
FUNDAMENTA
MATHEMATICAE

152 (1997)

A partial order where all monotone maps are definable

by

Martin G o l d s t e r n (Wien and Berlin) and
Saharon S h e l a h (Jerusalem)

Abstract. It is consistent that there is a partial order (P,≤) of size ℵ1 such that
every monotone function f : P → P is first order definable in (P,≤).

It is an open problem whether there can be an infinite lattice L such
that every monotone function from L to L is a polynomial. Kaiser and Sauer
[KS] showed that such a lattice would have to be bounded, and cannot be
countable.

Sauer then asked the weaker question if there can be an infinite partial
order (P,≤) such that all monotone maps from P to P are at least definable.
(Throughout the paper, “definable” means “definable with parameters by a
first order formula in the structure (P,≤)”.)

Since every infinite partial order P admits at least c = 2ℵ0 many mono-
tone maps from P to P , our partial order must have size (at least) conti-
nuum.

We show:

0.1. Theorem. The statement “There is a partial order (P,≤) of size ℵ1

such that all monotone functions f : P → P are definable in P” is consistent
relative to ZFC. Moreover , the statement holds in any model obtained by
adding (iteratively) ω1 Cohen reals to a model of CH.

We do not know if Sauer’s question can be answered outright (i.e., in
ZFC), or even from CH.

Structure of the paper. In Section 1 we give four conditions on a partial
order on (P,v) of size κ and we show that they are sufficient to ensure the
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conclusion of the theorem. This section is very elementary. The two main
conditions of Section 1 are

(1) a requirement on small sets, namely that they should be definable,
(2) two requirements on large sets (among them: “there are no large

antichains”).

Here, “small” means of size < |P |, and “large” means of size = |P |.
In Section 2 we show how to take care of requirement (1) in an inductive

construction of our partial order in c many steps. Each definability require-
ment will be satisfied at some stage α < c.

Finally, in Section 4 we deal with the problem of avoiding large an-
tichains. Here the inductive construction is not so straightforward, as we
have to “anticipate” potential large sets and ensure that in the end they will
not contradict our requirement. The standard tool for dealing with such a
problem is ♦. This combinatorial principle has been used for a related con-
struction in [Sh 128], and it is possible to use the techniques of [Sh 136,
Section 5] to combine it with the requirement on small sets to show that the
conclusion of our theorem actually follows from ♦. However, we use instead
a forcing construction, which seems to be somewhat simpler: We will work
in an iterated forcing extension, and use a ∆-system argument to ensure
that the requirements about large sets are met. This argument is carried
out in Section 4, which therefore requires a basic knowledge of forcing.

1. Four conditions

1.1. Theorem. Assume that (P,v) is a partial order , and κ := |P | a
regular cardinal. We will call subsets of cardinality < κ “small”. Assume
that the following conditions hold :

C1. Every antichain is small (an antichain is a set of pairwise incompa-
rable elements).

C2. Whenever g : (P,v)→ (P,v) is monotone, then there is a small set
A ⊆ P such that for all α ∈ P , f(α) ∈ A ∪ {α}.

C3. For all α ∈ P the set {β ∈ P : β v α} is small.
C4. Every small subset of P × P is definable in the structure (P,v).

Then every monotone map from (P,v) to itself is definable in (P,v).

We will prove this theorem below.

Lemma 1.2. Let v be as above. Then for any set A ⊆ P there is a small
set A′ ⊆ A such that ∀α ∈ A∃γ ∈ A′ : γ v α.

P r o o f. Let B ⊆ A be a maximal antichain in A. So B is small, by C1.
Let A′ be the downward closure of B in A, i.e., A′ :=

⋃
β∈B{γ ∈ A : γ v β}.

Then A′ is still small because of C3. Clearly A′ is as required.
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1.3. Fact. Let (P,v) be any partial order , and g : P → P a monotone
function. Then g is definable iff the set {(x, y) : g(x) v y} is definable.

P r o o f. Let B := {(x, y) : g(x) v y}. Clearly B is definable from g.
Conversely, g can be defined from B as follows:

g(x) = z ⇔ (∀y : (x, y) ∈ B ⇒ z v y) and ((x, z) ∈ B).

P r o o f o f 1.1. Let g : P → P be monotone. Let P0 ⊆ P be small such
that

• If g(α) 6= α then g(α) ∈ P0.
• β v α ∈ P0 implies β ∈ P0.

(Such a set P0 can be found using C2 and C3.) For every j ∈ P0 let Dj :=
{α ∈ P \ P0 : g(α) = j}, and let D := {α ∈ P \ P0 : g(α) = α}. We can find
D′ and D′j as in 1.2. Let P1 =

⋃
j D
′
j ∪D′.

Claim 1. For α ∈ P \ P0 we have

g(α) = α⇔ ∃β ∈ P1 : β v α, g(β) = β.

The direction ⇒ follows immediately from the definition of D′. For the
other direction, assume that β ∈ P1, β v α, g(β) = β. Since g(β) v g(α),
and g(β) = β 6∈ P0, we also have g(α) 6∈ P0. Hence g(α) = α.

Claim 2. For α ∈ P \ P0, g(α) 6= α we have

g(α) v i⇔ ∀γ ∈ P1 : γ v α⇒ g(γ) v i.
The implication ⇒ follows from the monotonicity of g. For the converse

direction, assume that g(α) = j. Since D′j ⊆ P1, we can find γ ∈ P1 with
γ v α and g(γ) = j. By assumption, g(γ) v i, so g(α) v i.

Claims 1 and 2, together with 1.3, now imply that g can be defined from
the graphs of the functions g¹P0 and g¹P1.

2. Coding small sets. In this section we will show how to build a
partial order satisfying C3 and C4. Throughout this section we assume the
continuum hypothesis.

2.1. Definition. (1) We call M a creature if M = (M,v, F,H), where

• v is a partial order on M ,
• F is a partial symmetric function, dom(F ) ⊆M ×M , ran(F ) ⊆M ,
• if F (x, y) = z, then x < z, y < z, and there is no z′ 6= z with x v z′,

y v z′, z′ v z (i.e. z is a minimal upper bound of x and y, and x, y are
incomparable),
• F is locally finite, i.e., for any finite A ⊆M there is a finite set B with

A ⊆ B ⊆M such that for any (x, y) ∈ domF ∩ (B ×B), F (x, y) ∈ B,
• H ⊆M ×M ×M ; we define H(x, y) := {z : H(x, y, z)},
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• if H(x, y, z) then z is a minimal upper bound of x, y, and x, y are
incomparable,
• H(x, y) = H(y, x),
• if H(x, y, z) then (x, y) 6∈ dom(F ).

(2) If M1, M2 are creatures, then M1 ≤ M2 (M2 is an extension of
M1) means that M1 ⊆ M2, and the relations/functions of M1 are just the
restrictions of the corresponding relations/functions of M2 (so in particular,
dom(FM2) ∩ (M1 ×M2) = dom(FM1)).

(3) We say that M2 is an end extension of M1 (or that M1 is an initial
segment of M2) if M1 ≤M2 and M1 is downward closed in M2, i.e., M2 |=
x v y, y ∈M1 implies x ∈M1.

(4) We use the above terminology also if one or both of the structures M1,
M2 are just partial orders without an additional function F or relation H.

2.2. Notation. When we consider several creatures M, M1, M∗, . . . ,
then it is understood that their universes are called M , M1, M∗, . . . , their
partial orders are v, v1, v∗, . . . , etc. Instead of writing x v1 y we may
write M1 |= x v y, etc.

We will use the letters M and N to denote possibly infinite creatures,
and p, q to denote finite creatures.

2.3. Definition. If (M,v) is a partial order, then we let F(v) be the
partial binary function F satisfying

F (x, y) =

{ the unique minimal upper bound of x and y
if it exists and if x and y are incomparable,

undefined otherwise,

2.4. Setup. Let (Mδ : δ < c) be a continuous increasing sequence of
infinite sets with |Mδ+1 \Mδ| = |Mδ| < c. Let (Rδ : δ < c) be a sequence
of relations with Rδ ⊆Mδ ×Mδ such that for any R ⊆Mδ ×Mδ there is a
δ′ > δ such that R = Rδ′ . (Such a sequence can be found using CH.)

For each δ we fix some element eδ ∈Mδ+1\Mδ. For each (α, β) ∈Mδ×Mδ

we pick disjoint sets Aδαβ , Bδαβ , Cδαβ , ∆δ
αβ , Γ δαβ (we will omit the superscript

δ if it is clear from the context) satisfying

|Aαβ | = 2, |Bαβ | = 3, |Cαβ | = 1,

|∆αβ | = 3, ∆αβ = {aαβ , bαβ , cαβ}, Γαβ = {γαβ},
where eδ is not in any of these sets and the sets

Ωαβ := Aαβ ∪Bαβ ∪ Cαβ ∪∆αβ ∪ Γαβ
satisfy (α, β) 6= (α′, β′)⇒ Ωαβ ∩Ωα′β′ = ∅. For x ∈ Ωαβ we define Ω(x) :=
Ωαβ ∪ {α, β}.

Moreover, we choose the sets Ωαβ such that Mδ+1 \
⋃
α,β∈Mδ

Ωαβ still
has size |Mδ|. For x ∈Mδ+1 \

⋃
α,β∈Mδ

Ωαβ we let Ω(x) = ∅.
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2.5. Definition. (1) Let M be a creature. We say that ∆ ∈ [M ]3 is
a triangle (also called an M-triangle or F -triangle if F = FM) iff dom(FM)
⊇ [∆]2.

(2) Let ∆ be an F -triangle. We say that a ∈ ∆ is a base point for ∆ if
there is a unique (unordered) pair {b, c} with F (b, c) = a.

(3) Let ∆ be a triangle. We say that b is an anchor for ∆ if there is a c
such that F (b, c) is a base point for ∆.

(4) If M1 ≤M2 then we say that M2 is a separated extension of M1 iff

• every triangle in M2 is contained in M1 or in M2 \M1, and
• if ∆ ⊆M2 \M1 is a triangle, then ∆ is not anchored at any point

in M1.
• if M2 |= H(x, y, z) and x, y ∈M1, then also z ∈M1.

2.6. N o t e. Our goal is to define Fδ+1 such that Rδ will become definable
(and at the same time make it possible for Fδ+1 to be of the form F(v) for
some end extension v of vδ). We will achieve this by “attaching” triangles
to all pairs (α, β) in Rδ in a way that (α, β) can be reconstructed from the
triangle. We also need to ensure that the only triangles in Mδ+1 (and also
in any Mδ′ , δ′ > δ) are the ones we explicitly put there.

The particular way of coding pairs by triangles is rather arbitrary.

2.7. Overview of the construction. By induction on δ ≤ c we will define
creatures Mδ = (Mδ,vδ, Fδ) such that

(A) γ < δ implies that Mδ is a separated end extension of Mγ ,
(B) Fδ = F(vδ) (see 2.3),
(C) Rδ is definable in (Mδ+1,vδ+1, Fδ+1) and hence also in (Mδ+1,vδ+1),

and the definition of Rδ is absolute for any separated end extension of Mδ+1.

For limit δ we let vδ =
⋃
γ<δ vγ and Fδ =

⋃
γ<δ Fγ , Hδ =

⋃
γ<δHγ .

We will construct Mδ+1 from Mδ in two steps. First we define a func-
tion Fδ+1 such that Rδ becomes definable in (Mδ+1, Fδ+1). Then we show
that we can find a partial order vδ+1 (end-extending vδ) such that Fδ+1

= F(vδ+1).

Construction of Fδ+1. Fδ+1 will be defined as follows:

• Fδ+1¹(Mδ ×Mδ) = Fδ.
• If (α, β) ∈ Rδ then

∗ F (α, x) = aαβ for x ∈ Aαβ ,
∗ F (β, x) = bαβ for x ∈ Bαβ ,
∗ F (eδ, x) = cαβ for x ∈ Cαβ ,
∗ F (x, y) = γαβ for {x, y} ∈ [∆αβ ]2.

• Except where required by the above (and by symmetry), Fδ+1 is un-
defined.
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This completes the definition of Fδ+1. The diagram above is supposed to
illustrate this definition. Pairs (x, y) on which Fδ+1 is defined are connected
by a line; the value of Fδ+1 at such pairs is the small black disk above the
pair.

2.8. Fact. (1) (Mδ+1, Fδ+1) is a separated extension of Mδ.
(2) Rδ is definable in (Mδ+1, Fδ+1).
(3) Let (Mδ+1, Fδ+1) ≤ (M,F ) and assume that

• (M,F ) is a separated extension of (Mδ+1, Fδ+1), and
• if F (x, y) ∈ Mδ+1 then x, y ∈ Mδ+1. (This is certainly true if
F = F(v), where v is an end extension of vδ+1.)

Then Rδ is definable in (M,F ).

P r o o f. (1) is clear. (2) is a special case of (3). Let (M,F ) be as in (3).
Then Rδ is the set of all pairs (α, β) such that there is a triangle ∆ with a
unique base, anchored at eδ such that either

• α 6= β and |{x : F (α, x) ∈ ∆}| = 2, |{x : F (β, x) ∈ ∆}| = 3, or
• α = β and |{x : F (α, x) ∈ ∆}| = 5,

because the only triangles anchored at eδ will be the sets ∆δ
αβ . Clearly this

is a definition in first order logic with the parameter eδ.

Construction of vδ+1. We will define vδ+1 from a (sufficiently) generic
filter for a forcing notion Qδ = Q(Mδ, Fδ+1).
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2.9. Definition. Assume that Mδ, Fδ+1 are as above. We define the
forcing notion Qδ as the set of all p such that

• p is a finite creature, p = (p,vp, Fp,Hp),
• p¹Mδ ≤Mδ,
• p ⊆Mδ+1,
• for all x ∈ p \Mδ, Ω(x) ⊆ p,
• Fp = Fδ+1¹(p× p),
• p is a separated end extension of p¹Mδ.

Clearly (Qδ,≤) is a partial order. N o t e: We force “upwards,” i.e., p ≤ q
means that q is a stronger condition than p. But we still call the generic set
“filter” and not “ideal”.

If G ⊆ Qδ is a filter then there is a smallest creature which extends all
p ∈ G. We call this creature MG.

2.10. Fact. The following sets are dense in Qδ:

(a) {p : x ∈ p}, for any x ∈Mδ+1,
(b) Dp,x,y := {q : q ⊥ p or q |= ∃z′ 6∈ p : H(x, y, z)}, whenever x, y ∈ p

are incomparable and (x, y) 6∈ dom(Fp),
(c) Ep,x,y,z := {q : q ⊥ p or q |= ∃z′ v z : x v z′, y v z′, z 6= z′},

whenever x, y ∈ p, (x, y) ∈ dom(Fp), x v z, y v z, z 6= Fp(x, y).

2.11. Fact. If G meets all the dense sets above, then Mδ+1 := MG is a
separated end extension of Mδ, and Fδ+1 = F(vMG

).

P r o o f. We only prove the last statement. Let F = F(vMG). First
assume Fδ+1(x, y) = z∗. Clearly z∗ is a minimal upper bound of x, y, so
to prove F (x, y) = z∗ we only have to show that z∗ is the unique minimal
upper bound. If z 6= z∗ is also a minimal upper bound then we can find
p ∈ G containing {x, y, z, z∗}. Now use 2.10(c) to find z′ 6= z in Mδ+1,
x, y v z′ v z, which is a contradiction.

Now assume that Fδ+1(x, y) is undefined. We have to show that also
F (x, y) is undefined. Applying 2.10(b) twice we can find two distinct ele-
ments z1, z2 such that H(x, y, z1) and H(x, y, z2) both hold in Mδ+1, hence
there is no unique minimal upper bound of x and y, so F (x, y) is unde-
fined.

2.12. Fact. Qδ satisfies the ccc.

P r o o f. Qδ is countable.

2.13. Conclusion. CH implies that a sufficiently generic filter exists.
Thus we have completed the definition of vδ+1 and Hδ+1. Clearly Mδ+1

will be as required.
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In the last section we will show how to embed this construction into an
iterated forcing argument.

3. Amalgamation. Starting from a model of GCH we will construct an
iterated forcing notion (Pδ, Qδ : δ < κ) such that each partial order Qδ will
be some Q(Mδ, Fδ+1) as in the previous section. This will define a model
Mκ. An additional argument is then needed to show that Mκ will satisfy C1
and C2. In this section we prepare some tools for this additional argument
by collecting some facts about amalgamation.

3.1. Definition. Let p and q be (finite) creatures, x ∈ p, y ∈ q. We
define p⊕ q and p⊕x,y q as follows:

• p⊕ q = (p∪ q,vp⊕q, Fp⊕q, Hp⊕q), where vp⊕q is the transitive closure
of vp ∪ vq, and Fp⊕q = Fp ∪ Fq.
• p⊕x,yq = (p∪q,vp⊕x,yq, Fp⊕x,yq, Hp⊕x,yq), where vp⊕x,yq is the transi-

tive closure of vp ∪ vq ∪{(x, y)}, and Fp⊕x,yq = Fp∪Fq, Hp⊕x,yq = Hp∪Hq.

3.2. Fact. (1) Assume that vp and vq agree on p ∩ q, and similarly Fp

and Fq. Then p⊕ q is a creature, and p v p⊕ q, q v p⊕ q.
(2) If p and q are as above, and moreover , p and q are separated end

extensions of r := p∩ q, and typep(x, r) = typeq(y, r) (that is, for any z ∈ r
we have p |= z v x iff q |= z v y), then also p⊕x,y q is a model extending q
and end-extending p, and

(∗) p⊕x,y q |= a v b ⇔ p |= a v b or q |= a v b or p |= a v x, q |= y v b.
P r o o f. We leave (1) to the reader. Let v∗ be the relation defined in (∗).

First we have to check that v∗ is transitive. Note that the third clause in
the definition of a v∗ b can only apply if a ∈ p and b ∈ q \ r = q \ p.

Let a v∗ b v∗ c. A priori , there are 9 possible cases:

a vp b b vp c ⇒ a vp c

a vp b b vq c ⇒ b ∈ p ∩ q, a vq b, so a vq c

a vp b b vp x, y vq c ⇒ a vp x, y vq c

a vq b b vp c ⇒ b ∈ p ∩ q, a vp b, so a vp c

a vq b b vq c ⇒ a vq c

a vq b b vp x, y vq c ⇒ b ∈ p ∩ q, a vp b, a vp x, y vq c

a vp x, y vq b b vp c ⇒ impossible

a vp x, y vq b b vq c ⇒ a vp x, y vq c

a vp x, y vq b b vp x, y vq c ⇒ impossible

So we see that in any case we get a v∗ c. Clearly p ⊕x,y q is an end
extension of p. We now check that q ≤ p⊕x,y q. Let a, b ∈ q, p⊕x,y q |= a v b.
The only nontrivial case is where p |= a v x and q |= y ≤ b. Since x and y
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have the same type over p∩ q, we also have q |= a v y. Hence q |= a v b, so
q ≤ p⊕x,y q.

Finally, we check that p ⊕x,y q is a creature. It is clear that F p⊕x,yq is
locally finite.

To check that the conditions on Hp⊕x,yq and Fp⊕x,yq (in particular, min-
imality) are still satisfied, the following key fact is sufficient: if {a, b} ⊆ p
or {a, b} ⊆ q (in particular, if (a, b) ∈ dom(Hp⊕x,yq) ∪ dom(Fp⊕x,yq)), then
p⊕x,y q |= a, b v c holds iff at least one of the following is satisfied:

(1) p |= a, b v c,
(2) q |= a, b v c,
(3) p |= a, b v x, q |= y v c.

We leave the details of the argument to the reader.

Corollary 3.3. Assume that p, q, r are as above, q ∈ Qδ and p ≤Mδ.
Then p⊕ q ∈ Qδ and p⊕x,y q ∈ Qδ.

3.4. Definition. Let (P,v) be a partial order of size κ, κ a regular
cardinal. We say that P satisfies the strong chain condition if whenever
(Xα : α < κ) is a sequence of finite suborderings of (P,v), and xα ∈ Xα for
all α < κ, then there are α < β < κ such that Xα and Xβ agree on Xα∩Xβ ,
Xα and Xβ are separated end extensions of Xα ∩ Xβ , xα and yα have the
same type over Xα ∩ Xβ , and

Xα ⊕xα,xβ Xβ ≤ (P,v).

3.5. R e m a r k. By the ∆-system lemma, for any sequence (Xα : α < κ)
of finite sets there is a set A ⊆ κ of size κ such that the sets (Xα : α ∈ A)
form a ∆-system. If (P,v) moreover satisfies C3, then we may additionally
assume that for any α < β < κ the models Xα and Xβ are separated end
extensions of Xα∩Xβ . So the point of Definition 3.4 is really the last clause.

Lemma 3.6. Assume that (P,v) satisfies the strong chain condition.
Then (P,v) satisfies conditions C1 and C2.

P r o o f. To show C1, consider any family (xα : α < κ). Let Xα := {xα}.
Since (P,v) satisfies the strong chain condition, we can find α < β such
that Xα ⊕xα,xβ Xβ ≤ (P,v), but this means that xα v xβ .

Finally, we show C2. Let f : (P,v) → (P,v) be monotone and assume
that 1.1(C2) does not hold. This means that for all small sets A there is x
such that f(x) 6= x and f(x) 6∈ A. So we can find (xα, yα : α < κ) such that
for all α, xα 6= f(xα) = yα and the sets {xα, yα} are pairwise disjoint. Let
Xα := {xα, yα} ≤ (P,v). Without loss of generality, we either have xα v yα
for all α or for no α, similarly yα v xα for all α or for no α. Now find α and
β such that Xα ⊕xα,xβ Xβ ≤M. Now Xα ⊕xα,xβ Xβ |= xα v xβ , but clearly
Xα ⊕xα,xβ Xβ |= yα 6v yβ , so f is not monotone, a contradiction.
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4. Forcing. In this section we will carry out the forcing construction
that will prove the theorem.

We start with a universe V0 satisfying GCH. Let κ = ω1, and let (Mδ :
δ ≤ κ), Aδαβ , . . . , Γ δαβ be as in 2.4.

We define sequences (Pα,Q˜ α
: α < κ), (M˜ α : α < κ), (R˜ α : α < κ)

satisfying the following for all α < κ:

(1) P0 = {∅}, M0 = ∅.
(2) R˜ α is a Pα-name of a subset of Mα ×Mα.
(3) In V Pα , Fα+1 is constructed from Rα as in 2.7–2.8.
(4) Q

˜ α
is a Pα-name, °Pα Q˜ α

= Q(Mα, Fα+1).
(5) Pα+1 = Pα ∗Q˜ α

.
(6) Pα+1 ° Mα+1 is the creature defined by the generic filter on Q

˜ α
, as

in Section 2.
(7) If α is a limit, then Pα is the finite support limit of (Pβ : β < α),

and Mα =
⋃
β<α Mβ .

We let Pκ be the finite support limit of this iteration. Since all forcing
notions involved satisfy the countable chain condition, we may (using the
usual bookkeeping arguments) assume that:

(∗) Whenever R˜ is a Pκ-name of a subset of Mκ ×Mκ of size < κ, then
there is some α such that R˜ = R˜ α.

Lemma 4.1. Let A ⊆ Mδ be finite. Define a set Pδ(A) as the set of all
p ∈ Pδ satisfying

∃M, M a finite creature, A ⊆M, ∀α ∈ dom(p) : p¹α ° p(α) = M¹Mα+1.

Then Pδ(A) is dense in Pδ. In particular , Pδ := Pδ(∅) is dense in Pα.

P r o o f. By induction on δ. Limit steps are easy.
Let p ∈ Pα+1. By strengthening p¹α we may assume that there is a crea-

ture N such that p¹α ° p(α) = N. By 2.10 we may assume that A ⊆ N . By
inductive assumption we may assume that there is a creature M witnessing
p¹α ∈ P̄α(N ∩Mδ). Clearly M and N agree on M ∩N . Define M′ := M⊕N.
So p¹α ° p(α) ≤ M′. Define p′ by demanding p′¹α = p¹α and p′(α) = M′.
By 3.3, p′¹α ° p′(α) ∈ Qδ. Clearly p′ ≥ p, and p′ ∈ Pα+1.

In V Pκ , let Mκ =
⋃
α<κ Mα. We claim that the structure (κ,vMκ)

satisfies the four conditions from 1.1. The argument in Section 2 shows that
we have C3 and C4. So, by 3.6 we only have to check that M satisfies the
strong chain condition.

Let X˜ := (X˜ α : α < κ) be a sequence of names for finite creatures, and
let (x˜α : α < κ) be forced to satisfy x˜α ∈ Xα. Assume that p is a condition
forcing that X˜ witnesses the failure of 3.4. For each α < κ we find pα ≥ p
which decides Xα and xα. Let eα = supp(pα) and δα := max(eα) + 1, so
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pα ∈ Pδα . By 4.1 we may assume that there are finite creatures Pα such that
for all ε ∈ eα, pα¹ε ° p(ε) = Pα¹Mε+1. We may also assume that Xα ⊆ Pα,
and hence (since pα ° Xα ≤Mκ and pα ° Pα ≤Mκ), Xα ≤ Pα.

We may assume that the creatures Pα form a ∆-system, say with heart
P∆ (so in particular P∆ ≤ Pα). Moreover, we may assume that each Pα

is a separated end extension of P∆. Also, since the xα are without loss of
generality, all different, we may assume xα ∈ Pα \ P∆. Finally, we may
assume that each xα has the same type over P∆.

Now pick any α < β. We will find a condition q ≥ pα, q ≥ pβ such that
q ° Pα ⊕xα,xβ Pβ ≤Mκ.

Let Q = Pα ⊕xα,xβ Pβ . First note that Pα ≤ Q and Pβ ≤ Q by 3.2.
Let ε∗ be such that xβ ∈Mε∗+1 \Mε.

Now note that

Q¹Mε+1 =
{

Pα¹Mε+1 if ε < ε∗,
Pα ⊕xα,xβ Pβ¹Mε+1 if ε ≥ ε∗.

We now define a condition q with supp(q) = supp(pα) ∪ supp(pβ), by
stipulating q(ε) = Q¹Mε+1.

By 3.3 we know that q¹ε ° Q¹Mε+1 ∈ Qε, so by induction it is clear
that q is indeed a condition. Clearly q ° Pα ⊕xα,xβ Pβ ≤Mκ.
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