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P. E r d ő s (Budapest), Steve J a c k s o n (Denton, Tex.)
and R. Daniel M a u l d i n (Denton, Tex.)

Abstract. Given a partition P : L → ω of the lines in Rn, n ≥ 2, into countably
many pieces, we ask if it is possible to find a partition of the points, Q : Rn → ω, so that
each line meets at most m points of its color. Assuming Martin’s Axiom, we show this
is the case for m ≥ 3. We reduce the problem for m = 2 to a purely finitary geometry
problem. Although we have established a very similar, but somewhat simpler, version of
the geometry conjecture, we leave the general problem open. We consider also various
generalizations of these results, including to higher dimension spaces and planes.

1. The m-point property for m ≥ 3. We consider here several ques-
tions concerning infinite partitions of lines, planes, etc. in Rn, in particular,
colorings of Rn with prescribed intersection sizes for the lines and points
of a given “color”. We are particularly concerned with questions which re-
late set-theoretic partition properties with the underlying geometry of lines,
points, etc., in Rn. The results presented here extend some of those of [2],
answer some of the questions raised there, and introduce some new ques-
tions as well. In particular, these results lead to some interesting connections
between set-theoretic partition questions and purely geometric questions.

Throughout, we use the notions of a partition of a set, A = A0 ∪
A1 ∪ A2 ∪ . . . , and a coloring of the set, f : A → ω, interchangeably.
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[ω]<ω denotes the finite subsets of ω, the natural numbers. MA denotes
Martin’s Axiom (cf. [4], [5]), the statement that for any c.c.c. partial order,
there is a filter meeting any collection of < 2ω many dense sets. We recall
that MA is consistent with ZFC and imposes no bound on the size of the
continuum.

In [1] it was shown in ZFC that for every infinite partition L =
⋃
i Li

of L, the set of all lines in Rn, there is a partition, Rn =
⋃
i∈ω Si, of the

points in Rn such that ∀l ∈ Li (|l ∩ Si| is finite). Furthermore, if 2ω ≤ ωm,
then “finite” may be replaced by m+ 1. These results were generalized and
extended in [2]. It was also asked in [2] whether the converse must hold. That
is, does the partition property with size m+ 1 intersection imply 2ω ≤ ωm,
or any bound on 2ω? We show in Theorem 1.1 that this is not the case.

By the m-point property we mean the statement that given any partition
L = L0 ∪ L1 ∪ . . . of the lines in Rn (n ≥ 2), there is a partition Rn =
S0 ∪ S1 ∪ . . . of the points in Rn such that ∀l ∈ Li (|l ∩ Si| ≤ m).

Theorem 1.1. Assume ZFC + MA. Then for any partition L =
⋃
i∈ω Li

of the lines in Rn (n ≥ 2), there is a partition Rn =
⋃
i∈ω Si of the points

in Rn such that ∀l ∈ Li (|l ∩ Si| ≤ 3).

A related question is addressed in the next theorem.

Theorem 1.2. Assume ZFC + MA. Let S ⊆ Rn be such that any line l
in Rn meets S in a finite set. Then there is a partition S =

⋃
i∈ω Si such

that any line l in Rn meets any Si in at most 3 points.

The proofs of Theorems 1.1 and 1.2 are similar. We consider first Theo-
rem 1.1.

Lemma 1.1. Assume ZFC + MA. Let A = L ∪ S be a set of lines L
and points S in Rn with |S| < 2ω, and let g : S → [ω]<ω. Assume that
∀l ∈ L (|l ∩ S| is finite). Then there is a partition S = S0 ∪ S1 ∪ . . . such
that :

(1) ∀x ∈ Si (i 6∈ g(x)).
(2) ∀l ∈ L ∀i (|l ∩ Si| ≤ 2).

N o t e. g prescribes a finite set of “forbidden colors” which we are to
avoid in coloring the points of S.

P r o o f o f L e m m a 1.1. Let A = L ∪ S, g : S → [ω]<ω be as in the
statement of the lemma. Let P = {(p, f) : p ∈ [S]<ω, f : p → ω, ∀x ∈ p
(f(x) 6∈ g(x)), ∀l ∈ L ∀i ¬∃x1, x2, x3 ∈ p (x1, x2, x3 are distinct, f(x1) =
f(x2) = f(x3) = i, and x1, x2, x3 ∈ l)}. Thus, P consists of the “finite
approximations” to the desired coloring of S. We consider the partial order
<P on P given by (p1, f1) ≺ (p2, f2) provided p1 ⊇ p2 and f2 = f1¹p2.
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If we let, for x ∈ S, Dx = {(p, f) ∈ P : x ∈ p}, then Dx is clearly dense,
since we may extend a condition (p, f) ∈ P to (p ∪ {x}, f ′) by coloring x
any non-forbidden color (i.e. not in g(x)) not in range(f¹p). If G is a filter
on P which meets all of the Dx for x ∈ S, then clearly G defines a coloring
fG : S → ω such that ∀x ∈ S (fG(x) 6∈ g(x)) and ∀l ∈ L ∀i ¬∃x1, x2, x3

distinct in S (fG(x1) = fG(x2) = fG(x3) = i and x1, x2, x3 ∈ l). [Set
fG(x) = i iff ∃(p, f) ∈ G (x ∈ p∧ f(x) = i).] This coloring fG is as required
in the lemma.

By MA, such a filter G exists provided P is c.c.c., which we now show.
Suppose, towards a contradiction, that P is not c.c.c., and let (pα, fα),
α < ω1, be an antichain in P. Without loss of generality, we may assume that
|pα| = k for all α, for some fixed k ∈ ω, and further that the family {pα}
forms a ∆-system, that is, there is a “root” r ∈ [S]<ω such that ∀α 6= β < ω1

(pα ∩ pβ = r). We may also clearly assume that ∀α, β < ω1 (fα¹r = fβ¹r).
Having extracted such a ∆-system, we now consider only the first ω many
elements of the antichain: (pn, fn).

Let � be a fixed well-ordering of
⋃
n pn of type ω. If n < m, since

(pn, fn), (pm, fm) are incompatible, and since pn∩pm = r and fn¹r = fm¹r,
we see that (pn ∪ pm, fn ∪ fm) fails to be a condition by virtue of there
being, for some line l ∈ L and i ∈ ω, distinct x1, x2, x3 in pn ∪ pm with
fn ∪ fm(x1) = fn ∪ fm(x2) = fn ∪ fm(x3) = i and x1, x2, x3 ∈ l. We call
such a triple x1, x2, x3 bad for l. We clearly cannot have two (or more)
of the 3 points in r, since then one of pn, pm would contain all three of
x1, x2, x3, contradicting pn, pm ∈ P. Thus, whenever n < m, at least one of
the following holds:

(0) There are two points, say x1, x2, in pn − r and a point x3 ∈ pm − r
with x1, x2, x3 bad for some l ∈ L.

(1) There is a point, say x1, in pn − r and two points x2, x3 ∈ pm − r
with x1, x2, x3 bad for some l ∈ L.

(2) There is a point, say x1, in pn − r, a point x2 ∈ pm − r, and a point
x3 ∈ r with x1, x2, x3 bad for some l ∈ L.

For all n < m consider the least case which applies. For this case, we
associate with x1, x2, x3 integers o(x1), o(x2), o(x3) which give the ranks of
x1, x2, x3 in the ordering � restricted to the sets pn − r, pm − r, r (and
we assume, for example, that if x1, x2 ∈ pn − r, then x1 � x2). Of course,
o(x1), o(x2), o(x3) ≤ k.

We now define a partition h : (ω)2 → 3×k×k×k by h(n,m) = (i, a, b, c)
iff 0 ≤ i ≤ 2 and i is the least case which applies to (pn, fn), (pm, fm), and
o(x1) = a, o(x2) = b, o(x3) = c. Since the range of h is finite, by Ramsey’s
theorem there is an infinite homogeneous set H ⊆ ω for h. Replacing ω by
H, and considering only those (pn, fn) for n ∈ H, we may now assume that
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for all n < m, h(n,m) has a constant value. In particular, one of the 3 cases
applies for all n < m.

Suppose first that case (0) applies for all n < m. For each m ∈ ω,
consider (p0, f0), (pm, fm). Let x1(m), x2(m), x3(m) be the 3 points of case
(0) corresponding to the a, b, c of h(0,m) = (0, a, b, c). Thus, x1(m), x2(m) ∈
p0 − r, and x3(m) ∈ pm − r. Since p0 − r is independent of m, we have
x1(m) = x1, x2(m) = x2 for all m. Also, ∀m ∃i ∃l ∈ L (x1, x2, x3(m)
are bad for l). Since, x1, x2 ∈ l, l is determined by x1, x2, and is therefore
also independent of m. Thus, x1, x2, x3(m), x4(m), . . . are all on a single line
l ∈ L. This, however, contradicts our assumption that ∀l ∈ L (l∩S is finite).

Assume now case (1) applies for all n < m. Consider (p0, f0), (p1, f1),
(p2, f2). Let x0, x1, x2 be the triple corresponding to (p0, f0) and (p2, f2),
and let x′0, x

′
1, x
′
2 be the triple corresponding to (p1, f1), (p2, f2). Thus, x0 ∈

p0 − r, x1, x2 ∈ p2 − r, x′0 ∈ p1 − r, x′1, x′2 ∈ p2 − r. Since h is constant,
we have x1 = x′1, x2 = x′2. Thus, both x0, x

′
0 are on the line l ∈ L deter-

mined by x1, x2 ∈ p2 − r. (Note x0 6= x′0.) For m ∈ ω, consider the pairs
(p0, f0), (pm, fm) and (p1, f1), (pm, fm). For the first pair, we get a corre-
sponding triple x0(m), x1(m), x2(m), where x0(m) ∈ p0−r, x1(m), x2(m) ∈
pm − r. We also have x0(m) = x0 from the constancy of h. Similarly, for
the second pair we get x′0(m) ∈ p1 − r, x′1(m), x′2(m) ∈ pm − r, and we
also obtain x′0(m) = x′0, and x1(m) = x′1(m), x2(m) = x′2(m). Thus, the line
through x1(m), x2(m) also passes through x0, x

′
0. Hence, for all m ≥ 2, there

is a point x1(m) ∈ pm − r on the line l ∈ L through x0, x
′
0, a contradiction.

Finally, the argument for case (2) is essentially identical to that for case
(0). In all cases, we contradict the assumption P is not c.c.c., and this com-
pletes the proof of Lemma 1.1.

Lemma 1.2. Assume ZFC + MA. Let A = L ∪ S be a set of lines and
points in Rn of size < 2ω. Let L = L0 ∪ L1 ∪ . . . be a partition of the lines
in A, and let g : S → [ω]<ω. Then there is a partition S = S0∪S1∪ . . . such
that :

(1) ∀x ∈ Si (i 6∈ g(x)),
(2) ∀l ∈ Li (|l ∩ Si| ≤ 2).

P r o o f. Let ω = B0 ∪ B1 ∪ B2 ∪ . . . be a partition of ω into infinitely
many disjoint infinite subsets. For A, g as given in the lemma, consider
the new partition of L defined by L = M0 ∪M1 ∪ . . . , where l ∈ Mi iff
∃j (l ∈ Lj ∧ j ∈ Bi).

From Corollary 8 of [2], there is a partition S = T0 ∪ T1 ∪ . . . such that
∀l ∈Mi (|l∩Ti| is finite). For each i ∈ ω, consider Ai = Mi∪Ti, so |Ai| < 2ω.
Consider the partition Mi = Li0 ∪ Li1 ∪ . . . , where Bi = {i0, i1, . . .}.

By Lemma 1.1 (identifying ω with Bi) there is a partition Ti = Sii0 ∪
Sii1 ∪ . . .∪Siik ∪ . . . such that ∀x ∈ Siik(ik 6∈ g(x)) and ∀l ∈ Lik(|l∩Siik | ≤ 2).
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Define the partition of S by x ∈ Sk iff ∃i (x ∈ Sik). The sets Sk form a
partition of S. Also, if x ∈ Sk then k 6∈ g(x). Let l ∈ L, say l ∈ Lj . Let i be
such that j ∈ Bi, so l ∈Mi. By construction, l meets at most two points in
Sij . However, the points in Sij are the only points in S which receive color j,
since j belongs only to Bi. Thus, l meets at most 2 points from Sj .

P r o o f o f T h e o r e m 1.1. Let L =
⋃
i Li be as in the statement of

the theorem. We say a set A = L ∪ S of lines and points in Rn is good if:

(1) ∀x 6= y ∈ S (the line l(x, y) determined by x, y is in L).
(2) ∀l1 6= l2 ∈ L (l1 ∩ l2 ∈ A).

Write L ∪ Rn =
⋃
α<2ω Aα, where each Aα = Lα ∪ Sα is good, the Aα

are increasing, and |Aα| < 2ω. We define the coloring Q : Rn → ω. We
assume that Q<α = Q¹S<α has been defined, where S<α =

⋃
α′<α Sα′ . For

x ∈ Sα − S<α, let gα(x) = {i ∈ ω : ∃l ∈ L<α ∩ Li (x ∈ l)}. Note that
|g(x)| ≤ 1, since if l1, l2 ∈ L<α then l1 ∩ l2 ∈ S<α.

Consider Bα = Lα∪(Sα−S<α). By Lemma 1.2 applied to Lα, Sα−S<α,
and gα, there is a coloring Q̃α : Sα − S<α → ω such that ∀x ∈ Sα − S<α
(Q̃α(x) 6∈ g(x)), and ∀l ∈ Lα ∩ Li (l meets at most 2 points of Sα − S<α of
color i). Let Qα = Q<α ∪ Q̃α.

Doing this for each α < 2ω (using AC) defines the coloring Q : Rn → ω.
We show Q works. Suppose l ∈ (Lα − L<α) ∩ Li. There is at most one
x ∈ S<α ∩ l by goodness. There are at most two x ∈ (Sα − S<α) ∩ l of Q
color i. Finally, if x ∈ l ∩ (S − Sα), then Q(x) 6= i, since i ∈ gβ(x), where
x ∈ Sβ − S<β .

Corollary 1.1. The “3-point partition property” (i.e. the statement that
for any partition L =

⋃
i Li of the lines in Rn there is a partition Rn =

⋃
i Si

such that ∀l ∈ Li (|l ∩ Si| ≤ 3)) is consistent with ZFC + 2ω > ω1, ω2, etc.

We consider now Theorem 1.2; the proof is similar to that of Theo-
rem 1.1, so we will merely outline the differences. Write S =

⋃
α<2ω Sα,

an increasing union, with each Sα closed, that is, if x, y, z, w ∈ Sα and
l(x, y), l(z, w) are distinct, non-parallel lines with l(x, y) ∩ l(z, w) ∈ S, then
l(x, y) ∩ l(z, w) ∈ Sα.

We define by induction on Sα the coloring Qα : Sα → ω (with Qβ
extending Qα if α < β). At step α, for each x ∈ Sα −

⋃
β<α Sβ , let

g(x) = {i ∈ ω : ∃y, z ∈ ⋃β<α Sβ ((x, y, z) are collinear and (
⋃
β<αQβ)(y) =

(
⋃
β<αQβ)(z) = i)}. We easily see that g(x) is finite, and we then apply

Lemma 1.1 (with L = all lines in Rn) to color the points in Sα − S<α. This
coloring easily works.

By Corollary 1.1, the three-point partition is consistent with the con-
tinuum being “arbitrarily large”. It is natural to ask whether this is also
true for the two-point property, or indeed whether the two-point property
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is consistent with ¬CH. Consideration of this question leads to a purely
geometric question. This analysis is sufficiently detailed to warrant discus-
sion elsewhere ([3]), but we briefly sketch here the main points (though the
consistency of the two-point property with ¬CH as well as the geometry
problem are open).

Assume MA, and let Q : L → ω be a given coloring of the lines L in
R2. The basic idea is to first do a preliminary coloring of the points (as in
the proof of Lemma 1.2) in R2, using Theorem 1.1, so that every line in
R2 meets at most 3 points of its color. Given then a set S ⊆ R2 such that
∀l ∈ L (|l ∩ S| ≤ 3), it suffices to define P : S → ω such that ∀l ∈ L (|{x ∈
l∩S : P (x) = Q(l)}| ≤ 2). To do this, write (L, S) =

⋃
α<2ω (Lα, Sα), where

|Lα|, |Sα| < 2ω, and each (Lα, Sα) is “sufficiently closed” in (L, S) (e.g., the
intersection of (L, S) with an increasing union of models of a large fragment
of ZFC). For each α < 2ω, there is a naturally defined partial order Pα
which attempts to extend the coloring Pα = P ¹Sα to Pα+1 maintaining the
two-point property. If each Pα is c.c.c., we can inductively define, using MA,
the colorings Pα and complete the proof.

Arguments along the lines of Lemma 1.1 (though more involved) reduce
this problem to purely geometric questions. Specifically, we introduce the
following geometry conjecture:

Conjecture. There is an integer k ∈ ω such that the following holds.
Let x1, . . . , xk, y1, . . . , yk be points in Rn such that any line l(xi, yj) meets
no other points of the set. For 1 ≤ i, j ≤ k, let zij ∈ l(xi, yj). Then there
are only finitely many tuples (x′1, . . . , x

′
k; y′1, . . . , y

′
k) such that ∀1 ≤ i, j ≤ k

(zi,j ∈ l(x′i, y′j), and l(x′i, y
′
j) meets no other point of (x′1, . . . , x

′
k; y′1, . . . , y

′
k)).

Thus, this conjecture along with MA implies the two-point partition
property. Likewise, consider the second version of the two-point property
(corresponding to Theorem 1.2): if S ⊆ Rn is such that any line l in Rn
meets S in a finite set, then there is a partition S =

⋃
i∈ω Si such that any

line l in Rn meets any Si in at most 2 points. Then MA plus the following
somewhat weaker variation of the geometry conjecture suffices:

Conjecture. There is an integer k ∈ ω such that the following holds.
Let zij for each 1 ≤ i, j ≤ k be points in Rn, no three of which are collinear.
Then there are only finitely many tuples (x1, . . . , xk; y1, . . . , yk) of points in
Rn such that zij ∈ l(xi, yj) for all 1 ≤ i, j ≤ k and such that every l(xi, yj)
meets no other point of (x1, . . . , xk; y1, . . . , yk).

The least integer for which these conjectures are reasonable is k = 4,
and for this k we refer to them as the “16-point” problem. As a preliminary,
one can consider the version of the geometry problem corresponding to the
complete graph on k vertices rather than the bipartite graph on 2k vertices.



On infinite partitions of lines and space 81

Here it has been shown ([3]) that for k = 5 (the smallest reasonable value)
the result is true. Specifically:

Theorem 1.3. Let zi,j for 1 ≤ i < j ≤ 5 be 10 points in R2, no three of
which are collinear. Then there are at most finitely many tuples (x1, . . . , x5)
of distinct points such that ∀1 ≤ i < j ≤ 5 (zij ∈ l(xi, xj)).

This result shows that the bipartite versions of the geometry conjecture
are at least plausible, and are of interest in their own right.

2. Higher-dimensional planes. In this section, we extend the previous
results concerning lines in Rn to higher-dimensional hyperplanes in Rn. By
a k-plane we mean a translate of a k-dimensional subspace of Rn. Let Hk
be the collection of k-planes in Rn for 1 ≤ k ≤ n − 1. Let hx1,...,xm or
Span(x1, . . . , xm) denote the smallest plane containing x1, . . . , xm.

It was shown in [2] that, in ZF, the “one-point” partition property for
lines in R2 (hence in Rn, n ≥ 2) is false. That is, there is a coloring P :
L → ω, L = the set of lines in R2, such that there is no Q : R2 → ω such
that ∀l ∈ L (|{x ∈ R2 : x ∈ l ∧ Q(x) = P (l)}| ≤ 1). It was also shown, in
ZFC, that there is a set of lines and points in R2 of size ω1 for which the
one-point partition property fails.

We first extend these negative results to higher dimensions.

Theorem 2.1. (ZF) There is a coloring P : Hn−1 → ω such that for all
colorings Q : Rn → ω there is an h ∈ Hn−1 such that Span({x ∈ h : Q(x) =
P (h)}) = h. Also, any n hyperplanes with distinct P colors meet in at most
a point.

Corollary 1.1. (ZF) There is a coloring P : Hn−1 → ω such that there
is no Q : Rn → ω such that ∀h ∈ Hn−1 (|{x ∈ Rn : x ∈ h∧Q(x) = P (h)}| ≤
n − 1). Also, any n hyperplanes with distinct P colors meet in at most a
point.

P r o o f. Let v1, v2, v3, . . . ∈ Sn−1 be “directions”, and let vi ∈ Ni be
neighborhoods of Sn−1 which are pairwise disjoint, and assume that any n
distinct vectors from distinct neighborhoods Nj are linearly independent.

Define P by P (h) = i if vh ∈ Ni, where vh is the unit normal to h, and
P is arbitrary otherwise. Suppose Q : Rn → ω is such that ∀h ∈ Hn−1

(Span({x ∈ h : Q(x) = P (h)}) ( h). We construct a sequence of open balls
in Rn, B0 ⊇ B1 ⊇ B1 ⊇ B2 ⊇ B2 ⊇ . . . , such that Bk ∩ {x : Q(x) = k} = ∅
for all k. If x ∈ ⋂Bk, we then have Q(x) 6= k for any k ∈ ω, a contradiction.

We use the following elementary fact from linear algebra.

Lemma 2.1. Let v ∈ Sn−1, N ⊆ Sn−1 an open neighborhood of v, B ⊆ Rn
open, and x1, . . . , xp ∈ B, p ≤ n − 1, and suppose there is a hyperplane h
containing x1, . . . , xp with normal nh ∈ N . Then there is an open B′ ⊆ B
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such that every y ∈ B′ lies on a hyperplane also containing x1, . . . , xp, and
with normal ny ∈ N .

Set B−1 = Rn. Suppose that Bk has been defined, and we define Bk+1.
Let B′k be open such that B′k ⊆ Bk. If there is no x ∈ B′k such that Q(x) =
k + 1, then we let Bk+1 = B′k. Otherwise let x1

k+1 ∈ B′k, Q(x1
k+1) = k + 1.

Let h1 be a hyperplane through x1
k+1 with normal n1 ∈ Nk+1. By the

lemma, there is a ball C ⊆ B′k such that for all y ∈ C there is a hyperplane
containing x1

k+1, y and with normal in Nk+1. If C ∩{x : Q(x) = k+ 1} = ∅,
set Bk+1 = C. Otherwise, let x2

k+1 ∈ C, x2
k+1 6= x1

k+1, with Q(x2
k+1) = k+1,

and let h2 be a hyperplane containing x1
k+1, x

2
k+2 with normal n2 ∈ Nk+1.

Continuing, we define x1
k+1 6= x2

k+1 6= . . . 6= xn−1
k+1 (or else Bk+1 has been

defined). We may assume that C is chosen at each step to guarantee xi+1
k+1 6∈

Span(x1
k+1, . . . , x

i
k+1).

By the lemma again, we get Bk+1 ⊆ B′k such that for all y ∈ Bk+1, there
is a hyperplane containing x1

k+1, . . . , x
n−1
k+1 , y with normal in Nk+1. We may

assume that for y ∈ Bk+1, y 6∈ Span(x1
k+1, . . . , x

n−1
k+1). From the definition of

P and the assumed property of Q, it follows that for any y ∈ Bk+1, Q(y) 6=
k + 1 (as the points x1

k+1, . . . , x
n−1
k+1 already span an (n − 2)-dimensional

plane).

As with the case for lines, we can improve this negative result assuming
ZFC.

Theorem 2.2. (ZFC) There are ω1 hyperplanes H = {hα : α < ω1} in
Rn and ω1 points {xα : α < ω1} in Rn, and a coloring P : H → ω such that
any n hyperplanes of distinct colors meet in at most a point , and such that
for all Q : Rn → ω there is an h ∈ Hn−1 such that Span({x ∈ h : Q(x) =
P (h)}) = h. In particular , there is no coloring Q : {xα : α < ω1} → ω such
that ∀α < ω1 (|β : xβ ∈ hα ∧Q(xβ) = P (hα)| ≤ n− 1).

P r o o f. We need the following lemma, which is a slight generalization
of a theorem of Todorčević [6]. The proof is also a slight generalization of
that proof.

Lemma 2.2. (ZFC) There is a partial coloring P : D → ω, D ⊆ (ω1)n,
such that for any A ⊆ ω1 of size ω1, and any k ∈ ω, ∃α1 < . . . < αn ∈ A
(P (α1, . . . , αn) = k). Furthermore, if P (α1, . . . , αn) = k, P (β1, . . . , βn) = l
and |{α1, . . . , αn} ∩ {β1, . . . , βn}| ≥ 2, then k = l.

P r o o f. We proceed by induction on n. For n = 2, this is just a result
of [6] (and also follows from the argument here, ignoring P ,D). Let ω1 =
S0 ∪ S1 ∪ S2 ∪ . . . , where the Si are pairwise disjoint and stationary. By
induction, let P : D → ω, where D ⊆ (ω1)n−1, satisfy the lemma for n− 1.
Following [6], let r : ω1 → 2ω be one-to-one, and eα : α → ω a bijection
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for all α < ω1. Let (α, β) = the least n such that r(α)(n) 6= r(β)(n). Let
Fn(α) = {β < α : eα(β) ≤ n}. We set P (α1, . . . , αn) = k if and only if
P (α1, . . . , αn−1) = k, and if βj = min{F(αj ,αn)(αn)−αj}, for 1 ≤ j ≤ n−1,
then β1 = β2 = . . . = βn−1 = β ∈ Sk.

Let A ⊆ ω1, |A| = ω1, and k ∈ ω. We must show that ∃α1, . . . , αn ∈ A
(P (α1, . . . , αn) = k). Let λ be a sufficiently large regular cardinal. It is
enough to show that if M ≺ Vλ is countable elementary, then M contains
〈Si; i ∈ ω〉, P , A, and if δ = M ∩ ω1, then ∃α1, . . . , αn ∈ A (β1 = . . . =
βn−1 = δ and P (α1, . . . , αn−1) = k). Fix such δ, M , and let αn ∈ A,
αn > δ. Let n0 be large enough such that δ ∈ Fn0(αn). Let n1 ≥ n0 be
such that there are ω1 many γ ∈ A such that r(γ)¹n1 = r(αn)¹n1 but
a = r(γ)(n1) 6= r(αn)(n1). Let ε < δ, ε > supRn1(αn) ∩ δ. Since M ²
“theorem is true for n−1 using P”, δ = ω1∩M , and M ² “A∩{γ : r(γ)¹n1 =
r(αn)¹n1 ∧ r(γ)(n1) = a} has size ω1”, let ε < α1 < . . . < αn−1 < δ be in
A such that P (α1, . . . , αn−1) = k and r(α1)¹n1 = . . . = r(αn−1)¹n1 =
r(αn)¹n1, r(α1)(n1) = . . . = r(αn−1)(n1) = a 6= r(αn)(n1). Then clearly
β1 = . . . = βn−1 = δ.

If now we choose ω1 points {xα : α < ω1} in Rn in sufficiently general po-
sition, then it is easy to see that for any n tuples t1 = (x1

1, . . . , x
1
n), . . . , tn =

(xn1 , . . . , x
n
n) from the xα such that |ti ∩ tj | ≤ 1 for all i 6= j, the n hyper-

planes h1, . . . , hn determined by t1, . . . , tn satisfy |h1 ∩ . . . ∩ hn| ≤ 1. Also,
for distinct xα1 , . . . , xαn , Span(xα1 , . . . , xαn) is (n− 1)-dimensional.

Fix such points R = {xα : α < ω1} in Rn, and fix a function P : D → ω,
D ⊆ (ω1)n, as in Lemma 2.2. Consider the set H of hyperplanes hxα1 ,...,xαn
determined by t = (α1, . . . , αn) ∈ (ω1)n such that P (α1, . . . , αn) is defined.
Color these hyperplanes by P (hxα1 ,...,xαn

) = P (α1, . . . , αn). Given n hyper-
planes h1, . . . , hn ∈ H of distinct P color, by the lemma we deduce that the
corresponding tuples of points t1, . . . , tn satisfy |ti ∩ tj | ≤ 1 for i 6= j. We
then have |h1 ∩ . . .∩ hn| ≤ 1 by the property of the xαi . Thus, any n of the
hyperplanes in H of distinct P color meet in at most one point.

Suppose Q : R → ω is a coloring of R. Fix k ∈ ω such that {γ :
Q(xγ) = k} has size ω1. By the lemma, there are γ1 < . . . < γn such that
Q(γ1) = . . . = Q(γn) = k, and P (γ1, . . . , γn) = k. Then P (hxγ1 ,...,xγn

) = k,
and hence there is a hyperplane in Hn−1 meeting n points of its color in R
which span it.

R e m a r k 2.1. It follows from Theorem 2.6 below that one cannot
strengthen Theorem 2.2 for n > 2 by requiring that any n distinct hy-
perplanes in H meet in at most one point.

R e m a r k 2.2. Theorem 2.1 has an extension to Hilbert space as well:
There is a coloring P of the co-dimension 1 planes in `2 such that for any Q :
`2 → ω there is a plane h such that cl(Span({x ∈ h : Q(x) = P (h)})) = h.
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To see this, fix an orthonormal basis N0, N1, . . . ∈ `2 for `2. For h a hy-
perplane with unit normal nh, let ih ∈ ω be least such that nh · Nih 6= 0.
Set P (h) = i iff nh ·Nih ∈ Ui, where {Ui} are fixed, pairwise disjoint, open
subsets of (0, 1) all having 0 as a limit point. Suppose Q : `2 → ω were such
that ∀h (h 6= cl(Span({x ∈ h : Q(x) = k + 1}))). We follow the outline of
Theorem 2.1. Suppose Bk has been defined, and let B′k be open of diameter
< 2−k such that B′k ⊆ Bk. If cl(Span({x ∈ B′k : Q(x) = k + 1})) 6= `2,
then let Bk+1 ⊆ B′k, and Bk+1 ∩ cl(Span({x ∈ B′k : Q(x) = k + 1})) = ∅.
Otherwise, let H be a co-dimension 2 plane such that H = cl(Span({x ∈
H ∩ B′k : Q(x) = k + 1})). Fixing an origin within H, we may identify H
with a co-dimension 2 subspace of `2. Let x, y extend a basis for H to a basis
for `2. Let j be least so that at least one of x ·Nj , y ·Nj is non-zero. We may
then find a unit vector of the form n = αx+ βy so that n ·Nj ∈ Uk+1. Let
h have normal n (and contain our new origin). Thus, P (h) = k + 1. Also,
there is an open Bk+1 ⊆ B′k−H such that all x ∈ Bk+1 lie in a co-dimension
1 plane with normal α′x + β′y ∈ Uk+1. From the assumed property of Q,
Q(x) 6= k + 1 for all x ∈ Bk+1. Continuing, we reach a contradiction.

We now consider the positive partition results for higher dimensions.
First we extend Corollary 8 of [2] from lines in Rn to hyperplanes. Clearly,
if there are hyperplanes of every color whose intersection contains a subspace
of dimension ≥ 1, then there is no coloring of the points of this subspace
such that every hyperplane meets only finitely many points of its color.
Thus, restriction on the coloring P of the hyperplanes is necessary.

Definition 2.1. If H ⊆ ⋃n−1
k=1 Hk and P : H → [ω]<ω, we say P is

acceptable if ∀x 6= y ∈ Rn (
⋃{P (h) : h ∈ H ∧ x, y ∈ h} is finite).

Theorem 2.3. (ZFC) Let P :
⋃n−1
k=1 Hk → ω be an acceptable coloring of

the k-planes, 1 ≤ k ≤ n− 1. Then there is a coloring Q : Rn → ω such that
any h ∈ ⋃n−1

k−1 Hk meets only finitely many points of its color.

The following definition, and variations of it, will be used frequently.

Definition 2.2. If A = H ∪ S, where H ⊆ ⋃n−1
k=1 Hk, S ⊆ Rn, we say A

is good provided:

(1) If x1, . . . , xn ∈ S, then hx1,...,xn ∈ H.
(2) If h1, . . . , hp ∈ H and |h1 ∩ . . . ∩ hp| = 1, then h1 ∩ . . . ∩ hp ∈ S.

If A = H ∪ S ⊆ ⋃n−1
k=1 Hk ∪ Rn and P : H → [ω]<ω is acceptable, then

there is a good A1 ⊇ A such that |A| = |A1|. Define P 1 : A1 ∩⋃n−1
k=1 Hk →

[ω]<ω by P 1(h1) =
⋃{P (h) : h ∈ H, h1 ⊆ h}. Then P 1 is an acceptable

coloring of A1, and if h ⊆ h′, then P (h′) ⊆ P (h).
To prove Theorem 2.3, it thus suffices to prove the following lemma.
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Lemma 2.3. Suppose A = H∪S ⊆ ⋃n−1
k=1 Hk∪Rn is good , P : H → [ω]<ω

is acceptable, and P (h′) ⊆ P (h) whenever h ⊆ h′. Suppose also g : S →
[ω]<ω (giving “forbidden colors”) is given. Then there is a Q : S → ω such
that ∀x ∈ S (Q(x) 6∈ g(x)) and ∀h ∈ H ({x : x ∈ h ∩ S ∧ Q(x) ∈ P (h)} is
finite).

P r o o f. We proceed by induction on κ = |A|. If κ ≤ ω, the lemma is
obvious (letting Q be 1-1 and avoiding g). If |A| > ω, let A =

⋃
α<κAα

be strictly increasing, where each Aα = Hα ∪ Sα is good. Note that each
(Hα, P ¹Hα) is also acceptable. Let A<α denote

⋃
β<αAβ , and similarly for

H<α, S<α. Suppose, inductively, that Q¹S<α has been defined and A<α,
P ¹H<α, Q¹S<α satisfy the conclusion of the lemma. For x ∈ Sα define

g′(x) =
{
g(x) ∪⋃{P (h) : h ∈ H<α and x ∈ h} if x ∈ Sα − S<α,
g(x) if x ∈ S<α.

By acceptability and goodness, g′(x) is finite for all x ∈ Sα. By induction,
let Aα, P ¹Hα, Q′α satisfy the conclusion of the lemma using g′.

Let

Qα(x) =
{
Q′α(x) if x ∈ Sα − S<α,
Q<α(x) if x ∈ S<α.

Let Q =
⋃
α<κQα; we show Q satisfies the conclusion of the lemma for

A, g. Clearly, if x ∈ S, then Q(x) 6∈ g(x).
Let h ∈ Hα − H<α, and suppose x1, x2, x3, . . . are distinct points in S

with xi ∈ h and Q(xi) ∈ P (h). Say, without loss of generality, Q(xi) = r
for all i. If xi 6∈ Sα, then Q(xi) 6∈ P (h), since at the stage where Q(xi)
is defined, we have P (h) ⊆ g′(xi). Also, by induction, only finitely many
of the xi are in Sα − S<α. So assume without loss of generality that all
xi ∈ S<α. Let α0 < α be least such that at least two of the xi are in Aα0 .
Let h0 = Span{xi : xi ∈ Sα0}. Then h0 ∈ Hα0 , and r ∈ P (h0). By induction,
only finitely many of the xi lie in Sα0 .

However, if xi ∈ Sα − Sα0 , then xi 6∈ h0, since otherwise at the stage
β > α0 where Q(xi) is defined, r ∈ g′(xi). Let α1 > α0 be least such that
some xi ∈ Sα1 − S<α1 . Let h1 = Span{xi : xi ∈ Sα1}. By induction, only
finitely many of the xi lie in Sα1 . Continuing, we produce h0 ( h1 ( . . . ⊆ h,
a contradiction.

Theorem 2.3 implies a result concerning simultaneous colorings of the
points and lines.

Theorem 2.4. (ZFC) Let P :
⋃n−1
k=mHk → ω be an acceptable coloring

of the k-planes in Rn, m ≤ k ≤ n − 1. Then there is a coloring Q : Rn ∪⋃m−1
k=1 Hk → ω such that any h ∈ ⋃n−1

k=1 Hk meets only finitely many points
of its color , and contains only finitely many h′ ∈ ⋃m−1

k=1 Hk of its color.
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P r o o f. Let P :
⋃n−1
k=mHk → ω be an acceptable coloring. Extend P

to P ′ :
⋃n−1
k=1 Hk → [ω]<ω by P ′(h′) =

⋃{P (h) + i : dim(h) ≥ m, h′ ⊆ h,
0 ≤ i ≤ m−dim(h′)}. Easily, P ′ is acceptable, and h1 ⊆ h2 implies P ′(h2) ⊆
P ′(h1). Define Q on

⋃m−1
k=1 Hk by defining, for h′ ∈ ⋃m−1

k=1 Hk, Q(h′) =
sup(P ′(h′)). Lemma 2.3 extends Q to Rn so that ∀h ∈ ⋃n−1

k=1 Hk ({x ∈ h :
Q(x) ∈ P ′(h)} is finite). Note also that if h ∈ ⋃nk=1Hk, then h properly
contains no h′ ∈ ⋃m−1

k=1 Hk with Q(h′) ∈ P ′(h).

The next theorem strengthens the previous one in that we may prescribe
the cardinality of the intersections of the planes with points of same color
(with “finite” as a lower bound).

Theorem 2.5. (ZFC) Let P :
⋃n−1
k=1 Hk → ω be a coloring of the planes

in Rn which is acceptable. Let c :
⋃n−1
k=1 Hk → {−1} ∪ {α ∈ ON : ωα ≤ c} be

such that if h1 ⊆ h2 and P (h1) = P (h2), then c(h1) ≤ c(h2). Assume also
that c(h) ≥ ∑h′ c(h

′), the sum ranging over h′ ( h such that c(h′) > −1
and h′ is c-minimal , that is , ¬∃h′′ ( h′ (c(h′′) = c(h′)). Then there is a
coloring Q : Rn → ω such that for all h ∈ ⋃n−1

k=1 Hk, h meets exactly ωc(h)
many points x such that Q(x) = P (h) (where ω−1 means “finite”).

As before, we proceed by showing a stronger, but more technical lemma.

Lemma 2.4. There is a function F which assigns to each h ∈ ⋃n−1
k=1 Hk

a set F (h) ⊆ h of size 2ω such that :

(1) If h1 6= h2 then F (h1) ∩ F (h2) = ∅.
(2) For all h1 ( h2, h1 ∩ F (h2) is finite.

P r o o f. Let F̃ (h) ⊆ h be a set of size 2ω such that for all h′ ( h,
h′ ∩ F̃ (h) is finite [may assume h = Rk, in which case let F̃ (h) = range of
the map t→ (t, t2, . . . , tk)]. Let hα, α < 2ω, be an enumeration of

⋃n−1
k=1 Hk.

We define F (hα) ⊆ F̃ (hα) by induction on α. Assume F (hα′) defined for
all α′ < α. For all α′ < α, F (hα′) ∩ F̃ (hα) is finite using the fact that if
hα′ 6⊇ hα then F (hα′) ∩ F̃ (hα) ⊆ (hα′ ∩ hα) ∩ F̃ (hα), and if hα′ ) hα then
F (hα′) ∩ F̃ (hα) ⊆ hα ∩ F̃ (hα′). Thus,

⋃
α′<α F (hα′) ∩ F̃ (hα) has size < 2ω,

and we let F (hα) = F̃ (hα)−⋃α′<α F (hα′).

The function F of Lemma 2.4 is fixed for the remainder of the paper.
The next lemma immediately implies Theorem 2.5.

Lemma 2.5. Let A = H ∪ S ⊆ ⋃n−1
k=1 Hk ∪ Rn be good of size κ ≥ ω,

and P : H → [ω]<ω be acceptable. Assume that ∀h ∈ H (|F (h) ∩ S| = κ).
Let d be a (partial) function which assigns to h ∈ H and l ∈ P (h) a value
d(h, l) ∈ {−1} ∪ {α ∈ ON : ωα ≤ κ} satisfying :

(1) If h1 ⊆ h2 and d(h1, l), d(h2, l) are defined , then d(h1, l) ≤ d(h2, l).
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(2) For all h, l such that d(h, l) is defined , if d(h, l) > −1 then

ωd(h,l) ≥
∑

h′(h
h′ is l-minimal

ωd(h′,l).

Here we say h ∈ H is l-minimal if d(h, l) is defined and ¬∃h′ ( h (d(h, l) =
d(h′, l)). Also, we ignore terms in the sum of the form ωd(h′,l) = −1.

Then there is a coloring Q : S → ω such that ∀h ∈ H ∀l ∈ P (h) (|{x ∈
S ∩ h : Q(x) = l}| = ωd(h,l)).

P r o o f. We may assume h1 ⊆ h2 → P (h1) ⊇ P (h2) for all h1, h2 ∈ H.
Let F be as in Lemma 2.4, and we may assume (by considering F (h)∩S) that
F (h) ⊆ h∩S, and |F (h)| = κ for all h ∈ H. Fix a bijection α→ (α0, α1, kα)
between κ and κ2 × ω.

Write A =
⋃
α<κAα, where:

(1) Each Aα = Hα ∪ Sα is good and has size κα < κ.
(2) For all α < κ, if the α0th plane hα0 (in some fixed enumeration of H)

is in H<α, then ∃z ∈ Sα − S<α (z ∈ F (hα0)−⋃{h′ : h′ ∈ H<α, h
′ 6⊇ hα0}).

For each α as in (2), we pick a point zα ∈ Sα − S<α which is as in (2).
We define now Qα = Q¹Sα by induction on α < κ. Assume Q<α has

been defined. Define gα : Sα → [ω]<ω by gα(x) = ∅ if x ∈ S<α, and for
x ∈ Sα − S<α, gα(x) =

⋃{P (h′) : h′ ∈ H<α, x ∈ h′}. By acceptability
and goodness, gα(x) is a finite set. From Lemma 2.3, let Q̃α be a coloring
extending Q<α of Sα such that ∀x ∈ Sα − S<α (Q̃α(x) 6∈ gα(x)) and any
h ∈ Hα meets only finitely many x ∈ Sα with Q̃α(x) ∈ P (h).

If zα is not defined, we set Qα = Q̃α. If zα is defined, we also set Qα = Q̃α
for all points except zα. If kα 6∈ P (hα0) or d(hα0 , kα) is not defined, or if hα0

is not kα-minimal, we set Qα(zα) = Q̃α(zα). If hα0 is kα-minimal, and |{x ∈
hα0 ∩ S<α : Q<α(x) = kα}| = ωd(hα0 ,kα) then we set Qα(zα) = Q̃α(zα), and
if |{x ∈ hα0 ∩ S<α : Q<α(x) = kα}| < ωd(hα0 ,kα) then we set Qα(zα) = kα.

To see this works, fix α < κ, and h ∈ Hα − H<α, and l ∈ P (h) with
d(h, l) defined. We must show that |{x ∈ h ∩ S : Q(x) = l}| = ωd(h,l).

As in Lemma 2.3, there are only finitely many points x ∈ h ∩ S not of
the form zβ with Q(x) = l. Thus, we need only consider points of the form
zβ for some β 6= α. Clearly, |{zβ : zβ ∈ h ∧ Q(zβ) = l}| ≥ ωd(h,l) as there
are κ ≥ ωd(h,l) many β for which zβ is on h̃ and kβ = l, where h̃ ⊆ h is
l-minimal.

Suppose |{zβ : zβ ∈ h ∧ Q(zβ) = l}| > ωd(h,l). We assume h is chosen
with dim(h) minimal. Thus, for all h′ ( h which are l-minimal, |{zβ : zβ ∈ h′



88 P. Erdős et al.

∧Q(zβ) = l}| = ωd(h′,l) and hence
∣∣∣
{
zβ : zβ ∈

⋃

h′(h
h′ is l-minimal

h′ ∧Q(zβ) = l
}∣∣∣ ≤

∑
ωd(h′,l) ≤ ωd(h,l).

Thus, we need only consider zβ which do not lie in an l-minimal subspace h′

of h. Then zβ ∈ F (h′) for some l-minimal h′, and this h′ is not a proper sub-
space of h. We may also assume h′ 6= h as easily ≤ ωd(h,l) points in S(h) have
color l. Thus we may assume h′ ∩ h is a proper subspace of h′ for each zβ .

If β > α, it then follows from the definition of zβ that zβ 6∈ h. So assume
β < α. Let β0 < α be least such that two of the zβ , say z1, z2, are in Sβ0 .
Thus hz1,z2 ∈ Hβ0 by goodness. Easily, at most ωd(h,l) many of the zβ of
color l are in hz1,z2 . Let β1 < α be least such that some such zβ , say z3, lies
in Sβ1 − hz1,z2 . Thus, hz1,z2,z3 ∈ Hβ1 . Again, at most ωd(h,l) many of the zβ
of color l lie in hz1,z2,z3 . Continuing, we produce hz1,z2 ( hz1,z2,z3 ( . . . ( h,
a contradiction.

As an immediate corollary we have:

Corollary 2.2. Suppose P : Hk → [ω]<ω is an acceptable coloring of
the k-planes in Rn, and d assigns to each k-plane h and each l ∈ P (h) a
value d(h, l) ∈ {−1} ∪ {α : ωα ≤ 2ω}. Then there is a coloring Q : Rn → ω
such that ∀h ∈ Hk ∀l ∈ P (h) (|{x : x ∈ h ∧Q(x) = l}| = ωd(h,l)).

Theorem 2.3 shows that the hypothesis of acceptability on the coloring of
planes in Rn is enough to get a coloring of the points of Rn with the “finite
intersection property”. We turn now to the problem of getting a uniform
bound for the finite size of their intersections, as discussed for lines in §1.

Before discussing the ZFC problem, however, we consider the correspond-
ing results assuming bounds on 2ω. The first theorem below uses a stronger
hypothesis on the planes than acceptability, but gets a stronger bound. The
hypothesis applies, for example, to a partition of planes perpendicular to a
coordinate axis. The second theorem requires just acceptability.

We introduce some notation for the theorems. Suppose H ⊆ ⋃n−1
k=1 Hk is

a family of planes in Rn, P : H → [ω]<ω, and d is a partial function from
{(h, l) : h ∈ H, l ∈ P (h)} to the cardinals. We say h ∈ H is l-minimal if
d(h, l) is defined and ¬∃h′ ( h (d(h′, l) = d(h, l)). If

∑

h′(h
h′ is l-minimal

d(h′, l) is infinite,

we define ∑∗

h′(h
h′ is l-minimal

d(h′, l) =
∑

h′(h
h′ is l-minimal

d(h′, l).
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Otherwise, we define
∑∗

h′(h
h′ is l-minimal

d(h′, l)

to be the maximum size of

Z ⊆
⋃

h′(h
h′ is l-minimal

h′

such that |Z ∩h′| = d(h′, l) for all l-minimal h′ ⊆ h. For example, if h = R2,
l1, l2, l3 are three lines in R2 forming a triangle, and d(l1, l) = 3, d(l2, l) = 3,
d(l3, l) = 3, d(l1 ∩ l2, l) = 1, then

∑∗

h′(h
h′ is l-minimal

d(h′, l) = 8.

For all h, l,
∑∗

h′(h
h′ is l-minimal

d(h′, l) ≤
∑

h′(h
h′ is l-minimal

d(h′, l).

Theorem 2.6. Assume 2ω ≤ ωm.

(A) Let H ⊆ ⋃n−1
k=1 Hk be a family of planes in Rn such that the inter-

section of any infinite subset of H contains at most one point. Let P : H →
[ω]<ω. Then there is a coloring Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h)
(h meets at most (m+ 1) points in Rn of Q color l).

(B) Let H and P be as above. Let d be a partial function from {(h, l) :
h ∈ H, l ∈ P (h)} to the set of cardinals ≥ m+ 1 and ≤ 2ω. Assume that if
d(h, l) is defined , then

d(h, l) ≥ (m+ 1) +
∑∗

h′(h
h′ is l-minimal

d(h′, l).

Then there is a coloring Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h) (if d(h, l)
is defined then |{x ∈ h : Q(x) = l}| = d(h, l)).

R e m a r k 2.3. The m-term in (B) may seem peculiar, but (B) is false
assuming only

d(h, l) ≥
∑∗

h′(h
h′ is l-minimal

d(h′, l).

Theorem 2.6(A) follows from the following lemma.
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Lemma 2.6. Let A = H ∪ S ⊆ ⋃n−1
k=1 Hk ∪ Rn, |A| = ωm, be such that

the intersection of any infinite subset of H contains at most one point. Let
P : H → [ω]<ω, and g : S → [ω]<ω. Then there is a coloring Q : S → ω
such that ∀x ∈ S (Q(x) 6∈ g(x)) and ∀h ∈ H ∀l ∈ P (h) (h meets at most
m + 1 points in S of Q color l). Furthermore, if x0 ∈ S, l0 ∈ ω are fixed ,
and l0 6∈ g(x0), then there is a Q as above also satisfying Q(x0) = l0.

The proof of Lemma 2.6 is exactly like that for lines (cf. Corollary 9
of [2]) so we omit it (the “furthermore” clause is trivial when m = 0; for
m > 0, when writing A =

⋃
α<ωm

Aα, require that x0 ∈ A0 and proceed
inductively).

Theorem 2.6(B) follows immediately from the following lemma.

Lemma 2.7. Let

A = H ∪ S ⊆
n−1⋃

k=1

Hk ∪ Rn, |A| = ωm.

Assume the intersection of infinitely many distinct planes in H contains at
most one point , P, d are as in (B), and ∀h ∈ H (|F (h) ∩ S| = ωm). Then
there is a Q : S → ω as in the conclusion of (B).

P r o o f. The lemma is true, but not needed, for m = 0 by a similar
argument, which we therefore leave to the reader. So assume m ≥ 1. Fix a
bijection α→ (α0, α1, kα) between ωm and (ωm)2×ω. Write A =

⋃
α<ωm

Aα
as an increasing union of sets Aα = Hα ∪ Sα of size < ωm, where:

(1) Each Aα is good, which means here that if x, y ∈ Sα then the finitely
many planes in H which contain x, y are also in Hα, and if H1, . . . , Hp ∈ Hα

intersect in a point z, then z ∈ Sα.
(2) If the α0th plane hα0 lies in H<α then ∃zα ∈ (Sα − S<α) (zα ∈

F (hα0)−⋃{h′ ∈ H<α : h′ 6⊇ hα0}).
Assume Q<α is defined, and we define Qα.

C a s e I: zα is not defined, kα 6∈ P (hα0) or d(hα0 , kα) is not defined.
Let gα(x) =

⋃{P (h) : h ∈ H<α, x ∈ h} for x ∈ Sα − S<α, and gα(x) = ∅
otherwise. Let Q̃α be the restriction to Sα − S<α of the coloring given by
Lemma 2.6 applied to Hα, Sα, gα.

In the remaining cases, assume zα, d(hα0 , kα) are defined.

C a s e II: d(hα0 , kα) is finite. For h ∈ H<α let r(h) = |{x ∈ S<α :
x ∈ h ∧ Q<α(x) = kα}|. If for all l-minimal h̃ such that h̃ ( hα0 we have
h̃ ∈ H<α and r(h̃) = d(h̃, kα), and if r(hα0) < d(hα0 , kα), we let gα be as in
Case I, except we set gα(zα) = ∅. We then let Q̃α be given by Lemma 2.6
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applied to Hα, Sα, gα, requiring Q̃α(zα) = kα. Otherwise, we define Q̃α as
in Case I.

C a s e III: d(hα0 , kα) is infinite. If r(hα0) < d(hα0 , kα) we let gα be as
in Case I, except we set gα(zα) = ∅. We let Q̃α be given by Lemma 2.6
applied to Hα, Sα, gα, requiring Q̃α(zα) = kα. If r(hα0) = d(hα0 , kα), we
define Q̃α as in Case I.

To see this works, suppose h ∈ Hα−H<α, l ∈ P (h), and d(h, l) is defined.
We consider the case

∑∗

h′(h
h′ is l-minimal

d(h′, l) is finite,

the other case being similar but easier. Note that in all of the above cases,
h meets at most m points in Sα − S<α of Qα color l. Also, h contains at
most one point x ∈ S<α by goodness. Thus, h meets at most m + 1 points
in Sα of Qα color l. Any x ∈ h ∩ (S − Sα) of Q color l must be of the form
zβ for some β > α. An initial segment of these zβ , say zβ1 , . . . , zβp , are such
that h(βi)0 is a proper l-minimal subspace of h. By induction on dim(h), we
therefore have

|{x ∈ h ∩ Sβp : Q(x) = l}| ≤ (m+ 1) +
∑∗

h′(h
h′ is l-minimal

d(h′, l) ≤ d(h, l).

The only zβ for β > βp of Q color l which are added to h are such that
hβ0 = h. It follows that |{x ∈ h ∩ S : Q(x) = l}| ≤ d(h, l).

We also easily have |{x ∈ h ∩ S : Q(x) = l}| ≥ d(h, l), as there are κ
many β such that β0 = α and kβ = l.

We now consider the second version of this theorem.

Theorem 2.7. Assume 2ω ≤ ωm.

(A) Let H ⊆ ⋃n−1
k=1 Hk and P : H → [ω]<ω be acceptable. Then there

is a coloring Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h) (h meets at most
%(dim(h),m) many points of Q color l), where % : ω+ × ω → ω+ is defined
by %(a, 0) = 1, %(a, b) =

∑
a′≤a %(a′, b− 1) + 1.

(B) Let H ⊂ ⋃n−1
k=1 Hk and P : H → [ω]<ω be acceptable. Suppose d is a

partial function from {(h, l) : h ∈ H, l ∈ P (h)} to the set of cardinals with

2ω ≥ d(h, l) ≥ %(dim(h),m) +
∑∗

h′(h
h′ is l-minimal

d(h′, l).

Then there is a coloring Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h) (if d(h, l)
is defined then |{x ∈ h : Q(x) = l}| = d(h, l)).
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The following table gives some values for the % function.

m = 0 m = 1 m = 2 m = 3 m = 4

dim(h) = 1 1 2 3 4 5
dim(h) = 2 1 3 6 10 15
dim(h) = 3 1 4 10 20 35
dim(h) = 4 1 5 15 35 70

Consider first Theorem 2.7(A). We may assume without loss of generality
that H =

⋃n−1
k=1 Hk, and that if h1 ⊆ h2 then P (h1) ⊇ P (h2). If A ⊆⋃n−1

k=1 Hk ∪ Rn we define A being good as in Definition 2.2. It now suffices
to prove the following lemma.

Lemma 2.8. Let A = H ∪ S ⊆ ⋃n−1
k=1 Hk ∪ Rn be good , |A| ≤ ωk, and

P : H → [ω]<ω be acceptable. Let g : S → [ω]<ω. Then there is a coloring
Q : S → ω such that ∀x ∈ S (Q(x) 6∈ g(x)) and ∀h ∈ H ∀l ∈ P (h) (|{x ∈
h ∩ S : Q(x) = l}| ≤ %(dim(h), k)). Furthermore, if x0 ∈ S and l0 6∈ g(x0),
then there is a Q as above with Q(x0) = l0.

P r o o f. Write A =
⋃
α<ωk

Aα as an increasing union of good sets Aα =
Hα ∪ Sα, each of cardinality < ωk. Assume Q<α is defined. Define gα on
Sα − S<α by gα(x) = g(x) ∪⋃{P (h) : h ∈ H<α, x ∈ h}, and set gα = g on
S<α. By induction, there is coloring Q̃α of Sα−S<α such that Q̃α(x) 6∈ gα(x)
and ∀h ∈ Hα ∀l ∈ P (h) (|{x ∈ Sα − S<α : x ∈ h ∧ Q̃α(x) = l}| ≤
%(dim(h), k − 1)). Let Qα = Q<α ∪ Q̃α.

To see this works, fix h ∈ Hα − H<α, l ∈ P (h). There are at most
%(dim(h), k − 1) points x ∈ Sα − S<α on h of color l. If x ∈ h ∩ (S − Sα),
then Qα(x) 6= l, since l was “forbidden” at the step where x was colored.

We consider x ∈ S<α. Let e0 = dim(h). Let B = {x ∈ S<α : x ∈ h
∧ Q(x) = l}. Let e1 be the dimension of Span(B). Note that e1 < e0 by
goodness. Let α1 < α be least such that Span(B ∩ Sα1) = Span(B). Note
that Span(B) ∈ Hα1 and l ∈ P (h) ⊆ P (Span(B)). By induction on α, there
are at most %(e1, k) many points x ∈ Span(B) ∩ S of Q color l. Also, if
α1 < β < α and x ∈ h ∩ (Sβ − S<β), then x ∈ Span(B) and so Q(x) 6= l.
Thus, at most %(e1, k)+%(e0, k−1)≤ %(e0−1, k)+%(e0, k−1) = %(e0, k) many
points x ∈ S of Q color l lie on h (a minor variation is required when e0 = 1).

If x0 ∈ S and l0 6∈ g(x0) are fixed, we again proceed as above, except we
require x0 ∈ S0, and use induction (when k = 0 the result is easy).

Consider now Theorem 2.7(B). Let F be as in Lemma 2.4, and define
being good as in Definition 2.2. It suffices to show the following lemma.

Lemma 2.9. Suppose A = H ∪ S ⊆ ⋃n−1
k=1 Hk ∪ Rn is good of size ≤ ωk,

P : H → [ω]<ω is acceptable, d is a partial function from {(h, l) : h ∈ H, l ∈
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P (h)} to the cardinals ≤ ωk,

d(h, l) ≥ %(dim(h), k) +
∑∗

h′(h
h′ is l-minimal

d(h′, l),

and ∀h ∈ H (|F (h) ∩ S| = ωk). Then there is a coloring Q : S → ω such
that ∀h ∈ H ∀l ∈ P (h) (if d(h, l) is defined then |{x ∈ h ∩ S : Q(x) = l}| =
d(h, l)).

P r o o f. Let α → (α0, α1, kα) be a bijection between ωk and ω2
k × ω.

Write A =
⋃
α<ωk

Aα as an increasing union of good sets Aα = Hα ∪ Sα,
each of size < ωk, such that for all α < ωk, if the α0th plane hα0 in H lies
in H<α, then ∃zα ∈ Sα − S<α (zα ∈ F (hα0)−⋃{h′ : h′ 6⊇ hα0 , h

′ ∈ H<α}).
Assuming Q<α is defined, we define Qα exactly as in Lemma 2.7.
To see this works, fix h ∈ Hα −H<α and l ∈ P (h) with d(h, l) defined.

We again consider the case d(h, l) finite, as the other case is similar but
easier. Let B1 = {x ∈ h∩S<α : Q<α(x) = l}. Let α1 < α be least such that
Span(B1 ∩ Sα1) = Span(B1). Note that Span(B1) ∈ Hα1 , l ∈ P (Span(B1)),
and e1 = dim(Span(B1)) < dim(h) = e0. If α1 < β < α, and x ∈ h ∩
(Sβ − S<β) has Q color l, then x = zβ and hβ0 is an l-minimal subspace of
Span(B1) ⊆ h. Also, |{x ∈ h ∩ (Sα1 − S<α1) : Q(x) = l}| ≤ %(e1, k − 1).
Let B2 = {x ∈ h ∩ S<α1 : Q<α(x) = l}. Let α2 < α1 be least such that
Span(B2 ∩Sα2) = Span(B2), and let e2 = dim(Span(B2)). Thus, e2 < e1. If
α2 < β < α1, and x ∈ h ∩ (Sβ − S<β) has Q color l, then x = zβ and hβ0

is an l-minimal subspace of Span(B2) ⊆ h. Also, |{x ∈ h ∩ (Sα2 − S<α2) :
Q(x) = l}| ≤ %(e2, k − 1). Continuing, let C = {x ∈ h ∩ S : Q(x) = l}
∩((Sα1 − S<α1) ∪ (Sα2 − S<α2) ∪ . . .). If x ∈ h ∩ (S − Sα) has Q color l,
then x = zβ for some β > α such that hβ0 is an l-minimal subspace of h.
An initial segment of these, say zβ1 , . . . , zβp are such that h(βi)0 is a proper
subspace of h. Thus we can write {x ∈ h ∩ Sβp : Q(x) = l} = C ∪D, where
|C| ≤ 1+%(1, k−1)+ . . .+%(e0−1, k−1) = %(e0, k), and every x ∈ D lies in
an l-minimal proper subspace of h. By induction on dim(h), it follows that

|D| ≤
∑∗

h′(h
h′ is l-minimal

d(h′, l).

Thus,

|{x ∈ h ∩ Sβp : Q(x) = l}| ≤ %(e0, k) +
∑∗

h′(h
h′ is l-minimal

d(h′, l) ≤ d(h, l).

It follows easily that |{x ∈ h ∩ S : Q(x) = l}| = d(h, l).

We now turn to consistency results for planes in Rn.
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Theorem 2.8. Assume ZFC + MA.

(A) Let H ⊆ ⋃n−1
k=1 Hk and P : H → [ω]<ω, and assume that the inter-

section of any infinite subset of H contains at most one point. Then there
is a Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h) (|{x ∈ h : Q(x) = l}| ≤ 3).

(B) Let H ⊆ ⋃n−1
k=1 Hk and P : H → [ω]<ω be acceptable. Then there

is a Q : Rn → ω such that ∀h ∈ H ∀l ∈ P (h) (|{x ∈ h : Q(x) = l}| ≤
2dim(h)+1 − 1).

The proof of Theorem 2.8(A) is entirely similar to that of Theorem 1.1,
so we omit it.

Lemma 2.10. Assume ZFC + MA. Let H ⊆ ⋃n−1
k=1 Hk, and let P : H →

[ω]<ω be acceptable. Let S ⊆ Rn have size < 2ω, and let g : S → [ω]<ω.
Then there is a Q : S → ω such that ∀x ∈ S (Q(x) 6∈ g(x)) and ∀h ∈ H ∀l ∈
P (h) (|{x ∈ h ∩ S : Q(x) = l}| ≤ 2dim(h)).

P r o o f. From Theorem 2.3 and the argument of Lemma 1.2, we may as-
sume that ∀h ∈ H (h∩S is finite). We may further assume that ∀x1, . . . , xp ∈
S (if hx1,...,xp ⊆ h ∈ H, then hx1,...,xp ∈ H) and ∀h1 ⊆ h2 in H (P (h1) ⊇
P (h2)). Let P = {(p, f) : p ∈ [S]<ω, f : p → ω, ∀x ∈ p (f(x) 6∈
g(x)), ∀h ∈ H ∀l ∈ P (h) (|h ∩ {x ∈ p : f(x) = l}| ≤ 2dim(h))}. As usual, set
(p1, f1) <P (p2, f2) iff p1 ⊇ p2 and f2 = f1¹p2. It suffices to show that P is
c.c.c. Assume not, and let (pα, fα), α < ω1, be an antichain. We may assume
|pα| = n0 for all α < ω1, the pα form a ∆-system with root r ∈ [S]<ω, and
∀α, β (pα¹r = pβ¹r). Consider then the first ω elements (pn, fn) of the an-
tichain. By Ramsey’s theorem, we may assume that for some 1 ≤ d0 ≤ n−1,
∀i < j ∃hi,j ∈ H ∃li,j (dim(hi,j) = d0 ∧ |hi,j ∩ {x ∈ pi : fi(x) = li,j}| = l1
∧|hi,j ∩ {x ∈ pj : fj(x) = li,j}| = l2, and l1 + l2 > 2d0), but for all d < d0,
∀i < j ∀h ∈ H ∀l ∈ P (h) (|h∩{x ∈ pi∪pj : (fi∪fj)(x) = l} ≤ 2d). We may
further assume that ∀i < j (the l1 points in pi have fixed ranks in� ¹pi) and
similarly for the l2 points in pj , where� denotes a fixed well-order of Rn. We
assume l1 ≤ l2, the other case being easier. Since l1+l2 > 2d0 , l2 > 2d0−1. Fix
a j ∈ ω, and consider the planes h1,j , h2,j , . . . , hj−1,j . Let h(j) be the span
of the corresponding l2 points in pj . Since lj−1,j ∈ P (hj−1,j) ⊆ P (h(j)),
and l2 > 2d0−1, we must have dim(h(j)) = d0, and hence h(j) = h1,j =
h2,j = . . . = hj−1,j . Let Bj be the span of the union of the l1 points from
p1, . . . , pj . Let j be large enough so that Bj = Bj′ for all j′ > j. However,
h(j) then contains infinitely many points of S, a contradiction.

P r o o f o f T h e o r e m 2.8(B). Let H,P be as in (B), and let A =
H ∪ Rn. We may assume H =

⋃n−1
k=1 Hk. Write A =

⋃
α<2ω Aα, where

each Aα = Hα ∪ Sα is good, and |Aα| < 2ω. Assuming Q<α defined, let
g(x) =

⋃{P (h) : h ∈ H<α, x ∈ h} for x ∈ Sα − S<α. Apply Lemma 2.10 to
get a coloring Q̃ : (Sα−S<α)→ ω such that ∀x ∈ Sα−S<α (Q̃(x) 6∈ gα(x))
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and for any h ∈ Hα and l ∈ P (h), h meets at most 2dim(h) points of Sα−S<α
of color l. Let Qα = Q<α ∪ Q̃α. Easily, if h ∈ Hα −H<α and l ∈ P (h), then
h meets at most 1 + 2 + 22 + . . .+ 2dim(h) = 2dim(h)+1 − 1 many points in S
of color l.

As for the case with lines, we conjecture that the CH result is consistent
with ¬CH. That is:

Conjecture. The following is consistent with ZFC + ¬CH . For any
P : H ⊆ ⋃n−1

k=1 Hk → ω which is acceptable, there is a Q : Rn → ω such that
∀h ∈ H ∀l ∈ P (h) (|{x ∈ h : Q(x) = l}| ≤ dim(h) + 1).

Notice that the gap between the CH results and those of Theorem 2.8
widens as dim(h) increases. Thus, for lines only the consistency of the 2-point
property with ¬CH is open, but for 2-planes (and acceptable colorings), it
is open for intersections of sizes 3, 4.
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