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Abstract. Our point of departure is J. Neisendorfer’s localization theorem which
reveals a subtle connection between some simply connected finite complexes and their
connected covers. We show that even though the connected covers do not forget that they
came from a finite complex their homotopy-theoretic properties are drastically different
from those of finite complexes. For instance, connected covers of finite complexes may
have uncountable genus or nontrivial SNT sets, their Lusternik–Schnirelmann category
may be infinite, and they may serve as domains for nontrivial phantom maps.

1. Introduction. Let X be a connected CW-complex and let X〈n〉
denote its n-connected cover. The 1-connected cover, X〈1〉, of a space is
usually referred to as its universal cover and is familiar to most first year
topology students. However, for n > 1, the space X〈n〉 is less familiar and
not much has been said about it in the literature. Strictly speaking, X〈n〉
is not a covering space of X in the usual sense when n ≥ 2, but it is
an n-connected space and there is a map X〈n〉 → X which induces an
isomorphism on all homotopy groups above dimension n. This map can be
regarded as the inclusion of the fiber in the fibration sequence

X〈n〉 → X → X(n),

whose base space is the Postnikov approximation of X through dimension n.
Recently Neisendorfer has proved a remarkable result about the n-con-

nected covers of certain finite complexes. To describe it, fix a rational prime
p and let Lp denote the homotopy functor defined by localizing with respect
to the constant map ϕ : BZ/p → •, in the sense of Dror Farjoun [8], and
then completing at the prime p in the sense of Bousfield–Kan [3]. In symbols,
Lp(X) = (Lϕ(X))p. Now if X is a finite-dimensional CW-complex, it follows
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from Miller’s solution to the Sullivan conjecture that Lp(X) ' Xp. At first
glance, this would suggest that the functor Lp is unlikely to yield any new
information. However, in [23], Neisendorfer showed that this functor has a
remarkable property when applied to certain n-connected covers. His main
result was the following.

Theorem 1. Let X be a 1-connected finite complex with π2X a finite
group. Then Lp(X〈n〉) ' Xp for any positive integer n.

Thus, up to p-completion, no information is lost when one passes to
the n-connected cover of such a complex! Of course, this is false for more
general spaces, where the first n homotopy groups and the corresponding
k-invariants are irretrievably lost in such a process. Thus Theorem 1 reveals a
subtle homotopy property of certain finite-dimensional complexes and their
connected covers.

This paper deals with a number of questions about connected covers of
finite complexes. These questions were inspired by Neisendorfer’s result and,
not surprising, most of their answers involve applications of his theorem. We
start with perhaps the most basic question.

Question 1. When is the n-connected cover of a finite complex a finite-
dimensional space?

Assume throughout this section that X is a finite complex which satisfies
the conditions of Neisendorfer’s theorem. It then follows that every nontriv-
ial connected cover of X has nonzero mod p homology, for some prime p,
in infinitely many dimensions. The proof is easy: suppose that X〈n〉 is a
nontrivial connected cover of X. Then there is a prime p such that the com-
pletions Xp and X〈n〉p are different up to homotopy. Now if X〈n〉 were a
finite complex then Lp(X〈n〉) would equal X〈n〉p. Since Lp(X〈n〉) = Xp

instead, we conclude that X〈n〉 is not finite-dimensional.
On the other hand, suppose that Y is a 1-connected finite complex such

that π2Y is free of rank r ≥ 1. It follows that there is a principal fibration

S1 × . . .× S1
︸ ︷︷ ︸

r

→ Y 〈2〉 → Y.

A glance at the Serre spectral sequence for this fibration shows that the
dimension of Y 〈2〉 equals r + dim(Y ). Thus Y 〈2〉 has the homotopy type
of a 2-connected finite complex and so Lp(Y 〈2〉) = Y 〈2〉p 6= Yp. Thus in
Theorem 1 the conditions on π2X cannot be dropped entirely. For some
mild generalizations of Theorem 1 see Section 3.

The following questions deal with those cases where X〈n〉 is an infinite-
dimensional space. Theorem 1 says that X〈n〉 does not forget that it came
from a finite complex and so it is natural to wonder if X〈n〉 shares some of
the homotopy-theoretic properties of finite complexes. For example:
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Question 2. Is the cohomology H∗(X〈n〉;Z/p) necessarily locally finite
as a module over the Steenrod algebra?

The answer is no! For each prime p at which X〈n〉 and X are different,
the mod p cohomology of X〈n〉 is not locally finite as a module over the
mod p Steenrod algebra. (If it were then Lp(X〈n〉) would equal X〈n〉p by
results of Lannes and Schwartz [15].)

Question 3. Is the Lusternik–Schnirelmann category of X〈n〉 necessar-
ily finite?

We have some partial answers. The first one is a rational result which is
very different from the mod p results which follow it.

Proposition 3.1. For all integers n, the rational category of X〈n〉 is at
most cat(X) and hence is finite.

Since the natural mapX〈n〉 → X induces a monomorphism on homotopy
groups, this result follows from the mapping theorem of Felix and Halperin;
see James ([12], page 1307) for an elegant proof of it. The next three results
prompt us to conjecture that the answer to Question 3 is almost always no.
Their proofs will be given in §4.

Proposition 3.2. Let b be the smallest positive degree q such that
Hq(X;Z) 6= 0. Then the category of X〈b〉 is infinite. Indeed , the mod p co-
homology of X〈b〉, for some prime p, contains an element of infinite height.

Proposition 3.3. If the Postnikov approximaton X(n) is rationally non-
trivial , then the category of X〈n〉 is infinite. Indeed , the reduced cohomology
algebra H̃∗(X〈n〉;Z/p) contains elements of infinite height for all sufficiently
large primes p.

Proposition 3.4. Assume also that X is an H-space and let b be defined
as in 3.2. Then the category of X〈m〉 is infinite for every integer m ≥ b.
Indeed , the reduced Morava k-theory K(n)∗X〈m〉 has elements of infinite
height , for any n ≥ 1 and any prime p.

Recall that the Mislin genus of a space Y is defined to be the pointed
set G(Y ) of homotopy types [Z], where Z runs through those finite type
spaces which are locally homotopy equivalent to Y ; in symbols, Z(p) ' Y(p)
for each prime p. When Y is a 1-connected finite CW-complex, the genus
set G(Y ) is finite, according to Wilkerson [30]. This prompts the following
question.

Question 4. Is the Mislin genus of X〈n〉 necessarily a finite set?

The answer is no, but the biggest surprise is how simple the necessary
example turned out to be.
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Example 4.1. If n ≥ 2, then the Mislin genus of S2n〈2n〉 is uncountably
large.

This reminds us very much of a famous example—the genus of HP∞,
which was first described by D. Rector [26]. It too is uncountably large.
In both cases there is a homotopy-theoretic recognition principle for the
most distinguished member; HP∞ is the only member of its genus which
has a maximal torus in the sense of Rector, see ([16], §9), while S2n〈2n〉
is the only member of its genus which is the connected cover of a finite
complex. Moreover, both genus sets are very rigid in the sense that there
are no essential maps between different members of the same genus. This
phenomenon within the genus of HP∞ was first discovered by Møller in [22].
The properties just mentioned of S2n〈2n〉 and its genus will be verified in
Section 4.

Given a space Y , let SNT(Y ) denote the pointed set of homotopy types
[Z] of spaces with the same n-type as Y ; that is, the Postnikov approxima-
tions Z(n) and Y (n) are homotopy equivalent for each n, but not necessarily
in any coherent manner [29]. When Y is a finite-dimensional space it is easy
to see that SNT(Y ) has just one member, namely [Y ]. Thus we ask

Question 5. Is SNT(X〈n〉) necessarily the singleton set when X is a
finite complex?

We know of one special case where the answer is yes. Recall that a space
Y is called an H0-space if its rationalization Y0 is homotopy equivalent to a
product of rational Eilenberg–MacLane spaces. Obviously, every H-space is
an H0-space. The sphere S5 is perhaps the simplest H0-space which is not
an H-space. Other familiar H0-spaces include the complex and quaternionic
Stiefel manifolds. On the other hand, the even-dimensional sphere, S2n when
n ≥ 1, is perhaps the simplest example of a space which is not H0. In [19] we
showed that if Y is a nilpotent H0-space and SNT(Y ) has just one member,
then the same is true of Y 〈n〉 for any positive integer n. Thus it follows, for
example, that if X is any 1-connected compact Lie group, then SNT(X〈n〉)
has just one element for any n. The following example shows that the answer
to Question 4 is no, in general. It also shows that the H0-hypothesis cannot
be dropped in the special result just cited.

Example 5.1. Let X denote the r-fold product Sn×. . .×Sn, where r ≥ 2
and n is even and greater than 2. Then SNT(X〈n〉) is uncountably large.

Given a CW-complex Y , recall that a phantom map Y → Z is a pointed
map whose restriction to each n-skeleton Yn is null-homotopic. Obviously,
if the domain Y is a finite-dimensional complex then any phantom map out
of it must be homotopic to the constant map. This observation prompts the
following question.
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Question 6. Do there exist essential phantom maps out of the connected
cover of a finite complex?

The answer is almost always yes! In [11] it was shown that for a pointed
finite type space Y , the universal phantom map out of Y is null-homotopic
at a prime p if and only if the suspension ΣY is p-equivalent to a bouquet
of finite-dimensional complexes. But if the cohomology H∗(Y ;Z/p) is not
locally finite, as a module over the Steenrod algebra, then it is not possible
for ΣY to decompose as a bouquet of finite-dimensional retracts. Thus, in
view of the answer to Question 2, the universal phantom map out of X〈n〉
is essential at every prime at which X〈n〉 and X are different.

Do there exist essential phantom maps from X〈n〉 into targets of finite
type? Since the universal phantom map Y → ∨

ΣYn takes values in a space
which does not have finite type, the answer does not follow from the obser-
vations made in the preceding paragraph (1). However, one does not have
to look far to see that the answer is again yes.

Example 6.1. For each n ≥ 2 there are uncountably many different
homotopy classes of phantom maps from S2n〈2n〉 to S4n which are essential
when localized at any prime p.

This is a special case of Proposition 6.0 below, which deals with the set
[X〈n〉, Y ] for certain finite complexes X and Y . See §4 for its statement and
proof.

Closely related to phantom maps is the notion of a weak identity . This is
a self-map of a space Y which, up to homotopy, projects to the identity on
each Postnikov approximation of Y . Obviously, on a finite complex, there
is only one weak identity, up to homotopy. However, the following example
shows that this need not be true for connected covers of finite complexes.

Example 6.2. Let X = S2n ∨ S4n. Then for each n ≥ 2, there are
uncountably many homotopy classes of weak identities on X〈2n〉.

2. Variants of Theorem 1. The following theorem is the most gen-
eral version of Neisendorfer’s theorem we know. Let us say that a space
X is BZ/p-null (or B-null for short) if the function space of based maps
map∗(BZ/p,X) is weakly contractible. By Miller’s theorem, the class of
B-null spaces includes all finite-dimensional spaces as well as their iterated
loop spaces. Thus in the following theorem the spaces are not necessarily
finite-dimensional; nor do they necessarily have finite type.

Theorem 7.1. Let X be a B-null space. Let Y be a 1-connected space
such that Lp(ΩY ) ' •. In particular , this holds if π2Y is torsion and πnY =

(1) For example, the universal phantom map out of RP∞ is essential, but there are
no essential phantom maps from this space into any target of finite type [11].
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0 for n sufficiently large. If f : X → Y is any continuous map and F is its
homotopy fiber , then Lp(F ) = Xp.

Of course, Theorem 1 follows at once by taking f : X → Y to be the
Postnikov approximation X → X(n). The proof that we give follows the one
Casacuberta gave in [4]. The key ingredient in the proof is that Lp(ΩY ) ' •
when Y is an appropriate Postnikov section. Recently, McGibbon found a
different case of this phenomenon; he found that Lp(E) ' • whenever E
is a connected infinite loop space with a torsion fundamental group [18].
As a consequence, he obtained the following perturbation of Theorem 1. As
usual, QX = limΩnΣnX.

Theorem 7.2. Let X be a 1-connected finite-dimensional complex with
π2X torsion. If F denotes the fiber of the infinite suspension X → QX, then
Lp(F ) ' Xp.

Hopkins and Ravenel obtained the following stable version of Theorem 1
as a consequence of showing that all suspension spectra are harmonic [13].

Theorem 7.3. Let X be a suspension spectrum with π∗X⊗Q = 0. Let
X〈n〉 denote the n-connected cover of X (as a spectrum). Then the E∗-
localization of X〈n〉 is X, where E denotes the wedge of Morava K-theories
K(n) over all n ≥ 0 and all primes p.

Thus a rationally trivial suspension spectrum can be fully recovered from
any one of its connected covers—no completion is necessary. This is also true
unstably as the next result shows. We remind the reader that Lϕ( ) denotes
localization with respect to the constant map BZ/p→ •.

Theorem 7.4. Assume that X is a 1-connected, p-local, B-null space
with π2X torsion. Then for each n there is a homotopy fiber sequence

Lϕ(X〈n〉)→ X → X
(n)
0 .

In particular, if X is rationally trivial, then Lϕ(X〈n〉) ' X for each n.

Of course, if a space X is 1-connected and rationally trivial, then it
is homotopy equivalent to the wedge of its p-primary pieces. If X is also
BZ/p-null for each prime p, then it is uniquely determined by any one of
its connected covers, using the above result, one prime at a time. However,
when X is not rationally trivial, it is not uniquely determined by any one of
its connected covers. At the end of the next section we will take a close look
at the indeterminacy. We conclude the present section with the observation
that even though Neisendorfer’s theorem fails (as he noted in [23]) when the
condition on π2X is dropped, all is not lost—there is the following result.
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Theorem 7.5. Let X be a space which is 1-connected. Over X there is a
1-connected “cover” E → X which identifies π2E with the torsion subgroup
of π2X, and induces an isomorphism on all higher homotopy groups. If X
is B-null , then so is E. Moreover , in this case, Lp(X〈n〉) = Ep for each
n ≥ 2.

3. Other properties of X〈n〉. Suppose that X is a 1-connected finite
complex with πnX⊗Q = 0 for n sufficiently large. Such a space is sometimes
said to be rationally elliptic. Homogeneous spaces provide natural examples
of such spaces. J. C. Moore has conjectured that for such a space X, the
order of the p-torsion in π∗X has a finite upper bound—for each prime p.
Although this conjecture is known to be true for almost all primes for any
given X (cf. [20]), it is still an open problem for “small” primes. One method
of attacking it is to pose a more geometric question.

Question 8. Given a rationally elliptic complex X, does it follow that
some iterated loop space ΩkXp〈n〉 has a null-homotopic power map (i.e. a
geometric exponent) for some k and n sufficiently large?

When X is the sphere S2n+1 and p is an odd prime, it is the celebrated
result of Cohen, Moore and Neisendorfer [5] that the p-torsion in π∗S2n+1

has exponent pn and that this is best possible (2). In [6] those authors showed
that the loop space ΩmSm〈m〉, where m = 2n+1, has a geometric exponent
at each prime p; it is exactly pn when p is odd and at most 4n at p = 2.
On the other hand, Neisendorfer and Selick proved in [24] that the loop
space Ω2n−2S2n+1〈2n + 1〉 has no geometric exponent at any prime p. In
other words, they showed that every nonzero power map on this loop space
is essential at each prime p. They used a clever argument which involved
the K-theory of CP∞. However, their conclusion was essentially limited to
one particular connected cover of one particular space. The following result
deals with all connected covers of a large class of spaces.

Proposition 8.1. Let X be a 1-connected finite complex and assume
that t > 2 is an integer such that πtX⊗Q 6= 0. Then the loop space ΩkX〈n〉
has no geometric exponent at any prime p, for any pair (n, k) where n ≥ 1
and 0 < k < t− 2.

It should be noted that although we improve the Neisendorfer–Selick
result in one direction—namely in showing that no connected cover of
Ω2n−2S2n+1 has a geometric exponent—we are unable to increase the num-
ber of loops in their result. In particular, whether or not some connected

(2) The precise exponent 2e(n) for S2n+1 at p = 2 is still unknown. However, it is
known that n+ ε≤ e(n)≤ 2n− [n/2], where ε= 1 if n is congruent to 1 or 2 mod 4 and is
zero otherwise. This lower bound is due to Mahowald; the upper bound is due to Selick.
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cover of Ω2n−1S2n+1 has a geometric exponent is still an open question.
For another example, let X be a homogeneous space of the form Sp(n)/K,
where n ≥ 2. Letting m > t = 4n − 1, it follows from 8.1 that the torsion
space Ω4n−4X〈m〉 has no geometric exponent at any prime p.

If X is an H-space with the higher homotopy associativity of an An-space
in the sense of Stasheff [27], then it is well known that the same is true of
X(n) and X〈n〉. Indeed, it is often the case that the Postnikov approximation
X(n) carries more multiplicative structure than X does—at least for small
values of n. This raises the following

Question 9. Given a finite complex X, what (if any) additional multi-
plicative structure does there exist on X〈n〉?

For example, it once seemed plausible that Sn〈m〉 might be a mod 2
H-space for sufficiently large m and for some values of n other than the clas-
sical 1, 3, and 7. For another example, a theorem of Hubbuck asserts there is
no homotopy commutative multiplication (at p = 2) on a 1-connected non-
trivial finite H-space X. But what about on some connected cover of this
H-space; might not a homotopy commutative multiplication exist there?
The following result puts an end to such speculation.

Proposition 9.1. If X〈n〉 has the structure of an H-space, then so does
Xp. If X〈n〉 is also homotopy commutative or homotopy associative, then
so is Xp.

A space X is said to be irreducible (up to homotopy) if any essential
map K → X which has a left inverse is a homotopy equivalence. Thus such
an X has no retracts which are nontrivial in the homotopy sense. A special
case of the following result was first observed by Zabrodsky in [32].

Proposition 9.2. Given X as in Theorem 1, the completion X〈n〉p is
irreducible if and only if Xp is.

Our final result deals with the extent to which a space X is determined
by any one of its connected covers X〈n〉. A special case of this problem was
treated in Theorem 7.4. Here we show that, under certain restrictions, the
indeterminacy involved is finite and, in some cases, we can give a lower bound
on this indeterminacy in terms of the completion genus of the space X.

Theorem 10.1. Let C be the class of all 1-connected finite CW-complexes
with π2X torsion. Then for each X ∈ C and for each n, there are, up to
homotopy , at most a finite number of Y ∈ C such that X〈n〉 = Y 〈n〉. More-
over , if X ∈ C with πnX ⊗ Q = 0 for n sufficiently large, then for each
Y ∈ C, it follows that X〈n〉= Y 〈n〉 if and only if Xp = Yp for each prime p.

The Lie group SU(n) is a good example to consider here. It is known that
when n ≥ 3, the genus of SU(n+ 1) has order at least φ(6)

2 · φ(24)
2 · . . . · φ(n!)

2 ,
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where φ denotes the Euler φ function [31]. A little arithmetic then shows
that, up to homotopy, there are at least 6,144 different finite complexes X
such that X〈m〉 = SU(7)〈m〉 when m ≥ 13.

This concludes the discussion of the results in this paper. We now turn
to their proofs.

4. Proofs. The following result is an immediate consequence of Neisen-
dorfer’s theorem; it will be used in a few of the proofs which follow.

Corollary 1.1. Let X and Y denote the p-completions of two spaces
which satisfy the hypothesis of Theorem 1. Then the pointed mapping spaces
map∗(X,Y ) and map∗(X〈n〉, Y 〈n〉) are homotopy equivalent for all n ≥ 2;
in particular , there is a bijection of pointed sets

[X,Y ] ≈ [X〈n〉, Y 〈n〉]
given by f 7→ f〈n〉 with inverse g 7→ Lp(g).

P r o o f o f P r o p o s i t i o n 3.2. By hypothesis, there is a fibration

K(π, b− 1)→ X〈b〉 → X

and a prime p such that H∗(K(π, b − 1);Z/p) contains an element, say x,
of infinite height. The results of Serre and Cartan on the cohomology of
Eilenberg–MacLane spaces are relevant here, of course. Consider the Serre
spectral sequence in mod p cohomology for this fibration, and regard x as
an element of E0,∗

2 . Since the differentials are derivations it follows that xp

survives to E3, and that (xp)p survives to E4, and so on. However, since
the base X is a finite complex, there can only be a finite number of nonzero
differentials. Thus some finite power of x is an infinite cycle. Using the edge
homomorphism it follows that there exists a class y ∈ H∗(X〈n〉;Z/p) which
maps to a nonzero power of x. Since x has infinite height, so must y.

P r o o f o f P r o p o s i t i o n 3.3. Consider the fibration

ΩX(n) → X〈n〉 → X

and note that the fibre at a large enough prime p decomposes into a product
of Eilenberg–MacLane spaces, at least one of which is nontrivial by assump-
tion. This follows because the fibre, being an H-space of finite type, has
k-invariants of finite order. A Serre spectral sequence argument, similar to
the one that occurred in the proof of Proposition 3.2, now shows that the
reduced cohomology H̃∗(X〈n〉;Z/p) contains an element of infinite height.

P r o o f o f P r o p o s i t i o n 3.4. We use the fibration

ΩX(m) → X〈m〉 → X,
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where X is a nontrivial 1-connected finite H-space and where m is large
enough that X(m) is nontrivial. It follows that X(m) is rationally nontrivial
as well, by the loop theorem of Lin and Kane. The Atiyah–Hirzebruch–Serre
spectral sequence (AHSSS) for this fibration, with coefficients in the Morava
K-theory, has the E2 term

Ep,q2 = Hp(X;K(n)qΩX(m))

and it converges to K(n)∗X〈m〉. From the results of [25] and [14] it follows
that the reduced Morava K-theory of ΩX(m) contains elements of infinite
height. Now the AHSSS with coefficients in a multiplicative cohomology
theory is multiplicative; see e.g. [7]. The rest of the proof then proceeds just
as in 3.2.

P r o o f o f E x a m p l e 4.1. Fix n ≥ 2 and, to simplify notation, let
W = S2n〈2n〉. Then, of course, W is a 2n-connected space of finite type
with the rational homotopy type of S4n−1. Each member of its Mislin genus
can be obtained as a homotopy pullback of a diagram of the following sort:

Ŵ

W0 W

j

²²
f //

Here W0 denotes the rationalization, Ŵ is the profinite completion and
W denotes Sullivan’s formal completion [28]. The vertical map j is fixed.
It first rationalizes and then identifies (Ŵ )0 with W . This identification
is valid for 1-connected spaces of finite type. The horizontal map is the
standard inclusion i : W0 →W followed by a suitable self equivalence of W .
Here suitable means that the induced automorphism on homotopy groups
is a Q̂-module isomorphism (3), where Q̂ = Q ⊗ Ẑ. The group of such self-
equivalences is denoted by CAut(W ). The following double coset formula,
due to Wilkerson [30],

G(W ) ≈ i∗Aut(W0)\CAut(W )/j∗Aut(Ŵ )

enables one to describe this genus set algebraically (4). Notice that

W0 ' K(Q, 4n− 1) and W ' K(Q̂, 4n− 1).

Thus Aut(W0) is isomorphic to the multiplicative group of nonzero rationals
Q∗, while CAut(W ) is isomorphic to the group of units in Q̂. In particular,

(3) The profinite completion of the integers is denoted here by Ẑ. It is isomorphic to
the product

∏
p Zp, over all primes, of the p-adics.

(4) This formula actually determines the set Ĝ0(W ) which contains the Mislin genus.
In this special case the two sets can be seen to coincide using the methods of [19].
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these groups are abelian and so this double coset space has a natural group
structure. The induced inclusion Q∗ → Q̂∗ is essentially the diagonal em-
bedding. This makes sense since each nonzero rational is a p-adic unit for
almost all primes p.

Since Aut(Ŵ ) =
∏
p Aut(Wp), it is necessary to determine the image of

Aut(Wp)→ Aut((Wp)0) for each prime. The function

Z ≈ [S2n, S2n] f 7→(f〈2n〉)0−−−−−−−→ [W0,W0] ≈ Q
is easily seen to be the squaring map, d 7→ d2. This implies that the image
of Aut(Wp) in Aut((Wp)0) contains the squares of the p-adic units. On the
other hand, if one completes at p, then the first step f 7→ f〈2n〉 has an
inverse by Corollary 1.1. Consequently, the image of Aut(Wp) is precisely
the group of squares U2

p = {u2 | u ∈ Z∗p}. So we are led to consider the

double coset space ∆(Q∗)\Q̂∗/∏p U2
p .

Consider a unit in Q̂; it can be viewed as a sequence

u = (2ε2u2, 3ε3u3, . . . , p
εpup, . . .),

where the integer exponents εp are zero for almost all primes and where each
up lies in Z∗p. Thus if r = 2−ε23−ε3 . . . p−εp . . . , then r is a rational number
and every component of ru is integral. To put it another way, the obvious
map

Ẑ∗ → Q∗\Q̂∗
is surjective. The kernel here is clearly {±1}. Let P denote the set of all
rational primes and consider the homomorphism

Φ : Ẑ∗ → (Z/2)P

whose pth coordinate is the Legendre symbol (u/p) if p is odd and whose
first coordinate is ±1 depending upon the mod 8 reduction of u2. This
homomorphism is surjective and its kernel is

∏
p U2

p . It follows that the
double coset space in question is uncountably large.

Suppose that Y is the m-connected cover of a finite complex K, and that
Y is in the same Mislin genus as W . We intend to show that Y 'W . First,
it is obvious that m = 2n. Since K is a finite complex, its universal cover
K〈1〉 is finite-dimensional and hence is B-null by Miller’s theorem. Then,
by Theorem 7.5, there is a space E over K which is 1-connected with π2E
torsion and with Lp(Y ) = Ep for each prime. It follows that

Ep ' Lp(Y ) ' Lp(W ) ' S2n
p

for each p. If E has finite type, then it follows easily that E ' S2n and
hence Y ' E〈2n〉 'W . If E does not have finite type, then the group π2nE
cannot be finitely generated (because the other homotopy groups clearly
are). The only way this could happen would be if π2nE contains elements
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which are infinitely divisible. The Whitehead pairing would then imply the
same is true of π4n−1E. But this group is isomorphic to π4n−1Y , which is
finitely generated. Thus E must have finite type and we conclude that W is
the only member of its genus which covers a finite complex.

We now investigate the maps within the genus of S2n〈2n〉. Suppose that
A is a member of this genus. Then A corresponds to a unit, say a, in Q̂ in
the sense that there is a homotopy pullback diagram

A Ŵ

W0 W W

//

²²
j

²²
i // a //

In this diagram we have identified a with the self-map of W = K(Q̂, 4n− 1)
which induces multiplication by a on π4n−1W . The unlabeled vertical map in
this diagram rationalizes A and also identifies A0 with W0. Similar remarks
apply to the unlabeled horizontal map.

Given another member B in the genus of W and a map f : A → B, it
follows easily that there is a diagram

A Ŵ

B Ŵ

W0 W W

W0 W W

//

²²

f

AAAAAAAÃÃ

f̂
������ÄÄ

j

²²

//

²²
j

²²
i // b //

f0

||||||>>

i // a //

f̄
__?????

which commutes up to homotopy. The map f̂ induces multiplication by d2

on π4n−1Ŵ ⊗Q for some d ∈ Ẑ; similarly, f0 induces multiplication by some
rational r on π4n−1W0. The commutativity of the big diagram implies that
ad2 = br.

Assume now that the map f is essential. It is easy to check that there
are no essential phantom maps between A and B and so the completion f̂
must be essential. It then follows from Corollary 1.1 that d 6= 0, and hence
r 6= 0 as well. Since a, b, and r are units in Q̂, so is d. Thus d = su for some
nonzero rational s and some unit u ∈ Ẑ. Solving for b, we get

s2

r
· a · u2 = b.
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But this means that a and b are in the same double coset, and so A = B,
up to homotopy. This completes our analysis of Example 4.1.

P r o o f o f E x a m p l e 5.1. The space X〈n〉 has the rational homotopy
type of the product of r copies of S2n−1 and so it is an H0-space. For such a
space Y , the main result of [19] states that SNT(Y ) is the one-element set if
and only if the canonical map Aut(Y )→ Aut(Y (m)) has a finite cokernel for
each m. In particular, let Y = X〈n〉 and let X〈n, 2n〉 denote the Postnikov
approximation Y (2n−1), which therefore has nonzero homotopy groups only
in dimensions q where n < q < 2n. Thus X〈n, 2n〉 is a Postnikov section
which is rationally a product of r spheres each of dimension 2n−1. It follows
that there is a homology representation

Aut(X〈n, 2n〉)→ GL(r,Z)

given by
f 7→ H2n−1(f ;Z)/torsion

with finite kernel and finite cokernel. Since r ≥ 2, this implies Aut(X〈n, 2n〉)
is infinite. We will show that the image of Aut(X〈n〉) in this group is finite;
to this end consider the two representations

Aut(X)→ GL(r,Z)

given by
f 7→ Hn(f ;Z) and f 7→ π2n−1(f)/torsion.

When n is even there are no maps Sn × Sn → Sn which restrict to ra-
tional equivalences on both factors. It follows that one can choose a basis
for Hn(X;Z) such that in both representations, no matrix has two or more
nonzero entries in any row or column. Indeed, the second representation con-
sists solely of the permutation matrices whose entries are zeros and ones.
This follows from basic properties of the Whitehead product. The image of
each representation is clearly finite. Using Neisendorfer’s localization functor
it then follows that the image of

Aut(X〈n〉)→ Aut(X〈n, 2n〉)
is finite as well. Its cokernel is thus infinite and so by Theorem 3 of [19], the
set SNT(X〈n〉) is uncountably large.

A glance back at Example 6.1 reveals it to be a special case of the
following result.

Proposition 6.0. Let X be a finite complex which satisfies the hypoth-
esis of Theorem 1 and assume that Y is a nilpotent finite complex such that
[X,Y ] = [ΣX,Y ] = ∗. Then for each natural number n,

[X〈n〉, Y ] ≈ Ph(X〈n〉, Y ) ≈
∏

k

Hk(X〈n〉;πk+1Y ⊗ R).
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The bijections here are those of pointed sets. The first one says that every
map from X〈n〉 to Y is a phantom map; the second reduces the computation
of such homotopy classes to a rational calculation. Here R denotes the real
numbers regarded only as a rational vector space. The result stated here is
not the most general one; for example, Y could be replaced by a localization
of itself. We leave to the reader the task of further generalizations from finite
complexes to B-null spaces.

P r o o f. Consider maps from the spaces in the principal fibration

ΩX(n) → X〈n〉 j→ X

to the profinite completion Ŷ . According to a theorem of Zabrodsky (Theo-
rem 5.6 of [17]), the function space map∗(ΩX

(n), Ŷ ) is weakly contractible
and so, by the Zabrodsky Lemma (Lemma 5.5 ibid.), the map j induces a
weak equivalence

map∗(X, Ŷ ) ≈ map∗(X〈n〉, Ŷ ).
In particular, this means that

[X〈n〉, Ŷ ] = [X, Ŷ ] = ∗.
It follows that the only maps from X〈n〉 to Y are phantom maps because
between spaces of finite type these are the only maps which vanish when
completed (Theorem 5.1 ibid.). The first bijection is thus established.

Given a connected, nilpotent space W , there is a well-known sequence

Wτ →W
r→W0,

which is both a fiber sequence and a cofiber sequence. As usual, W0 denotes
the rationalization of W . By Theorem 5.1 ibid., phantom maps are precisely
those maps which factor through the rationalization of their domain; that is,

Ph(W,Y ) = r∗[W0, Y ].

Another result of Zabrodsky (Theorem 5.2 ibid.) is the bijection

[W0, Y ] ≈
∏

k

Hk(W ;πk+1Y ⊗ R).

Therefore to complete the proof of 6.0, it suffices to show that the induced
function r∗ : [(X〈n〉)0, Y ] → [X〈n〉, Y ] is injective. This will follow by ex-
actness once we show that [Σ(X〈n〉)τ , Y ] = ∗. To this end, we use the
bijections

∗ = [X, Ω̂Y ] = [X〈n〉, Ω̂Y ] = [(X〈n〉)τ , Ω̂Y ].

The first follows since [ΣX,Y ] = ∗, by hypothesis. The next is an application
of the Zabrodsky Lemma, as at the beginning of the proof with Y replaced
by ΩY . The last is another application of the Zabrodsky Lemma, namely
to the principal fibration

Ω(X〈n〉)0 → (X〈n〉)τ → X〈n〉,
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together with the weak contractibility of map∗(Ω(X〈n〉)0, Ω̂Y ). Therefore,
it follows that every map from (X〈n〉)τ to ΩY vanishes upon completion.
Since the domain here does not have finite type in general, this means that
every map from (X〈n〉)τ to ΩY is a phantom map of the second kind; that is,
its restriction to any finite subcomplex of the domain is null-homotopic. But
since the domain here is a torsion space (that is, its integral homology groups
have only torsion in positive degrees), it follows from ([11], Example 4.1)
that there are no essential phantom maps in this case. Thus [Σ(X〈n〉)τ , Y ]
= ∗ and the proof of Proposition 6.0 is complete.

P r o o f o f E x a m p l e 6.2. Given a connected nilpotent space Y of
finite type, the members of WI(Y ) are easily seen to be those classes in
π0 map(Y, Y ) which rationalize to the identity and whose profinite com-
pletion is the identity. So consider the pullback square of mapping spaces
induced by rationalization and profinite completion

map(Y, Y ) map(Y, Ŷ )

map(Y, Y0) map(Y, Y )

//

²² ²²
//

Again Y denotes the formal completion of Y ; it is homotopy equivalent to
(Ŷ )0. Now take the corresponding Mayer–Vietoris sequence [10]. For our
purposes the relevant portion of this sequence is

π1 map(Y, Y0)× π1 map(Y, Ŷ )→ π1 map(Y, Y )→ π0 map(Y, Y )

From this one obtains the double coset presentation

WI(Y ) ≈ π1 map(Y, Y0)\π1 map(Y, Y )/π1 map(Y, Ŷ ),

where the left and right subgroups are embedded by the formal completion
and rationalization functors respectively, and the basepoints are the obvious
choices. Now let Y = X〈2n〉, where X = S2n ∨ S4n. Thus

Y = (S2n ∨ S4n)〈2n〉 ' S2n〈2n〉 ∨ S4n.

Then

π1 map(Y, Y0) ≈ π1 map(S4n−1 ∨ S4n, Y0) ≈ π4nY0 ⊕ π4n+1Y0 ≈ Q.
Similarly, π1 map(Y, Y ) ≈ Q̂. However, using Neisendorfer’s theorem,

π1 map(Y, Ŷ ) ≈ π1 map(Ŷ , Ŷ ) ≈ π1 map(X̂, X̂)

≈ π1 map(S2n ∨ S4n, X̂) ≈ π2n+1X̂ ⊕ π4n+1X̂.

As π1 map(Y, Ŷ ) is evidently a finite group, its image in π1 map(Y, Y ) is
trivial. Therefore WI(Y ) ≈ Q̂/Q, which is uncountably large. Thus Example
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6.2 is verified. The reader may have noticed that Example 6.1 could also have
been verified directly with this sort of analysis.

The following fibration lemma is a special case of results of Dror–Farjoun,
[9], or of Bousfield ([2], §4). It is a crucial tool in proving the results described
in §2.

Lemma 7.0. Let F i→W
π→ Z be a homotopy fiber sequence. Then

Lϕ(F ) Lϕ(W ) Lϕ(Z)
Lϕ(i) // Lϕ(π) //

is a homotopy fiber sequence provided either (a) Lϕ(F ) ' •, or (b) Lϕ(Z)
' Z.

R e m a r k s. An immediate consequence of part (a) is that the local-
izations Lϕ(W ) and Lϕ(Z) are homotopy equivalent under the conditions
stated. The hypothesis in part (b) is equivalent to saying that the space Z
is B-null.

P r o o f o f T h e o r e m 7.1. Take the principal fibration

ΩY → F → X

induced by the map f . Since X is B-null, the localized fiber sequence

Lϕ(ΩY )→ Lϕ(F )→ Lϕ(X)

is also a fibration by part (b) of Lemma 7.0. In this new fibration, the base
space Lϕ(X) ' X, since X is B-null; the other two spaces are easily seen
to be simple. Hence the p-completion of this fibration is again a fibration.
Now Lp(K(π,m)) ' • for any abelian group when m ≥ 2 and any torsion
abelian group when m = 1, by ([4], §7). Thus a finite induction, going up
the Postnikov tower, shows Lp(ΩY ) ' •. The above fibration, completed at
p, thus yields

• → Lp(F )→ Xp

and hence a homotopy equivalence between the new total space and base.

P r o o f o f T h e o r e m 7.4. The proof involves the following commu-
tative diagram:

ΩG • G

X〈n〉 X X(n)

F X X
(n)
0

//

²²

//

²² ²²
//

²²

//

²² ²²
// //
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in which all the rows and columns are homotopy fiber sequences. The fiber
G has only torsion homotopy groups and at most n−1 of them are nonzero.
Thus Lϕ(ΩG) ' • as in the proof of 7.1. Next apply Lϕ to the vertical
fiber sequence on the left. It follows that Lϕ(X〈n〉) ' Lϕ(F ), by part (a)
of Lemma 7.0. In the fiber sequence along the bottom, the functor Lϕ fixes
both the base and the total space. Therefore it also fixes the fiber, that is,
Lϕ(F ) ' F , again by Lemma 7.0, part (b). Thus Lϕ(X〈n〉) ' F , as claimed.

P r o o f o f T h e o r e m 7.5. Let π = π2X and let T denote its torsion
subgroup. Let E denote the homotopy fiber of the composition

X → X(2) = K(π, 2)→ K(π/T, 2).

The first map is the usual inclusion and the last is induced by the quotient
homomorphism π → π/T . We thus have a fiber sequence

K(π/T, 1)→ E
j→ X.

There are no essential maps from BZ/p into the fiber here. This follows
from the universal coefficient sequence for cohomology with coefficients in
the torsion-free group π/T . Consequently, the fiber is B-null. The base X
is B-null by assumption. It then follows from Lemma 7.0, part (b), that the
total space E is also B-null.

Notice that the map j : E → X induces a homotopy equivalence E〈n〉 '
X〈n〉 for each n ≥ 2. Thus for these values of n we have

Lp(X〈n〉) ' Lp(E〈n〉) ' Ep
by Theorem 7.1.

P r o o f o f P r o p o s i t i o n 8.1. Fix a prime p, assume that t > 3, and
let Y denote the p-completion of Ωt−3X. It suffices to show that the loop
space Y 〈m〉 has no geometric exponent for any integer m ≥ 1. Take the
principal fibration

ΩY (m) → Y 〈m〉 → Y

and apply Lp to it. Since X is B-null, so is Y , and thus

Lp(ΩY (m))→ Lp(Y 〈m〉)→ Y

is a homotopy fiber sequence. Assume for the moment that the homotopy
groups of the new fiber vanish in dimensions greater than 1. It then follows
by exactness that π3Lp(Y 〈m〉) ≈ π3Y , which is not a torsion group, by
hypothesis.

In general, there is a natural equivalence of loop spaces, Lf (ΩW ) '
ΩLΣf (W ) (cf. [9]), and it evidently takes power maps to power maps. Thus
the existence of a geometric exponent on Y 〈m〉 would imply the same for
Lp(Y 〈m〉). But the power map x 7→ xλ induces multiplication by λ on
homotopy groups, and this is not the zero endomorphism of π3Lp(Y 〈m〉)
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in particular, unless λ = 0. Thus Y 〈m〉 has no geometric exponent at any
prime p.

To finish the proof, let πi stand for πiΩY (m). We will show that

Lp(ΩY (m)) ' π0 ×K(π1/torsion, 1).

Since the path components of ΩY (m) all have the same homotopy type it
suffices to determine the localization of any one of them. So let P denote a
path component of ΩY (m). There is a fibration

F → P → K(π1/torsion, 1)

in which π1P maps onto π1/torsion. Since the base space of this fibration
is B-null (as was noted in the proof of 7.5), the application of Lp yields the
homotopy fiber sequence

Lp(F )→ Lp(P )→ K(π1/torsion, 1).

Since the fiber F is a Postnikov space with a torsion fundamental group,
Lp(F ) ' • as in the proof of 7.1. Consequently, Lp(P ) is a K(G, 1) as
claimed. This completes the proof of 8.1.

P r o o f o f P r o p o s i t i o n 9.1. Suppose that µ is a multiplication
on X〈n〉. Dwyer has shown that there is a natural equivalence between
Lf (Y × Z) and Lf (Y ) × Lf (Z) (see [9]). Completion at p is also known
to respect products [3]. It follows easily from these facts that Lp(µ) is
a multiplication on Xp. Suppose that µ is homotopy commutative. Thus
µ ' µT , where T is the twist map on X〈n〉 ×X〈n〉. It is easy to check that
Lp(T ) is homotopic to the twist map on Xp. Thus it follows by functori-
ality that Xp has a homotopy commutative multiplication, namely Lp(µ).
The proof for homotopy associativity amounts to applying Lp to the usual
diagram.

P r o o f o f P r o p o s i t i o n 9.2. A p-complete space Y is irreducible
if and only if [Y, Y ] contains no nontrivial idempotents [1]. Clearly, the n-
connected cover functor and its inverse Lp take idempotents to idempotents,
and so the result follows.

P r o o f o f T h e o r e m 10.1. If X〈n〉 = Y 〈n〉, then Xp ' Yp for each
prime p, by Theorem 1. Thus X and Y are in the same completion genus.
Wilkerson has shown that the completion genus of X is a finite set of ho-
motopy types when X is a 1-connected finite CW-complex [30]. Thus given
X〈n〉 there are at most a finite number of possibilities for Y in C with
Y 〈n〉 = X〈n〉. For the second statement, note that if X and Y are in the
same completion genus, then clearly X〈n〉p ' Y 〈n〉p for each prime. If X is
rationally elliptic, then X〈n〉 is rationally trivial for n sufficiently large and
thus X〈n〉 '∏pX〈n〉p. The result follows.
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