\left[v_{1}\right]$, where we identify v_{1} and α. In this paper, we determine the homotopy groups $\pi_{*}\left(L_{2} M \wedge X\right)$ by using the Adams-Novikov spectral sequence. In order to state our results, consider $k(1)_{*}$-modules $K^{(i)}, L^{(i)}$, $\widehat{K}^{(i)}, M^{(i)}$ and $N^{(i)}$ defined as follows:

- $K^{(i)}$ is isomorphic to $K(2)_{*}-(\mathbb{Z} / 3)\left[v_{2}^{3}, v_{2}^{-3}\right]$ generated by $g^{(i)}$ of dimensions $-5,10,5$ and -12 for $i=0,1,2$ and 3 , respectively.
- $L^{(i)}$ is the direct sum of $k(1)_{*}$-modules isomorphic to

$$
k(1)_{*} /\left(v_{1}^{4 \cdot 3^{k}}\right)
$$

generated by $g_{k, m}^{(i)}$ for $k \geq 0$ and $m \in \mathbb{Z}-3 \mathbb{Z}$ of dimension $16 \cdot 3^{k}(3 m-1)-$ $1+15 i$ for $i=0,1$, and $8 \cdot 3^{k+1}(2 m-3)-3+15(i-2)$ for $i=2,3$.

- $\widehat{K}^{(i)}$ is isomorphic to $(\mathbb{Z} / 3)\left[v_{2}^{3}, v_{2}^{-3}\right]$ generated by $k^{(i)}$ of dimension $15-5 i$.
- $M^{(i)}$ is the direct sum of $k(1)_{*}$-modules isomorphic to

$$
k(1)_{*} /\left(v_{1}^{6 \cdot 3^{k}}\right) \oplus k(1)_{*} /\left(v_{1}^{10 \cdot 3^{k}}\right)
$$

generated by ${g^{\prime}}_{k, m}^{(i)}$ and $g^{\prime \prime(i)}$ k,m for $k \geq 0, m \in \mathbb{Z}$ of dimensions $8 \cdot 3^{k}(18 m+3)$ $-2+15(i-1)$ and $8 \cdot 3^{k}(18 m+11)-2+15(i-1)$.

- $N^{(i)}$ is the direct sum of $k(1)_{*}$-modules isomorphic to

$$
k(1)_{*} /\left(v_{1}^{3}\right)
$$

generated by $g_{m}^{(i)}$ for $m \in \mathbb{Z}$ of dimension $16 \cdot(3 m+2)-2+11(i-1)$.
Let G^{s} denote a $k(1)_{*}$-module isomorphic to the finite v_{1} torsion part M^{s} of $H^{s} M_{1}^{1}$ shown in (11.1):

$$
\begin{aligned}
& G^{0}=K^{(0)} \oplus L^{(0)}, \\
& G^{1}=K^{(1)} \oplus L^{(1)} \oplus \widehat{K}^{(1)} \oplus M^{(1)} \oplus N^{(1)}, \\
& G^{2}=K^{(2)} \oplus L^{(2)} \oplus \widehat{K}^{(2)} \oplus M^{(2)} \oplus N^{(2)}, \\
& G^{3}=K^{(3)} \oplus L^{(3)}, \\
& G^{s}=0 \quad \text { for } s>3 .
\end{aligned}
$$

Our computation shows that the E_{2}-term of the Adams-Novikov spectral sequence for $\pi_{*}\left(L_{2} M \wedge X\right)$ is zero at the filtration degree greater than 4 . Therefore, the spectral sequence collapses to the E_{2}-term. We compute the E_{2}-term and obtain:

ThEOREM 1.1. The homotopy group $\pi_{*}\left(L_{2} M \wedge X\right)$ is isomorphic to the direct sum of a $k(1)_{*}$-module

$$
k(1)_{*} \otimes \Lambda\left(h_{20}\right),
$$

two copies of $K(1)_{*} / k(1)_{*}$, and $\bigoplus_{s \geq 0} G^{s}$. Here $h_{20} \in \pi_{15}\left(L_{2} M \wedge X\right)$ and the direct sum of the two copies of $K(1)_{*} / k(1)_{*}$ is generated by the elements $z_{j}^{(i)} \in \pi_{15 i-4 j-2}\left(L_{2} M \wedge X\right)$ for $i=0,1$ and $0<j \in \mathbb{Z}$ as a vector space over $\mathbb{Z} / 3$ with $v_{1} z_{j}^{(i)}=z_{j-1}^{(i)}$ and $z_{0}^{(i)}=0$.

The theorem follows from
TheOrem 1.2. The homotopy group $\pi_{*}\left(L_{K(2)} X \wedge M\right)$ is isomorphic to the $k_{*}(1)$-module

$$
k(1)_{*}^{\wedge} \otimes \Lambda\left(h_{20}, \zeta_{2}\right) \oplus \bigoplus_{s \geq 0} G^{s}
$$

Here $k(1)_{*}^{\wedge}=\lim _{j} k(1)_{*} /\left(v_{1}^{j}\right)$, and $L_{K(2)}$ denotes the Bousfield localization functor with respect to the Morava K-theory $K(2)_{*}$.

Note that $L_{K(2)} X \wedge M=\lim _{j} L_{K(2)} X \wedge V(1)_{(j)}=\lim _{j} L_{2} X \wedge V(1)_{(j)}$. This theorem follows from the knowledge of the homotopy groups $\pi_{*}\left(L_{K(2)} X \wedge V(1)_{(j)}\right)$ for the cofiber $V(1)_{(j)}$ of $\alpha^{j}: \Sigma^{4 j} M \rightarrow M$, whose structures can be read off from the differentials of the Bockstein spectral sequence used to determine $H^{*} M_{1}^{1}$. Note also that we have the duality

$$
E_{2}^{s, *}\left(X \wedge V(1)_{(j)}\right) \cong \operatorname{Hom}\left(E_{2}^{4-s, *}\left(X \wedge V(1)_{(j)}\right), \mathbb{Q} / \mathbb{Z}\right)
$$

even at $p=3$, which was observed at the prime $p>3$ by Hopkins and Gross [2].
2. The spectrum X. Throughout this paper, we consider everything localized at the prime number 3 . Let S^{0} denote the sphere spectrum and consider the cofiber $S^{0} \cup_{\alpha_{1}} e^{4}$ of the map $\alpha_{1}: S^{3} \rightarrow S^{0}$ which represents the generator $\pi_{3}\left(S^{0}\right)$. Since the map $\alpha_{1}: S^{7} \rightarrow S^{4}$ is extended to $\widetilde{\alpha}_{1}: S^{7} \rightarrow$ $S^{0} \cup_{\alpha_{1}} e^{4}$, the spectrum X is defined to be a cofiber of the map $\widetilde{\alpha}_{1}$ and denoted by

$$
X=S^{0} \cup_{\alpha_{1}} e^{4} \cup_{\tilde{\alpha}_{1}} e^{8}
$$

Let $B P$ denote the Brown-Peterson spectrum at the prime 3. Then $B P_{*}=$ $\pi_{*}(B P)=\mathbb{Z}_{(3)}\left[v_{1}, v_{2}, \ldots\right]$ with $\left|v_{i}\right|=2\left(3^{i}-1\right)$, and $B P_{*}(B P)=$ $B P_{*}\left[t_{1}, t_{2}, \ldots\right]$ with $\left|t_{i}\right|=2\left(3^{i}-1\right)$. By the cell structure, we see that X is the 8 -skeleton of $B P$, and so

$$
B P_{*}(X)=B P_{*}\left[t_{1}\right] /\left(t_{1}^{3}\right) \subset B P_{*}(B P)
$$

which gives the comodule structure of $B P_{*}(X)$.

Let M denote the Moore spectrum which is defined as the cofiber of the map $3: S^{0} \rightarrow S^{0}$. Then

$$
B P_{*}(M \wedge X)=\left(B P_{*} /(3)\right)\left[t_{1}\right] /\left(t_{1}^{3}\right)
$$

as a comodule.
3. The E_{2}-term. We note that for the Brown-Peterson spectrum $B P$, $\left(B P_{*}, B P_{*}(B P)\right)$ is a Hopf algebroid, and the category of $B P_{*}(B P)$-comodules has enough injectives. Therefore, the Ext group $\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, C\right)$ is defined as a cohomology of the relative injective resolution of a comodule C. Note that $B P_{*}(W)$ is a comodule for a spectrum W. The E_{2}-term of the Adams-Novikov spectral sequence for computing the homotopy groups $\pi_{*}(W)$ is $\operatorname{Ext}_{B P_{*}(B P)}^{s, t}\left(B P_{*}, B P_{*}(W)\right)$. Hereafter, spectra are supposed to be 3 -local.

Consider a comodule algebra $E(2)_{*}=v_{2}^{-1} \mathbb{Z}_{(3)}\left[v_{1}, v_{2}\right]$ whose structure is read off from that of $B P_{*}$. By Landweber's exact functor theorem, $E(2)_{*}(-)$ $=E(2)_{*} \otimes_{B P_{*}} B P_{*}(-)$ is a homology theory and $E(2)$ denotes the spectrum which represents it by Brown's theorem. Then, $E(2)_{*}(E(2))=E(2)_{*} \otimes_{B P_{*}}$ $B P_{*}(B P) \otimes_{B P_{*}} E(2)_{*}$ is also a Hopf algebroid. We have another Adams-type spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=\mathrm{Ext}_{E(2)_{*}(E(2))}^{s, t}\left(E(2)_{*}, E(2)_{*}(W)\right) \Rightarrow \pi_{*}\left(L_{2} W\right) \tag{3.1}
\end{equation*}
$$

(cf. [6]). Here L_{2} denote the Bousfield localization functor with respect to $E(2)$. Using this we will compute first the E_{2}-term for the spectrum $X \wedge M$ defined in the previous section. Consider the coalgebroid

$$
\Sigma=E(2)_{*}\left[t_{1}^{3}, t_{2}, t_{3}, \ldots\right] \otimes_{B P_{*}} E(2)_{*}
$$

whose coalgebra structure is inherited from $\Gamma=E(2)_{*}(E(2))$ by the canonical projection $\Gamma \rightarrow \Sigma$. So it is a coalgebra over $E(2)_{*}$. Let

$$
E(2)_{*} /(3) \rightarrow \Sigma \otimes_{E(2)_{*}} I_{0} \rightarrow \Sigma \otimes_{E(2)_{*}} I_{1} \rightarrow \ldots
$$

be a relative Σ-injective resolution, by which we mean a long exact sequence of comodules which is split as $E(2)_{*}$-modules. Applying the functor $\Gamma \square_{\Sigma}-$ to the resolution, we have another Γ-injective resolution

$$
\left(E(2)_{*} /(3)\right)\left[t_{1}\right] /\left(t_{1}^{3}\right) \rightarrow \Gamma \otimes_{E(2)_{*}} I_{0} \rightarrow \Gamma \otimes_{E(2)_{*}} I_{1} \rightarrow \ldots
$$

since $\Gamma \square_{\Sigma} E(2)_{*} \cong E(2)_{*}\left[t_{1}\right] /\left(t_{1}^{3}\right)$ as a comodule and $\Gamma \square_{\Sigma} \Sigma=\Gamma$. These resolutions give the same cohomology and so we have an isomorphism

$$
\operatorname{Ext}_{\Gamma}^{s, t}\left(E(2)_{*},\left(E(2)_{*} /(3)\right)\left[t_{1}\right] /\left(t_{1}^{3}\right)\right)=\operatorname{Ext}_{\Sigma}^{s, t}\left(E(2)_{*}, E(2)_{*} /(3)\right)
$$

4. The chromatic spectral sequence. For the sake of simplicity, we use the notation

$$
H^{s, t}(C)=\mathrm{Ext}_{\Sigma}^{s, t}\left(E(2)_{*}, C\right)
$$

for a Σ-comodule C. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow E(2)_{*} /(3) \rightarrow v_{1}^{-1} E(2)_{*} /(3) \rightarrow E(2)_{*} /\left(3, v_{1}^{\infty}\right) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

of comodules, which defines the comodule $E(2)_{*} /\left(3, v_{1}^{\infty}\right)$. For short, we write

$$
M_{1}^{1}=E(2)_{*} /\left(3, v_{1}^{\infty}\right)
$$

following [4]. We denote an element of it by

$$
x / v_{1}^{j} \quad \text { with } x / v_{1}^{j} \neq 0 \text { if and only if } j>0,
$$

for $x \in K(2)_{*}$. Here $K(2)_{*}=E(2)_{*} /\left(3, v_{1}\right)=(\mathbb{Z} / 3)\left[v_{2}, v_{2}^{-1}\right]$. In other words,

$$
M_{1}^{1}=\left\{x / v_{1}^{j}: x \in K(2)_{*}, 0<j \in \mathbb{Z}\right\} .
$$

We also define

$$
N_{1}^{0}=E(2)_{*} /(3) \quad \text { and } \quad M_{1}^{0}=v_{1}^{-1} E(2)_{*} /(3) .
$$

Then the short exact sequence induces a long one:

$$
\begin{equation*}
\ldots \rightarrow H^{s-1} M_{1}^{1} \xrightarrow{\delta} H^{s} N_{1}^{0} \rightarrow H^{s} M_{1}^{0} \rightarrow H^{s} M_{1}^{1} \xrightarrow{\delta} \ldots \tag{4.2}
\end{equation*}
$$

which yields our chromatic spectral sequence. That is, $E_{1}^{s, t}=H^{t} M_{1}^{s} \Rightarrow$ $H^{s+t} N_{1}^{0}$. The structure of the E_{1}-term $H^{*} M_{1}^{0}$ is given as follows:

$$
\begin{equation*}
H^{*} M_{1}^{0}=\operatorname{Ext}_{\Sigma}^{*}\left(E(2)_{*}, v_{1}^{-1} E(2)_{*} /(3)\right)=\Lambda_{K(1)_{*}}\left(h_{20}\right) \tag{4.3}
\end{equation*}
$$

This follows from the change of rings theorems:

$$
\begin{gathered}
H^{*} M_{1}^{0}=\operatorname{Ext}_{\Sigma}^{*}\left(E(2)_{*}, v_{1}^{-1} E(2)_{*} /(3)\right)=\operatorname{Ext}_{\Sigma^{\prime}}^{*}\left(K(1)_{*}, K(1)_{*}\right) \quad \text { and } \\
\operatorname{Ext}_{\Sigma^{\prime}}^{*}\left(K(1)_{*}, K(1)_{*}\right)=K(1)_{*} \otimes \operatorname{Ext}_{S(1,2)}^{*}(\mathbb{Z} / 3, \mathbb{Z} / 3)
\end{gathered}
$$

and Ravenel's result (cf. [5, Th. 6.3.7]):

$$
\operatorname{Ext}_{S(1,2)}^{*}(\mathbb{Z} / 3, \mathbb{Z} / 3)=\Lambda\left(h_{20}\right),
$$

where $K(1)_{*}=(\mathbb{Z} / 3)\left[v_{1}, v_{1}^{-1}\right]$,

$$
\begin{aligned}
\Sigma^{\prime} & =K(1)_{*}\left[t_{2}, t_{3}, \ldots\right] /\left(v_{1} t_{i}^{3}-v_{1}^{3^{i}} t_{i}: i>1\right) \quad \text { and } \\
S(1,2) & =\Sigma^{\prime} \otimes_{K(1)_{*}} \mathbb{Z} / 3=(\mathbb{Z} / 3)\left[t_{2}, t_{3}, \ldots\right] /\left(t_{i}^{3}-t_{i}: i>1\right) .
\end{aligned}
$$

We further note that the generator h_{20} is represented by the cocycle

$$
h_{20}=t_{2}-u t_{1}^{3}+u v_{1} t_{1}^{2}+u^{2} v_{1} t_{1} \in \Omega_{\Gamma^{\prime}}^{1} K(1)_{*}\left\{1, u, u^{2}\right\},
$$

where Ω denotes the cobar complex and $K(1)_{*}\left\{1, u, u^{2}\right\}=K(1)_{*}\left[t_{1}\right] /\left(t_{1}^{3}\right)$. The exact sequence (4.2) together with (4.3) gives us the desired E_{2}-term $H^{*} N_{1}^{0}=H^{*}\left(E(2)_{*} /(3)\right)=\operatorname{Ext}_{\Sigma}^{*}\left(E(2)_{*}, E(2)_{*} /(3)\right)$ of the spectral sequence (3.1), if we know $H^{*} M_{1}^{1}=H^{*}\left(E(2)_{*} /\left(3, v_{1}^{\infty}\right)\right)$.

Consider the following short exact sequence:

in which $f(x)=x / v_{1}$. By the following lemma we will determine $H^{*} M_{1}^{1}$.
Lemma 4.5 ([4, Remark 3.11]). Consider the commutative diagram

in which the upper sequence is the long exact sequence induced by the short one (4.4). If the lower sequence is exact, then $H^{*} M_{1}^{1}=B$.
5. Definition of some elements. In this section we will work in the cobar complex $\Omega_{\Sigma}^{*} M_{1}^{1}$, whose homology groups are $H^{*} M_{1}^{1}$. Here the cobar complex consists of the modules

$$
\Omega_{\Sigma}^{t} M_{1}^{1}=M_{1}^{1} \otimes_{E(2)_{*}} \overbrace{\Sigma \otimes_{E(2)_{*}} \cdots \otimes_{E(2)_{*}} \Sigma}^{t}
$$

with differentials $d_{t}: \Omega_{\Sigma}^{t} M_{1}^{1} \rightarrow \Omega_{\Sigma}^{t+1} M_{1}^{1}$ given by

$$
\begin{aligned}
d_{t}\left(m \otimes \gamma_{1} \otimes \ldots \otimes \gamma_{t}\right)= & \eta_{R}(m) \otimes \gamma_{1} \otimes \ldots \otimes \gamma_{t} \\
& +\sum_{i=1}^{t}(-1)^{i} m \otimes \gamma_{1} \otimes \ldots \otimes \Delta\left(\gamma_{i}\right) \otimes \ldots \otimes \gamma_{t} \\
& -(-1)^{t} m \otimes \gamma_{1} \otimes \ldots \otimes \gamma_{t} \otimes 1,
\end{aligned}
$$

where $\eta_{R}: M_{1}^{1} \rightarrow M_{1}^{1} \otimes_{E(2)_{*}} \Sigma$ and $\Delta: \Sigma \rightarrow \Sigma \otimes_{E(2)_{*}} \Sigma$ are the maps induced from the right unit $\eta_{R}: E(2)_{*} \rightarrow E(2)_{*}(E(2))$ and the coproduct $\Delta: E(2)_{*}(E(2)) \rightarrow E(2)_{*}(E(2)) \otimes_{E(2)_{*}} E(2)_{*}(E(2))$, respectively.

Since $\eta_{R}\left(v_{3}\right)=0$ and $\eta_{R}\left(v_{4}\right)=0$ in $E(2)_{*}(E(2))$, we have the relations (cf. [10]):

$$
\begin{align*}
& t_{1}^{9} \equiv v_{2}^{2} t_{1}-v_{1} v_{2}^{-1} t_{2}^{3}+v_{1}^{2} v_{2} t_{1}^{3} \bmod \left(3, v_{1}^{3}\right) \quad \text { and } \tag{5.1}\\
& t_{2}^{9} \equiv v_{2}^{8} t_{2}-v_{1} v_{2}^{-1} t_{3}^{3} \bmod \left(3, v_{1}^{3}\right)
\end{align*}
$$

in $E(2)_{*}(E(2))$. Note that in [10] the lower congruence is said to hold mod $\left(3, v_{1}^{2}\right)$, but a careful computation shows it holds also $\bmod \left(3, v_{1}^{3}\right)$.

First, we recall [4] the elements $x_{k} \in E(2)_{*}$ for $k \geq 0$ defined inductively by

$$
x_{i}= \begin{cases}v_{2}^{3^{i}} & \text { for } i=0,1, \\ x_{i-1}^{3}+e_{i} v_{1}^{4\left(3^{i-1}-1\right)} v_{2}^{2 \cdot 3^{i-1}+1} & \text { for } i>1,\end{cases}
$$

where $e_{2}=-1$ and $e_{i}=1$ for $i>2$. Then by [4, Prop. 5.4] we have, mod $\left(3, v_{1}^{4 \cdot 3^{i-1}+1}\right)$,

$$
\begin{align*}
d_{0}\left(x_{1}\right) & \equiv v_{1}^{3} t_{1}^{9} \equiv v_{1}^{3} v_{2}^{2}\left(t_{1}+v_{1}\left(v_{2}^{-1}\left(t_{2}-t_{1}^{4}\right)-\zeta_{2}\right)\right), \\
d_{0}\left(x_{i}\right) & \equiv-v_{1}^{4 \cdot 3^{3^{-1}}-1} v_{2}^{2 \cdot 3^{i-1}}\left(t_{1}+v_{1} \zeta_{2}^{3^{i-1}}\right) \quad \text { for } i>1, \tag{5.2}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta_{2}=v_{2}^{-1} t_{2}+v_{2}^{-3}\left(t_{2}^{3}-t_{1}^{12}\right) . \tag{5.3}
\end{equation*}
$$

Here using (5.1), we have

$$
\begin{equation*}
d_{1}\left(\zeta_{2}\right) \equiv 0 \bmod \left(3, v_{1}\right) . \tag{5.4}
\end{equation*}
$$

Put

$$
\widetilde{v_{2}^{u} h_{20}}=v_{2}^{u} t_{2}-u v_{1} v_{2}^{u-9} t_{3}^{3}+u v_{1} v_{2}^{u-3} t_{1}^{3} t_{2}^{3}
$$

for $u \in \mathbb{Z}$. Recall [10] the element $V=\frac{1}{3 v_{1}}\left(v_{1}^{3} t_{1}^{9}-v_{1}^{9} t_{1}^{3}-d_{0}\left(v_{2}^{3}\right)\right)$. Then

$$
\begin{equation*}
V \equiv-v_{2}^{2} t_{1}^{3} \bmod \left(3, v_{1}\right) \quad \text { and } \quad d_{1}(V) \equiv v_{1}^{2} b_{1} \bmod \left(3, v_{1}^{8}\right) \tag{5.5}
\end{equation*}
$$

for

$$
\begin{equation*}
b_{k}=-t_{1}^{3^{k}} \otimes t_{1}^{2 \cdot 3^{k}}-t_{1}^{2 \cdot 3^{k}} \otimes t_{1}^{3^{k}} \quad(k \geq 0) . \tag{5.6}
\end{equation*}
$$

We also define the cocycle $\xi=v_{2}^{-10} t_{1}^{3} \otimes t_{3}^{3}+\ldots$ by the following:
Lemma 5.7. In $\Sigma \otimes_{E(2) *} \Sigma$,

$$
d_{0}\left(\widetilde{v_{2}^{2} h_{20}}\right) \equiv-v_{1} V \otimes \zeta_{2}^{3}+v_{1}^{2} v_{2}^{2} \xi \bmod \left(3, v_{1}^{3}\right) .
$$

We also have

$$
d_{0}\left(\widetilde{v_{2} h_{20}}\right) \equiv-v_{1} v_{2} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{2}\right)
$$

Proof. This follows from a direct computation: $\bmod \left(3, v_{1}^{3}\right)$, we have

$$
\begin{aligned}
d_{0}\left(v_{2}^{2} t_{2}\right) \equiv & -v_{1} v_{2} t_{1}^{3} \otimes t_{2}+v_{1}^{2} t_{1}^{6} \otimes t_{2}, \\
d_{0}\left(v_{1} v_{2}^{-7} t_{3}^{3}\right) \equiv & -v_{1}^{2} v_{2}^{-8} t_{1}^{3} \otimes t_{3}^{3}-v_{1} v_{2}^{-7}\left(t_{1}^{3} \otimes t_{2}^{9}+t_{2}^{3} \otimes t_{1}^{27}+v_{2}^{3} b_{1}^{3}\right), \\
d_{0}\left(-v_{1} v_{2}^{-1} t_{1}^{3} t_{2}^{3}\right) \equiv & v_{1}^{2} v_{2}^{-2} t_{1}^{3} \otimes t_{1}^{3} t_{2}^{3} \\
& +v_{1} v_{2}^{-1}\left(t_{1}^{6} \otimes t_{1}^{9}+t_{1}^{3} \otimes t_{1}^{12}+t_{1}^{3} \otimes t_{2}^{3}+t_{2}^{3} \otimes t_{1}^{3}\right) .
\end{aligned}
$$

Now use the relation (5.1) to obtain the lemma. Note that, as shown in [1], $b_{1}^{3} \equiv b_{2} \equiv v_{2}^{6} b_{0} \bmod \left(3, v_{1}^{2}\right)$, which is 0 in our case.

The other case is similar.

LEMMA 5.8. Consider the element $\widetilde{v_{2}^{-1} h_{30}}=v_{2}^{-27} t_{3}^{9}-v_{1} v_{2}^{2} \zeta_{2}^{3}+v_{1}^{2} v_{2}^{-8} t_{3}^{3}-$ $v_{1}^{3} v_{2} t_{1}^{6} \zeta_{2}^{3}$. Then $v_{2}^{-1} h_{30} \equiv v_{2}^{-1} t_{3} \bmod \left(3, v_{1}\right)$ and

$$
d_{1}\left(\widetilde{v_{2}^{-1} h_{30}}\right) \equiv-b_{1}-\zeta_{2}^{3} \otimes t_{1}^{9}+v_{1}^{3} v_{2} \xi \bmod \left(3, v_{1}^{4}\right)
$$

in $\Sigma \otimes_{E(2)_{*}} \Sigma$.
Proof. The first statement follows from (5.1).
For the second statement, note first that

$$
b_{1}^{9}=v_{2}^{18} b_{1}-d_{1}\left(v_{1}^{3} v_{2}^{9} t_{1}^{6} t_{2}^{9}\right)
$$

Furthermore, notice that

$$
\begin{gathered}
v_{1} t_{2}^{3} \equiv-v_{2} t_{1}^{9}+v_{1}^{2} v_{2}^{2} t_{1}^{3}-v_{1}^{3} v_{2} t_{1}^{6} \\
\text { and } \zeta_{2}^{3} \equiv v_{2}^{-3} t_{2}^{3}+v_{2}^{-9} t_{2}^{9}+v_{1} v_{2}^{-4} t_{1}^{3} t_{2}^{3}-v_{1}^{2} v_{2}^{-2} t_{1}^{6} \bmod \left(3, v_{1}^{4}\right) . \text { Then, } \bmod \left(3, v_{1}^{4}\right), \\
t_{1}^{9} \otimes t_{2}^{27}+t_{2}^{9} \otimes t_{1}^{81} \equiv\left(-v_{1} v_{2}^{-1} t_{2}^{3}+v_{1}^{2} v_{2} t_{1}^{3}-v_{1}^{3} t_{1}^{6}\right) \otimes v_{2}^{24} t_{2}^{3}+t_{2}^{9} \otimes v_{2}^{18} t_{1}^{9} \\
\equiv \\
\equiv v_{2}^{23} t_{2}^{3} \otimes v_{2} t_{1}^{9}-v_{1}^{2} v_{2}^{23} t_{2}^{3} \otimes v_{2}^{2} t_{1}^{3}+v_{1}^{3} v_{2}^{23} t_{2}^{3} \otimes v_{2} t_{1}^{6} \\
\\
\quad+v_{1}^{2} v_{2}^{25} t_{1}^{3} \otimes t_{2}^{3}-v_{1}^{3} v_{2}^{24} t_{1}^{6} \otimes t_{2}^{3}+v_{2}^{18} t_{2}^{9} \otimes t_{1}^{9} \\
\equiv \\
\equiv v_{2}^{27} \zeta_{2}^{3} \otimes t_{1}^{9}+v_{1}^{2} v_{2}^{2} t_{1}^{6} \otimes t_{1}^{9}+v_{1}^{2} v_{2}^{28} t_{1}^{3} \otimes \zeta_{2}^{3} \\
\\
\quad-v_{1}^{2} v_{1}^{19} t_{1}^{3} \otimes t_{2}^{9}+v_{1}^{2} v_{2}^{25} t_{1}^{3} \otimes t_{1}^{12}-v_{1}^{3} v_{2}^{24} t_{1}^{6} \otimes t_{2}^{3} \\
\\
-v_{1}^{2} v_{2}^{25} t_{2}^{3} \otimes t_{1}^{3}+v_{1}^{3} v_{2}^{24} t_{1}^{3} t_{2}^{3} \otimes t_{1}^{3}+v_{1}^{3} v_{2}^{24} t_{2}^{3} \otimes t_{1}^{6} .
\end{gathered}
$$

Now add the following to obtain the results:

$$
\begin{aligned}
d_{1}\left(v_{2}^{-27} t_{3}^{9}\right) & \equiv-v_{2}^{-27}\left(t_{1}^{9} \otimes t_{2}^{27}+t_{2}^{9} \otimes t_{1}^{81}+v_{2}^{9}\left(t_{1}^{27} \otimes t_{1}^{54}+t_{1}^{54} \otimes t_{1}^{27}\right)\right) \\
& \equiv-v_{2}^{-27}\left(t_{1}^{9} \otimes t_{2}^{7}+t_{2}^{9} \otimes t_{1}^{81}+v_{2}^{9} b_{1}^{9}\right), \\
d_{1}\left(-v_{1} v_{2}^{2} \zeta_{2}^{3}\right) & \equiv v_{1}^{2} v_{2} t_{1}^{3} \otimes \zeta_{2}^{3}-v_{1}^{3} t_{1}^{6} \otimes \zeta_{2}^{3}, \\
d_{1}\left(v_{1}^{2} v_{2}^{-8} t_{3}^{3}\right) & \equiv v_{1}^{3} v_{2}^{-9} t_{1}^{3} \otimes t_{3}^{3}-v_{1}^{2} v_{2}^{-8}\left(t_{1}^{3} \otimes t_{2}^{9}+t_{2}^{3} \otimes t_{1}^{27}\right), \\
d_{1}\left(-v_{1}^{3} v_{2}^{-3} t_{1}^{6} t_{2}^{3}\right) & \equiv v_{1}^{3} v_{2}^{-3}\left(-t_{1}^{3} t_{2}^{3} \otimes t_{1}^{3}-t_{1}^{3} \otimes t_{1}^{3} t_{2}^{3}+t_{2}^{3} \otimes t_{1}^{6}+t_{1}^{6} \otimes t_{2}^{3}\right) .
\end{aligned}
$$

Lemma 5.9. Consider the element $\widetilde{v_{2}^{2} h_{11}}=V+\widetilde{v_{1}^{2} v_{2}^{-1} h_{30}}$. Then $\widetilde{v_{2}^{2} h_{11}} \equiv$ $-v_{2}^{2} t_{1}^{3} \bmod \left(3, v_{1}\right)$ and

$$
d_{1}\left(\widetilde{v_{2}^{2} h_{11}}\right) \equiv-v_{1}^{2} \zeta_{2}^{3} \otimes t_{1}^{9}+v_{1}^{5} v_{2} \xi \bmod \left(3, v_{1}^{6}\right)
$$

in $\Sigma \otimes_{E(2)_{*}} \Sigma$.
Proof. The first congruence is seen by (5.5) and the other follows from a direct calculation and the relation

$$
d_{1}(V) \equiv v_{1}^{2} b_{1} \bmod \left(3, v_{1}^{8}\right)
$$

(see (5.5)). Now the lemma follows from the previous one.
Next, we recall [1] the elements $x(n) \in E(2)_{*}(E(2))$ such that $x(n) \equiv$ $v_{2}^{n} t_{1}+v_{1} v_{2}^{n} \zeta_{2} \bmod \left(3, v_{1}^{2}\right)$ for $n=3^{k} s$ with $k \geq 0$ and for $s \in \mathbb{Z}$ with
$s \equiv 1 \bmod 3$ or $s \equiv-1 \bmod 9:$

$$
\begin{aligned}
x(1)= & v_{2} t_{1}+v_{1} \tau \\
x(3)= & Y \\
v_{1}^{3} x\left(3^{k+1}\right)= & v_{1} x\left(3^{k}\right)^{3}-d_{0}\left(v_{2}^{3^{k+1}+1}\right) \\
& +(-1)^{k} v_{1}^{3 a(k)+1} v_{2}^{3 i(k)} \omega, \quad k>0 \\
x\left(3^{k}(3 t+1)\right)= & x_{k+1}^{t} x\left(3^{k}\right), \quad k \geq 0, t \in \mathbb{Z} \\
x(9 t-1)= & -x_{2}^{t-1} X, \\
v_{1}^{3} x(3(9 t-1))= & v_{1} x(9 t-1)^{3}-d_{0}\left(v_{2}^{3(9 t-1)+1}\right)+v_{1}^{29} v_{2}^{27 t-12} V, \\
v_{1}^{3} x\left(3^{k+1}(9 t-1)\right)= & v_{1} x\left(3^{k}(9 t-1)\right)^{3}-d_{0}\left(v_{2}^{3^{k+1}(9 t-1)+1}\right) \\
& +v_{1}^{3 a^{\prime}(k)} v_{2}^{3 i^{\prime}(t ; k)+1} \zeta, \quad k>0
\end{aligned}
$$

for the integers $a(k), i(k), a^{\prime}(k)$ and $i^{\prime}(t ; k)$ for $k \geq 0$ and $t \in \mathbb{Z}$ defined by

$$
\begin{gathered}
a(0)=2, \quad a(k)=2 \cdot 3^{k}+1, \quad i(k)=\left(3^{k}-1\right) / 2 \\
a^{\prime}(0)=10, \quad a^{\prime}(k)=28 \cdot 3^{k-1} \\
i^{\prime}(t ; 0)=9 t-4, \quad i^{\prime}(t ; k)=3^{k-1}(9(3 t-1)-1)
\end{gathered}
$$

Here $\tau=t_{1}^{4}-t_{2}, \omega, X$ and Y are the elements of $\Omega_{\Sigma}^{1} E(2)_{*}=E(2)_{*}(E(2))$ defined in [1] such that

$$
\begin{aligned}
d_{1}(\omega) & \equiv \xi^{3}+v_{2} \xi \bmod \left(3, v_{1}\right) \\
X & \equiv-v_{2}^{8} t_{1} \bmod \left(3, v_{1}\right) \\
d_{1}(X) & \equiv v_{1}^{10} v_{2}^{5} b_{0}+v_{1}^{10} v_{2}^{5} t_{1}^{3} \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{11}\right) \\
Y & \equiv v_{2}^{3} t_{1} \bmod \left(3, v_{1}\right) \\
d_{1}(Y) & \equiv v_{1}^{7} v_{2} \xi \bmod \left(3, v_{1}^{8}\right)
\end{aligned}
$$

for a cochain $\xi \in \Omega_{\Sigma}^{2} E(2)_{*}$ defined above Lemma 5.7, which represents the generator ξ of $H^{2} K(2)_{*}($ see $(5.13))\left(K(2)_{*}=E(2)_{*} /\left(3, v_{1}\right)\right)$.

Then the following holds:
(5.10) Let s denote an integer such that either $s \equiv 1 \bmod 3$ or $s \equiv$ $-1 \bmod 9$. Then there exist elements $x(m)$ of $E(2)_{*}(E(2)) /(3)$ for m with $m=3^{k} s$ such that

$$
x(m) \equiv v_{2}^{m} t_{1}+v_{1} v_{2}^{m} \zeta_{2} \bmod \left(3, v_{1}^{2}\right)
$$

and for $k \geq 0$ and $t \in \mathbb{Z}$,
$d_{1}(x(3 t+1)) \equiv v_{1}^{2} v_{2}^{3 t} b_{0} \bmod \left(3, v_{1}^{3}\right)$,
$d_{1}\left(x\left(3^{k}(3 t+1)\right)\right) \equiv-(-1)^{k} v_{1}^{a(k)} v_{2}^{3^{k+1} t+\left(3^{k}-1\right) / 2} \xi \bmod \left(3, v_{1}^{1+a(k)}\right) \quad(k>0) ;$

$$
\begin{aligned}
d_{1}(x(9 t-1)) & \equiv-v_{1}^{10} v_{2}^{9 t-4} b_{0}-v_{1}^{10} v_{2}^{9 t-4} t_{1}^{3} \otimes \zeta \bmod \left(3, v_{1}^{11}\right), \\
d_{1}\left(x\left(3^{k}(9 t-1)\right)\right) & \equiv-v_{1}^{a^{\prime}(k)} v_{2}^{i^{\prime}(t ; k)} t_{1} \otimes \zeta \bmod \left(3, v_{1}^{1+a^{\prime}(k)}\right) \quad(k>0) .
\end{aligned}
$$

Here note that ζ denotes a power of ζ_{2}.
Now we rewrite this in terms of our complex.
Lemma 5.11. In Σ,

$$
x(m) \equiv v_{1} v_{2}^{m} \zeta \bmod \left(3, v_{1}^{2}\right),
$$

and for $k \geq 0$ and $t \in \mathbb{Z}$, in $\Sigma \otimes_{E(2)_{*}} \Sigma$,

$$
\begin{aligned}
& d_{1}\left(x\left(3^{k}(3 t+1)\right)\right) \equiv-(-1)^{k} v_{1}^{a(k)} v_{2}^{3^{k+1} t+i(k)} \xi \bmod \left(3, v_{1}^{1+a(k)}\right) \quad(k>0) ; \\
& d_{1}\left(x\left(3^{k}(9 t-1)\right)\right) \equiv-v_{1}^{103^{k}+1} v_{2}^{3^{3}(9 t-4)+\left(3^{k}-1\right) / 2} \xi \bmod \left(3, v_{1}^{2+10 \cdot 3^{k}}\right) \quad(k \geq 0)
\end{aligned}
$$

up to homology.
Proof. We get the first congruence by projecting the relations of (5.10) to $\Sigma \otimes_{E(2)_{*}} \Sigma$. For the second one, with a careful computation using Lemma 5.7, we obtain the congruence for $k=0$. Consider the commutative diagram

in which $f(x)=x^{3}$ and

$$
\Gamma=E(2)_{*} E(2)=E(2)_{*}\left[t_{1}, t_{2}, \ldots\right] \otimes_{B P_{*}} E(2)_{*},
$$

$\Sigma=E(2)_{*}\left[t_{1}^{3}, t_{2}, \ldots\right] \otimes_{B P_{*}} E(2)_{*} \quad$ and $\quad \Gamma(1)=E(2)_{*}\left[t_{2}, \ldots\right] \otimes_{B P_{*}} E(2)_{*}$.
Suppose that $p_{2} p_{1}(X)=v_{1}^{a} v_{2}^{b} \xi$. If $p_{1}\left(X^{3}\right)$ has a term $v_{1}^{l} v_{2}^{m} h_{11} \otimes \zeta$, then replace X^{3} by $X^{3}-d_{1}(y)$ for y such that $d_{1}(y)=v_{1}^{l} v_{2}^{m} h_{11} \otimes \zeta$. Its existence follows from (5.2) and Lemma 5.7. Then $p_{2} p_{1}\left(X^{3}\right)=v_{1}^{3 a} v_{2}^{3 b+1} \xi$. On the other hand, if $p_{1}\left(X^{3}\right)=v_{1}^{a^{\prime}} v_{2}^{b^{\prime}} g$ for some generator g, then $p_{2} p_{1}\left(X^{3}\right)=$ $v_{1}^{a^{\prime}} v_{2}^{b^{\prime}} g$ since p_{2} does not kill generators except for $h_{11} \zeta_{2}$. Therefore we have $p_{1}\left(X^{3}\right)=v_{1}^{3 a} v_{2}^{3 b+1} \xi$. Now by the definition of $x(m)$ and induction, we have the lemma.

Corollary 5.12. The elements $v_{2}^{\left(3^{k+1}-1\right) / 2} \xi$ and $v_{2}^{5 \cdot 3^{k}+\left(3^{k}-1\right) / 2} \xi$ for $k \geq 0$ are all nontrivial cocycles of $H^{2} E(2)_{*} /(3)$.

Proof. Since v_{1} acts on the cobar complex $\Omega_{\Sigma}^{*} E(2)_{*} /(3)$ monomorphically, $d_{r}\left(v_{1}^{j} x\right)=0$ implies $d_{r}(x)=0$. Thus the elements are cocycles. We
also have the projection $H^{2} E(2)_{*} \rightarrow H^{2} K(2)_{*}$ which sends them to elements with the same names which are all nonzero.

For the next lemma, recall [9] the following:

$$
\begin{equation*}
H^{*, *} K(2)_{*}=\Lambda\left(\zeta_{2}\right) \otimes K(2)_{*}\left\{1, h_{11}, h_{20}, \xi, \varphi, h_{20} \xi\right\} \tag{5.13}
\end{equation*}
$$

Here the bidegrees of the generators are:

$$
\left|\zeta_{2}\right|=(1,0), \quad\left|h_{11}\right|=(1,12), \quad\left|h_{20}\right|=(1,16), \quad|\xi|=(2,8), \quad|\varphi|=(2,12) .
$$

Lemma 5.14. The cocycles $h_{11} \varphi$ and $h_{20} \varphi$ are homologous to $h_{20} \xi+v_{2} \xi \zeta_{2}$ and $-v_{2} \zeta_{2} \varphi$, respectively.

Proof. Since $\operatorname{Ext}_{A}^{3}\left(K(2)_{*}, K(2)_{*}\right)=H^{3} K(2)_{*}$ is generated by $h_{20} \xi, \xi \zeta_{2}$ and $\varphi \zeta_{2}$, we may write

$$
h_{11} \varphi=\lambda_{1} h_{20} \xi+\lambda_{2} v_{2} \xi \zeta_{2} \quad \text { and } \quad h_{20} \varphi=\lambda_{3} v_{2} \varphi \zeta_{2}
$$

for some $\lambda_{i} \in \mathbb{Z}(i=1,2,3)$. Here $A=K(2)_{*}\left[t_{1}^{3}, t_{2}, t_{3}, \ldots\right] /\left(t_{1}^{9}, t_{i}^{9}-v_{2}^{3^{i}-1} t_{i}\right.$: $i>1$).

Consider the projection

$$
A \rightarrow B=(\mathbb{Z} / 3)\left[t_{2}, t_{3}, \ldots\right] /\left(t_{i}^{9}-t_{i}: i>1\right)
$$

sending v_{2} to $1, t_{1}$ to 0 and t_{i} to t_{i} for $i>1$. By [5, Th. 6.3.7],

$$
\operatorname{Ext}_{B}(\mathbb{Z} / 3, \mathbb{Z} / 3)=\Lambda\left(h_{20}, h_{21}, h_{30}, h_{31}\right)
$$

The projection sends the elements $h_{20} \varphi$ and $\zeta_{2} \varphi$, respectively, to $h_{20}\left(h_{20}-\right.$ $\left.h_{21}\right) h_{31}=-h_{20} h_{21} h_{31}$ and $\left(h_{20}+h_{21}\right)\left(h_{20}-h_{21}\right) h_{31}=h_{20} h_{21} h_{31}$, which are the generators. Therefore we deduce that $\lambda_{3}=-1$.

Similarly send the elements $h_{11} \varphi, \lambda_{1} h_{20} \xi$ and $\lambda_{2} v_{2} \xi \zeta_{2}$ to the E_{2}-term

$$
\Lambda\left(h_{11}\right) \otimes(\mathbb{Z} / 3)\left[b_{1}\right] \otimes \Lambda\left(h_{20}, h_{21}, h_{30}, h_{31}\right)
$$

of the Cartan-Eilenberg spectral sequence computing $H^{3} K(2)_{*}$, and we see that $\lambda_{1}=1$ and $\lambda_{2}=1$.

Lemma 5.15. There exists a cochain y such that

$$
d_{2}\left(v_{2}^{3 m} \xi+v_{1} y\right) \equiv-v_{1}^{3} v_{2}^{3 m-1} \varphi \otimes \zeta_{2} \bmod \left(3, v_{1}^{4}\right)
$$

Proof. By Corollary 5.12, $\widetilde{v_{2} \xi}$ and $\widetilde{v_{2}^{2} \xi}=\widetilde{v_{2}^{-3}\left(\widetilde{v_{2}^{5} \xi}\right)}$ are cocycles of $\Omega_{\Sigma}^{2} E(2)_{*} /(3)$ and $\Omega_{\Sigma}^{2} E(2)_{*} /\left(3, v_{1}\right)$, respectively. Put

$$
\widetilde{v_{2} \xi}=v_{2} \xi-v_{1} z_{1} \quad \text { and } \quad \widetilde{v_{2}^{2} \xi}=v_{2}^{2} \xi-v_{1} z_{2}
$$

and consider the element

$$
w=\widetilde{v_{2}^{2}} \widetilde{v_{2} \xi}+\widetilde{v_{2}} \widetilde{v_{2}^{2} \xi} \equiv-v_{2}^{3} \xi \bmod \left(3, v_{1}\right)
$$

Then

$$
\begin{aligned}
d_{2}(w) & \equiv-v_{1} v_{2} t_{1}^{3} \otimes \widetilde{v_{2} \xi}+v_{1}^{2} t_{1}^{6} \otimes \widetilde{v_{2} \xi}+\widetilde{v_{1}} t_{1}^{3} \otimes \widetilde{v_{2}^{2} \xi} \\
& \equiv v_{1}^{2} t_{1}^{3} \otimes\left(v_{2} z_{1}-z_{2}\right)-v_{1}^{2} t_{1}^{6} \otimes \widetilde{v_{2} \xi} \\
& \equiv v_{1}^{2}\left\langle h_{11}, h_{11}, \widetilde{v_{2} \xi}\right\rangle \bmod \left(3, v_{1}^{4}\right)
\end{aligned}
$$

by definition of the Massey product, since $d_{2}\left(v_{2} z_{1}-z_{2}\right) \equiv t_{1}^{3} \otimes \widetilde{v_{2} \xi}$. Note that $\left\langle h_{11}, h_{11}, \widetilde{v_{2} \xi}\right\rangle \in H^{2} E(2)_{*} /(3)$.

On the other hand, we may write

$$
d_{2}(w) \equiv \lambda v_{1}^{3} v_{2}^{2} \varphi \otimes \zeta_{2} \bmod \left(3, v_{1}^{4}\right)
$$

for some $\lambda \in \mathbb{Z} / 3$. Then in $H^{3} K_{2}$ for $K_{2}=E(2)_{*} /\left(3, v_{1}^{2}\right)$,

$$
\left\langle h_{11}, h_{11}, \widetilde{v_{2} \xi}\right\rangle=\lambda v_{1} v_{2}^{2} \varphi \zeta_{2} .
$$

Sending this by h_{11}, we get

$$
\left\langle h_{11}, h_{11}, h_{11}\right\rangle \widetilde{v_{2} \xi}=\lambda v_{1} v_{2}^{2} h_{11} \varphi \zeta_{2}
$$

by properties of the Massey product. Note that $\left\langle h_{11}, h_{11}, h_{11}\right\rangle=-b_{1}=$ $-v_{1} v_{2}^{-1} \zeta_{2} h_{21}=-v_{1} v_{2} \zeta_{2} h_{20}$ in $H^{2} K_{2}$ by Lemma 5.8, and that $h_{11} \varphi=h_{20} \xi+$ $v_{2} \xi \zeta_{2}$ by Lemma 5.14. We now have

$$
-v_{1} v_{2}^{2} \zeta_{2} h_{20} \xi=\lambda v_{1} v_{2}^{2} h_{20} \xi \zeta_{2}
$$

and $\lambda=1$. Therefore, we have an element y such that $w=-v_{2}^{3} \xi-v_{1} y$ and

$$
d_{2}\left(v_{2}^{3} \xi+v_{1} y\right) \equiv-v_{1}^{3} v_{2}^{2} \varphi \otimes \zeta_{2} \bmod \left(3, v_{1}^{4}\right) .
$$

Now send this by $v_{2}^{3 m-3}$, and we have the desired conclusion, since $d_{0}\left(v_{2}^{3}\right) \equiv$ $0 \bmod \left(3, v_{1}^{4}\right)$.

Lemma 5.16. There is a cocycle φ in $\Omega_{\Sigma}^{*} E(2)_{*}$ that yields φ in $H^{2} K(2)_{*}$ such that

$$
d_{2}\left(v_{2}^{2} \varphi\right) \equiv v_{1} v_{2}^{2} \xi \otimes \zeta_{2} \bmod \left(3, v_{1}^{2}\right)
$$

Proof. By Lemma 5.15 with $m=1$,

$$
\begin{equation*}
d_{3}\left(v_{2}^{2} \varphi \otimes \zeta_{2}^{3}+v_{1} x\right)=0 \tag{5.17}
\end{equation*}
$$

for a cocycle φ which represents the homology class $\varphi \in H^{2} K(2)_{*}$ and a cochain x, since ζ_{2} is homologous to $\zeta_{2}^{3} \bmod \left(3, v_{1}\right)$. Consider $K_{2}=$ $E(2)_{*} /\left(3, v_{1}^{2}\right)$, and the short exact sequence $0 \rightarrow K(2)_{*} \xrightarrow{v_{1}} K_{2} \xrightarrow{\mathrm{pr}} K(2)_{*} \rightarrow 0$ which yields a long one:

$$
\ldots \rightarrow H^{2} K_{2} \xrightarrow{\mathrm{pr}_{*}} H^{2} K(2)_{*} \xrightarrow{\delta_{2}^{\prime}} H^{3} K(2)_{*} \xrightarrow{v_{1}} H^{3} K_{2} \rightarrow \ldots
$$

By virtue of (5.13), we may write

$$
\begin{equation*}
\delta_{2}^{\prime}\left(v_{2}^{2} \varphi\right)=\lambda v_{2}^{2} \xi \zeta_{2}+\mu v_{2} h_{20} \xi, \tag{5.18}
\end{equation*}
$$

for some λ and $\mu \in \mathbb{Z} / 3$. Since $\zeta_{2}^{3} \in H^{1} K_{2}$ and $\zeta_{2}=\zeta_{2}^{3} \in H^{1} K(2)_{*}$,

$$
\delta_{3}^{\prime}\left(v_{2}^{2} \varphi \zeta_{2}\right)=\delta_{2}^{\prime}\left(v_{2}^{2} \varphi\right) \zeta_{2}=\mu v_{2} h_{20} \xi \zeta_{2} \in H^{4} K(2)_{*}
$$

by (5.18). By (5.17), the left hand side is 0 , and we have $\mu=0$.
The formula (5.17) also shows

$$
d_{3}\left(v_{2}^{3} \varphi \otimes \zeta_{2}^{3}+v_{1} v_{2} x\right) \equiv v_{1} t_{1}^{3} \otimes v_{2}^{2} \varphi \otimes \zeta_{2}^{3} \bmod \left(3, v_{1}^{3}\right)
$$

Thus we compute

$$
\delta_{3}^{\prime}\left(v_{2}^{2} \varphi h_{20}\right)=\delta_{3}^{\prime}\left(-v_{2}^{3} \varphi \zeta_{2}\right)=-v_{2}^{2} h_{11} \varphi \zeta_{2}=-v_{2}^{2} h_{20} \xi \zeta_{2}
$$

by Lemma 5.14. Notice that $\delta_{3}^{\prime}\left(v_{2}^{2} \varphi h_{20}\right)=\delta_{2}^{\prime}\left(v_{2}^{2} \varphi\right) h_{20}=\lambda v_{2}^{2} \xi \zeta_{2} h_{20}=$ $-\lambda v_{2}^{2} h_{20} \xi \zeta_{2}$, and we have $\lambda=1$. Now the lemma follows from the definition of δ_{2}^{\prime}.
6. Calculation of $H^{0} M_{1}^{1}$. We will compute $H^{*} M_{1}^{1}$ by Lemma 4.5 , which requires the knowledge of the structure of $H^{*} K(2)_{*}=\operatorname{Ext}_{\Sigma}^{*}\left(E(2)_{*}, K(2)_{*}\right)$. Recall again (5.13):

$$
H^{*, *} K(2)_{*}=\Lambda\left(\zeta_{2}\right) \otimes K(2)_{*}\left\{1, h_{11}, h_{20}, \xi, \varphi, h_{20} \xi\right\} .
$$

These generators are represented by cocycles given in previous sections, and satisfy

$$
\begin{gathered}
\zeta_{2}=v_{2}^{-1} t_{2}+v_{2}^{-3} t_{2}^{3}, \quad h_{11}=t_{1}^{3}, \quad h_{20}=t_{2}, \\
\xi=v_{2}^{-10} t_{1}^{3} \otimes t_{3}^{3}+\ldots \quad \text { and } \quad \varphi=v_{2}^{-12}\left(t_{2}^{3}-v_{2}^{2} t_{2}\right) \otimes t_{3}^{3}+\ldots,
\end{gathered}
$$

where \ldots denotes elements of $\Sigma(2) \otimes_{K(2) *} \Sigma(2)$ for

$$
\Sigma(2)=\Lambda_{K(2)_{*}}\left(t_{1}^{3}\right) \otimes_{K(2)_{*}} K(2)_{*}\left[t_{2}\right] /\left(t_{2}^{9}-v_{2}^{8} t_{2}\right) .
$$

Hereafter we use the notation:

$$
k(1)_{*}=(\mathbb{Z} / 3)\left[v_{1}\right] \quad \text { and } \quad K(1)_{*}=v_{1}^{-1} k(1)_{*}=(\mathbb{Z} / 3)\left[v_{1}, v_{1}^{-1}\right],
$$

and integers

$$
a_{0}=1 \quad \text { and } \quad a_{i}=4 \times 3^{i-1} \quad \text { for } i>0 .
$$

Now we obtain the following
Theorem 6.1. $H^{0} M_{1}^{1}$ is the direct sum of $K(1)_{*} / k(1)_{*}$ and cyclic $k(1)_{*}{ }^{-}$ modules isomorphic to $k(1)_{*} /\left(v_{1}^{a_{i}}\right)$ generated by $x_{i}^{s} / v_{1}^{a_{i}}$ for $i \geq 0$ and $s \in$ $\mathbb{Z}-3 \mathbb{Z}$.

Proof. Let B denote the direct sum of $K(1)_{*} / k(1)_{*}$ and cyclic $k(1)_{*^{-}}$ modules isomorphic to $k(1)_{*} /\left(v_{1}^{a_{i}}\right)$ generated by $x_{i}^{s} / v_{1}^{a_{i}}$ for $i \geq 0$ and $s \in$
$\mathbb{Z}-3 \mathbb{Z}$. Since $H^{0} K(2)_{*}=K(2)_{*}$ and $v_{1}^{a_{i}-1}\left(x_{i}^{s} / v_{1}^{a_{i}}\right)=v_{2}^{3^{i} s} / v_{1}$, we have the map $f: H^{0} K(2)_{*} \rightarrow B$ given by $f(x)=x / v_{1}$. By definition of B, $v_{1}: B \rightarrow B$ is well defined. Now by Lemma 4.5 , it suffices to show that the sequence

$$
H^{0} K(2)_{*} \xrightarrow{f} B \xrightarrow{v_{1}} B \xrightarrow{\delta_{0}} H^{1} K(2)_{*}
$$

is exact. Consider the diagram (4.6). By easy diagram chasing, we see that $H^{0} K(2)_{*} \xrightarrow{f} B \xrightarrow{v_{1}} B$ is exact, and that the composition $\delta_{0} v_{1}$ is trivial. Now suppose that $\delta_{0}(b)=0$ for $b \in B$. By the definition of $B, b=\sum \lambda_{s, i, j} g_{s, i, j}$ for $\lambda_{s, i, j} \in \mathbb{Z} / 3$ and $g_{s, i, j}=x_{i}^{s} / v_{1}^{j}$. Note that

$$
\delta_{0}\left(x / v_{1}^{j}\right)=[y] \quad \text { if } \quad d_{0}(x) \equiv v_{1}^{j} y \bmod \left(3, v_{1}^{j+1}\right)
$$

where $[y]$ denotes the homology class of y. Then (5.2) yields

$$
\delta_{0}\left(x_{i}^{s} / v_{1}^{a_{i}}\right)= \begin{cases}s v_{2}^{s-1} h_{11}, & i=0 \tag{6.2}\\ s v_{2}^{3 s-1}\left(v_{2}^{-1} h_{20}-\zeta_{2}\right), & i=1 \\ s v_{2}^{3^{i} s-3^{i-1}} \zeta_{2}^{3^{i-1}}, & i>1\end{cases}
$$

Since $\left[v_{1} y\right]=0, g_{s, i, j}=0$ if and only if $j=a_{i}$. Consequently, $\delta_{0}(b)=$ $\sum_{s, i} \lambda_{s, i, a_{i}} \delta_{0}\left(g_{s, i, a_{i}}\right)$, and $\lambda_{s, i, a_{i}}=0$ for any i since the elements $\delta_{0}\left(g_{s, i, a_{i}}\right)$ are linearly independent over $\mathbb{Z} / 3$. Therefore, $b=\sum_{j<a_{i}} \lambda_{s, i, j} g_{s, i, j}$ and $v_{1}\left(b^{\prime}\right)=b$ for $b^{\prime}=\sum_{j<a_{i}} \lambda_{s, i, j} g_{s, i, j+1} \in B$ as desired.
7. Calculation of $H^{1} M_{1}^{1}$. The results of the last section give

Lemma 7.1. The cokernel of $\delta_{0}: H^{0} M_{1}^{1} \rightarrow H^{1} K(2)_{*}$ is a $\mathbb{Z} / 3$-vector space with the following basis:
(a) $v_{2}^{3 m+2} h_{11}$ for $m \in \mathbb{Z}$,
(b) $v_{2}^{m} h_{20}$ for $m \in \mathbb{Z}$,
(c) $v_{2}^{3^{k} s} \zeta_{2}$ for $k \geq 0$ and $s \equiv 1,4,7,8 \bmod 9(s \in \mathbb{Z})$.

In fact, by $(5.13), H^{1} K(2)_{*}=K(2)_{*}\left\{h_{11}, h_{20}, \zeta_{2}\right\}$. Therefore, this follows immediately from (6.2).

In the following, we write $v_{2}^{m} h_{11} / v_{1}^{j}, v_{2}^{m} h_{20} / v_{1}^{j}$ and $v_{2}^{m} \zeta_{2} / v_{1}^{j}$ for the homology classes represented by the cocycles $v_{2}^{m} t_{1}^{3} / v_{1}^{j}+\ldots, v_{2}^{m} t_{2} / v_{1}^{j}+\ldots$ and $v_{2}^{m} \zeta_{2} / v_{1}^{j}+\ldots$, respectively.

Proposition 7.2. The connecting homomorphism $\delta_{1}: H^{1} M_{1}^{1} \rightarrow H^{2} K(2)_{*}$ acts as follows:

$$
\begin{align*}
\delta_{1}\left(v_{2}^{3 m+2} h_{11} / v_{1}^{3}\right) & \equiv v_{2}^{3 m+1} h_{20} \zeta_{2}, & & m \in \mathbb{Z} ; \tag{i}\\
\delta_{1}\left(h_{20} / v_{1}^{j}\right) & =0, & & j>0, \\
\delta_{1}\left(v_{2}^{m} h_{20} / v_{1}\right) & \equiv-m v_{2}^{m} h_{11} \zeta_{2}, & & m \in \mathbb{Z}-3 \mathbb{Z}, \\
\delta_{1}\left(v_{2}^{3^{k} m} h_{20} / v_{1}^{4 \cdot 3^{k-1}}\right) & \equiv m v_{2}^{3^{k-1}(3 m-1)} h_{20} \zeta_{2}, & & k>0, m \in \mathbb{Z}-3 \mathbb{Z} ; \\
\delta_{1}\left(\zeta_{2}^{3^{j}} / v_{1}^{j}\right) & =0, & & j>0, \\
\text { (iii) } & & & m \in \mathbb{Z}, \\
\delta_{1}\left(v_{2}^{3 m+1} \zeta_{2} / v_{1}\right) & =v_{2}^{3 m} h_{11} \zeta_{2}, & & \\
\delta_{1}\left(v_{2}^{3^{k}(3 m+1)} \zeta_{2} / v_{1}^{6 \cdot 3^{k-1}}\right) & = \pm v_{2}^{3^{k+1} m+\left(3^{k}-1\right) / 2} \xi, & & k>0, m \in \mathbb{Z} \\
\delta_{1}\left(v_{2}^{3^{k}(9 m+8)} \zeta_{2} / v_{1}^{10 \cdot 3^{k}}\right) & = \pm v_{2}^{3^{k}(9 m+5)+\left(3^{k}-1\right) / 2} \xi, & & k \geq 0, m \in \mathbb{Z}
\end{align*}
$$

(iii)

Proof. First, note that

$$
\delta_{1}\left(x / v_{1}^{j}\right)=[y] \quad \text { if } \quad d_{1}(x) \equiv v_{1}^{j} y \bmod \left(3, v_{1}^{j+1}\right)
$$

Then (i) follows from (5.2) and Lemma 5.9 as follows:

$$
\begin{aligned}
d_{1}\left(v_{2}^{3 m+2} h_{11}\right) & \equiv v_{2}^{3 m} d_{1}\left(v_{2}^{2} h_{11}\right) & & \text { by }(5.2) \\
& \equiv-v_{1}^{3} v_{2}^{3 m+1} t_{2} \otimes \zeta_{2}^{3} & & \text { by Lemma } 5.9
\end{aligned}
$$

In fact, $\left[-\zeta_{2}^{3} \otimes t_{1}^{9}\right]=\left[t_{1}^{9} \otimes \zeta_{2}^{3}\right]=\left[v_{1} v_{2} t_{2} \otimes \zeta_{2}^{3}\right]=v_{1} v_{2} h_{20} \zeta_{2}$.
For (ii), the first formula follows from $d_{1}\left(h_{20}\right)=0$ and the second one from Lemma 5.7. The other follows from (5.2).

The first formula of (iii) follows from (5.4). The second one follows from (5.2) and (5.4), and the others from Lemma 5.11.

THEOREM 7.3. $H^{1} M_{1}^{1}$ is isomorphic to the direct sum of

$$
K(1)_{*} / k(1)_{*} \oplus K(1)_{*} / k(1)_{*}
$$

generated by h_{20} / v_{1}^{j} and $\zeta_{2}^{3^{j}} / v_{1}^{j}(j>0)$, and the cyclic $k(1)_{*}$-modules
(a) $k(1)_{*} /\left(v_{1}^{3}\right)\left\langle v_{2}^{3 m+2} h_{11}\right\rangle, \quad m \in \mathbb{Z}$,
(b) $k(1)_{*} /\left(v_{1}^{a_{k}}\right)\left\langle v_{2}^{3^{k} m} h_{20}\right\rangle, \quad k \geq 0, m \in \mathbb{Z}-3 \mathbb{Z}$,
(c) $k(1)_{*} /\left(v_{1}^{A_{k}}\right)\left\langle v_{2}^{3^{k}(3 m+1)} \zeta_{2}\right\rangle, \quad k \geq 0, m \in \mathbb{Z}$,
(d) $k(1)_{*} /\left(v_{1}^{A_{k}^{\prime}}\right)\left\langle v_{2}^{3^{k}(9 m+8)} \zeta_{2}\right\rangle, \quad k \geq 0, m \in \mathbb{Z}$,
where $a_{0}=1, a_{k}=4 \times 3^{k-1}, A_{0}=1, A_{k}=6 \times 3^{k-1}(k>0)$ and $A_{k}^{\prime}=10 \times 3^{k}$ ($k \geq 0$).

In the same way as the proof of Theorem 6.1, we obtain this theorem from Lemmas 4.5 and 7.1, and Proposition 7.2.
8. Calculation of $H^{2} M_{1}^{1}$. Theorem 7.3 and Proposition 7.2 show the following:

Lemma 8.1. The cokernel of the connecting homomorphism $\delta_{1}: H^{1} M_{1}^{1}$ $\rightarrow H^{2} K(2)_{*}$ is the $\mathbb{Z} / 3$-vector space generated by
(0) $h_{20} \zeta_{2}$,
(i) $v_{2}^{3^{k}(9 m+8)} h_{20} \zeta_{2}, \quad k \geq 0, m \in \mathbb{Z}$,
(ii) $v_{2}^{3^{k}(3 m+1)} h_{20} \zeta_{2}, \quad k>0, m \in \mathbb{Z}$,
(iii) $v_{2}^{u} \xi, \quad u \in G \cup 3 \mathbb{Z}$,
(iv) $v_{2}^{m} \varphi, \quad m \in \mathbb{Z}$.

Here, $G=\left\{3^{k} m+\left(3^{k}-1\right) / 2: k \geq 0, m \equiv 2,8 \bmod 9\right\}$.
Note that

$$
H^{2} K(2)_{*}=K(2)_{*}\left\{h_{11} \zeta_{2}, h_{20} \zeta_{2}, \xi, \varphi\right\}
$$

by (5.13), and every integer n is written uniquely as

$$
n=3^{k} m+\left(3^{k}-1\right) / 2 \quad \text { with } k \geq 0 \text { and } m \not \equiv 1 \bmod 3
$$

Using the facts shown in the previous sections, we obtain
Proposition 8.2. The connecting homomorphism $\delta_{2}: H^{2} M_{1}^{1} \rightarrow H^{3} K(2)_{*}$ acts as follows:

$$
\begin{array}{rll}
d e_{2}\left(h_{20} \zeta_{2} / v_{1}^{j}\right)=0, & j>0, \tag{i}\\
\delta_{2}\left(v_{2}^{3^{k}(9 m+8)} h_{20} \zeta_{2} / v_{1}^{A_{k}^{\prime}}\right)= \pm v_{2}^{3^{k}(9 m+5)+\left(3^{k}-1\right) / 2} h_{20} \xi, & k \geq 0, m \in \mathbb{Z} \\
\delta_{2}\left(v_{2}^{3^{k}(3 m+1)} h_{20} \zeta_{2} / v_{1}^{A_{k}}\right)= \pm v_{2}^{3^{k+1} m+\left(3^{k}-1\right) / 2} h_{20} \xi, & k>0, m \in \mathbb{Z}
\end{array}
$$

$$
\begin{array}{r}
\delta_{2}\left(v_{2}^{3^{k}(9 m+2)+\left(3^{k}-1\right) / 2} \xi / v_{1}^{4 \cdot 3^{k}}\right)=-v_{2}^{3^{k+2} m+\left(3^{k+1}-1\right) / 2} \xi \zeta_{2} \tag{ii}\\
k \geq 0, m \in \mathbb{Z} \\
\delta_{2}\left(v_{2}^{3^{k}(9 m+8)+\left(3^{k}-1\right) / 2} \xi / v_{1}^{4 \cdot 3^{k}}\right)=v_{2}^{3^{k+1}(3 m+2)+\left(3^{k+1}-1\right) / 2} \xi \zeta_{2} \\
k \geq 0, m \in \mathbb{Z}
\end{array}
$$

(iii) $\quad \delta_{2}\left(v_{2}^{3 m} \varphi / v_{1}\right)=v_{2}^{3 m}\left(v_{2}^{-1} h_{20}-\zeta_{2}\right) \xi, \quad m \in \mathbb{Z}$,

$$
\begin{array}{ll}
\delta_{2}\left(v_{2}^{3 m+1} \varphi / v_{1}\right)=-v_{2}^{3 m} h_{20} \xi, & m \in \mathbb{Z}, \\
\delta_{2}\left(v_{2}^{3 m+2} \varphi / v_{1}\right)=v_{2}^{3 m+2} \xi \zeta_{2}, &
\end{array}
$$

Proof. Since $\delta_{2}\left(v_{2}^{s} h_{20} \zeta_{2} / v_{1}^{j}\right)=\delta_{1}\left(v_{2}^{s} \zeta_{2} / v_{1}^{j}\right) h_{20}$, we obtain (i) from Proposition 7.2.

The first formula of (ii) follows from Lemma 5.15. Let ξ_{k} for $k \geq 0$ denote the cocycles congruent to $v_{2}^{3^{k} \cdot 5+\left(3^{k}-1\right) / 2} \xi \bmod \left(3, v_{1}\right)$ appearing in Corollary 5.12. Now compute

$$
\begin{aligned}
\delta_{2}\left(v_{2}^{3^{k}(9 m+2)+\left(3^{k}-1\right) / 2} \xi / v_{1}^{4 \cdot 3^{k}}\right) & =\delta_{2}\left(v_{2}^{3^{k}(9 m-3)} \xi_{k} / v_{1}^{4 \cdot 3^{k}}\right) \\
& =-v_{2}^{3^{k+2} m+\left(3^{k+1}-1\right) / 2} \xi \zeta_{2} .
\end{aligned}
$$

In the same way we obtain the third formula.
For (iii), we compute

$$
\begin{aligned}
\delta_{2}\left(v_{2}^{3 m} \varphi / v_{1}\right) & =\delta_{2}\left(v_{2}^{3 m-2} v_{2}^{2} \varphi / v_{1}\right)=v_{2}^{3 m-1} h_{11} \varphi+v_{2}^{3 m} \xi \zeta_{2} \\
& =v_{2}^{3 m-1}\left(h_{20} \xi+v_{2} \xi \zeta_{2}\right)+v_{2}^{3 m} \xi \zeta_{2} .
\end{aligned}
$$

The others are shown in the same way.
Now we can state the main theorem of this section:
Theorem 8.3. $H^{2} M_{1}^{1}$ is isomorphic to the direct sum of $K(1)_{*} / k(1)_{*}$ generated by $h_{20} \otimes \zeta_{2}^{3^{j}} / v_{1}^{j}$ for $j>0$, and the cyclic $k(1)_{*}-$ modules:
(a) $k(1)_{*} /\left(v_{1}^{2 \cdot 3^{k}}\right)\left\langle v_{2}^{3^{k}(3 m+1)} h_{20} \zeta_{2}\right\rangle, \quad k>0, m \in \mathbb{Z}$,

$$
k(1)_{*} /\left(v_{1}^{10 \cdot 3^{k}}\right)\left\langle v_{2}^{3^{k}(9 m+8)} h_{20} \zeta_{2}\right\rangle, \quad k \geq 0, m \in \mathbb{Z}
$$

(b) $k(1)_{*} /\left(v_{1}^{3}\right)\left\langle v_{2}^{3 m} \xi\right\rangle, \quad m \in \mathbb{Z}$,

$$
k(1)_{*} /\left(v_{1}^{4 \cdot 3}\right)\left\langle v_{2}^{3^{k} m+\left(3^{k}-1\right) / 2} \xi\right\rangle, \quad k \geq 0, m \equiv 2,8 \bmod 9,
$$

(c) $k(1)_{*} /\left(v_{1}\right)\left\langle v_{2}^{m} \varphi\right\rangle, \quad m \in \mathbb{Z}$.

The proof is the same as those of Theorems 6.1 and 7.3 by virtue of Proposition 8.2.
9. Calculation of $H^{3} M_{1}^{1}$. Theorem 8.3 and Proposition 8.2 imply the following:

Lemma 9.1. The cokernel of the connecting homomorphism $\delta_{2}: H^{2} M_{1}^{1}$ $\rightarrow H^{3} K(2)_{*}$ is the $\mathbb{Z} / 3$-vector space generated by
(i) $v_{2}^{u} h_{20} \xi, \quad u \in G$,
(ii) $v_{2}^{s} \varphi \zeta_{2}, \quad s+1 \in \mathbb{Z}-3 \mathbb{Z}$.

Proposition 9.2. The connecting homomorphism $\delta_{3}: H^{3} M_{1}^{1} \rightarrow H^{4} K(2)_{*}$ acts as follows:
(i) $\delta_{3}\left(v_{2}^{3^{k}(9 m+2)+\left(3^{k}-1\right) / 2} h_{20} \xi / v_{1}^{4 \cdot 3}\right)=-v_{2}^{3^{k+2} m+\left(3^{k+1}-1\right) / 2} h_{20} \xi \zeta_{2}$,

$$
\begin{aligned}
& k \geq 0, m \in \mathbb{Z}, \\
& \delta_{3}\left(v_{2}^{3^{k}(9 m+8)+\left(3^{k}-1\right) / 2} h_{20} \xi / v_{1}^{4 \cdot 3^{k}}\right)=v_{2}^{3^{k+1}(3 m+2)+\left(3^{k+1}-1\right) / 2} h_{20} \xi \zeta_{2}, \\
& k \geq 0, m \in \mathbb{Z}, \\
& \delta_{3}\left(v_{2}^{3 m} \varphi \zeta_{2} / v_{1}\right)=v_{2}^{3 m-1} h_{20} \xi \zeta_{2}, \\
& \delta_{3}\left(v_{2}^{3 m+1} \varphi \zeta_{2} / v_{1}\right)=-v_{2}^{3 m} h_{20} \xi \zeta_{2}, \\
& m \in \mathbb{Z},
\end{aligned}
$$

Proof. Since $\delta_{3}\left(v_{2}^{s} h_{20} \xi / v_{1}^{j}\right)=\delta_{2}\left(v_{2}^{s} \xi / v_{1}^{j}\right) h_{20}$, (i) follows from Proposition 8.2. In the same way, we obtain (ii) from Proposition 8.2 by $\delta_{3}\left(v_{2}^{s} \varphi \zeta_{2} / v_{1}\right)$ $=\delta_{2}\left(v_{2}^{s} \varphi / v_{1}\right) \zeta_{2}$.

Theorem 9.3. $H^{3} M_{1}^{1}$ is isomorphic to the direct sum of the cyclic $k(1)_{*}{ }^{-}$ modules
(a) $k(1)_{*} /\left(v_{1}^{4 \cdot 3^{k}}\right)\left\langle v_{2}^{3^{k} m+\left(3^{k}-1\right) / 2} \xi h_{20}\right\rangle, \quad k \geq 0, m \equiv 2,8 \bmod 9$,
(b) $k(1)_{*} /\left(v_{1}\right)\left\langle v_{2}^{m} \varphi \zeta_{2}\right\rangle, \quad m+1 \in \mathbb{Z}-3 \mathbb{Z}$.
10. Calculation of $H^{s} M_{1}^{1}$ for $s>3$. Theorem 9.3 and Proposition 9.2 imply

Lemma 10.1. The cokernel of the connecting homomorphism $\delta_{4}: H^{3} M_{1}^{1}$ $\rightarrow H^{4} K(2)_{*}$ is trivial.

Theorem 10.2. $H^{s} M_{1}^{1}=0$ for all $s>3$.
11. Calculation of $H^{*} E(2) /(3)$. We now summarize the results of the previous sections:

$$
\begin{aligned}
H^{0} M_{1}^{1} & =K(1)_{*} / k(1)_{*} \oplus M^{0} & \text { (Theorem 6.1), } \\
H^{1} M_{1}^{1} & =K(1)_{*} / k(1)_{*} \oplus K(1)_{*} / k(1)_{*} \oplus M^{1} & \text { (Theorem 7.3), } \\
H^{2} M_{1}^{1} & =K(1)_{*} / k(1)_{*} \oplus M^{2} & \text { (Theorem 8.3), } \\
H^{3} M_{1}^{1} & =M^{3} & \text { (Theorem 9.3), } \\
H^{s} M_{1}^{1} & =M^{s} \quad(s>3) & \text { (Theorem 10.2). }
\end{aligned}
$$

Here M^{s} denotes the part of finite v_{1}-torsions of $H^{s} M_{1}^{1}$ for each s, which is expressed explicitly as follows:

$$
\begin{aligned}
& M^{0}=K \oplus L, \\
& M^{1}=K\left\{h_{20}\right\} \oplus L\left\{h_{20}\right\} \oplus \widehat{K}\left\{v_{2} \zeta_{2}\right\} \oplus M\left\{\zeta_{2}\right\} \oplus N\left\{v_{2}^{2} h_{11}\right\}, \\
& M^{2}=K\{\varphi\} \oplus L\left\{\xi_{k}\right\} \oplus \widehat{K}\{\varphi\} \oplus M\left\{h_{20} \zeta_{2}\right\} \oplus N\{\xi\}, \\
& M^{3}=K\left\{v_{2}^{-1} \varphi \zeta_{2}\right\} \oplus L\left\{\xi_{k} h_{20}\right\}, \\
& M^{s}=0 \text { for } s>3,
\end{aligned}
$$

where $\xi_{k}=v_{2}^{-\left(7 \cdot 3^{k}+1\right) / 2} \xi$, and

$$
\widehat{K}=(\mathbb{Z} / 3)\left[v_{2}^{3}, v_{2}^{-3}\right],
$$

$$
\begin{aligned}
K & =K(2)_{*}-\widehat{K} \\
L & =\bigoplus_{k \geq 0} k(1)_{*} /\left(v_{1}^{4 \cdot 3^{k}}\right)\left\{x_{k+1}^{m} \mid m \in \mathbb{Z}-3 \mathbb{Z}\right\}, \\
M & =\bigoplus_{k \geq 0}^{\bigoplus} k(1)_{*} /\left(v_{1}^{6 \cdot 3^{k}}\right)\left\{x_{k+1}^{3 m+1} \mid m \in \mathbb{Z}\right\} \\
& \oplus \bigoplus_{k \geq 0} k(1)_{*} /\left(v_{1}^{10 \cdot 3^{k}}\right)\left\{x_{k}^{9 m+8} \mid m \in \mathbb{Z}\right\}, \\
N & =k(1)_{*} /\left(v_{1}^{3}\right)\left\{v_{2}^{3 m} \mid m \in \mathbb{Z}\right\} .
\end{aligned}
$$

From the long exact sequence (4.2), we have the following:
Theorem 11.2. The E_{2}-term $H^{*} E(2)_{*} /(3)$ of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(L_{2} M \wedge X\right)$ is the direct sum of $k(1)_{*}$-modules:
(0) $H^{0} E(2)_{*} /(3)=k(1)_{*}$,
(1) $H^{1} E(2)_{*} /(3)=k(1)_{*}\left\{h_{20}\right\} \oplus M^{0}$,
(2) $H^{2} E(2)_{*} /(3)=K(1)_{*} / k(1)_{*} \oplus M^{1}$,
(3) $H^{3} E(2)_{*} /(3)=K(1)_{*} / k(1)_{*} \oplus M^{2}=H^{2} M_{1}^{1}$,
(4) $H^{4} E(2)_{*} /(3)=M^{3}=H^{3} M_{1}^{1}$,
(5) $H^{s} E(2)_{*} /(3)=0$.

By the sparseness of the spectral sequence, the differential d_{r} is zero for $r<5$. Theorem 11.2 shows that $d_{r}=0$ for $r \geq 5$. Therefore, the spectral sequence collapses to the E_{2}-term. Furthermore, there is no extension problem, since $L_{2} M \wedge X$ is an M-module spectrum. Therefore we obtain the following:

Theorem 11.3. The homotopy groups $\pi_{*}\left(L_{2} M \wedge X\right)$ are isomorphic to the direct sum of the $k(1)_{*}$-module

$$
k(1)_{*}\left\{1, h_{20}\right\} \oplus K(1)_{*} / k(1)_{*}\left\{\zeta_{2}, h_{20} \zeta_{2}\right\}
$$

and finite v_{1}-torsions $\oplus_{k=0}^{3} M^{k}$.

References

[1] Y. Arita and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{1}^{1}$ at the prime 3, Hiroshima Math. J. 26 (1996), 415-431.
[2] M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994), 76-86.
[3] M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the L_{2}-localization of a v_{2}-spectrum, in: Contemp. Math. 146, Amer. Math. Soc., 1993, 237-250.
[4] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[5] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
[6] D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Stud. 128, Princeton Univ. Press, 1992.
[7] K. Shimomura, On the Adams-Novikov spectral sequence and products of β elements, Hiroshima Math. J. 16 (1986), 209-224.
[8] -, The homotopy groups of the L_{2}-localized Mahowald spectrum $X\langle 1\rangle$, Forum Math. 7 (1995), 685-707.
[9] -, The homotopy groups of the L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc., to appear.
[10] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of Moore spaces, Hiroshima Math. J. 16 (1986), 121133.
[11] K. Shimomura and A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261-289.

Yoshitaka Nakazawa	Katsumi Shimomura
$1-22-7$, Omokage	Faculty of Education
Tottori, 680	Tottori University
Japan	Tottori, 680
	Japan
	E-mail: katsumi@fed.tottori-u.ac.jp

Received 30 August 1995;
in revised form 22 July 1996

[^0]: 1991 Mathematics Subject Classification: 55Q10, 55Q45, 55P60.

