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Shift spaces and attractors in noninvertible horseshoes

by

H. G. B o t h e (Berlin)

Abstract. As is well known, a horseshoe map, i.e. a special injective reimbedding of
the unit square I2 in R2 (or more generally, of the cube Im in Rm) as considered first by
S. Smale [5], defines a shift dynamics on the maximal invariant subset of I2 (or Im). It is
shown that this remains true almost surely for noninjective maps provided the contraction
rate of the mapping in the stable direction is sufficiently strong, and bounds for this rate
are given.

1. Definitions and results. For an integer θ ≥ 2 the setΣθ of all doubly
infinite sequences i = (. . . , i−1, i0, i1, . . .), where il ∈ {1, . . . , θ}, equipped
with the metric

d((. . . , i−1, i0, i1, . . .), (. . . , j−1, j0, j1, . . .)) =
∞∑

l=−∞
2−|l||il − jl|

is a Cantor set. The shift mapping σ : Σθ → Σθ given by

σ(. . . , i−1, i0, i1, . . .) = (. . . , j−1, j0, j1, . . .) with jl = il+1

is a homeomorphism which defines a simple but nevertheless nontrivial dy-
namics on Σθ; e.g. its periodic points are dense, and there are dense orbits.
Therefore, to ask whether or not a given discrete dynamical system contains
a subsystem conjugate to a shift space of this kind is a natural question.

Let R be a topological space with metric d, R∗ a compact subset of R
and f : R∗ → R continuous. For k ≥ 1 we define the compact sets

R∗k = {p ∈ R | fk(p) is defined}, Ak = fk(R∗k).

Then R∗1 = R∗ ⊃ R∗2 ⊃ R∗3 ⊃ . . . , A1 ⊃ A2 ⊃ . . . , and we consider the
compact sets

R∗∞ =
∞⋂

k=1

R∗k, A =
∞⋂

k=1

Ak, Z = R∗∞ ∩A.
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The set A, if not empty, can be regarded as a global attractor of f . Indeed,
f(A∩R∗) = A, and there is a sequence ε1 > ε2 > . . . of real numbers tending
to 0 such that for any k > 1 and any p ∈ R∗k we have d(fk(p), A) ≤ εk. The
set Z is the maximal invariant subset of R, i.e. the maximal set on which f
is defined, and f(Z) = Z.

A subset S of R∗ will be called a shift space in R if for some θ ≥ 2 there
is a homeomorphism h : Σθ → S such that hσ = fh. Obviously, if S is a
shift space in R then S ⊂ Z. If Z itself is a shift space in R then we say
that f concentrates to a shift space.

Among the best known examples of mappings which concentrate to a
shift space are the so called horseshoe mappings (introduced by S. Smale
in [5]) which can be defined as follows. Let R0 = Rm+1 (m ≥ 1) and let
R∗0 = Im+1 = I × Im be the (m+ 1)-dimensional unit cube in Rm+1 which
is regarded as the cartesian product of the unit interval I = [0, 1] with the
m-dimensional unit cube. To define a horseshoe mapping we fix disjoint
subintervals I1, . . . , Iθ in I (θ ≥ 2) and choose f : R∗0 → R0 so that the
following conditions are satisfied, where I∗ = I1 ∪ . . . ∪ Iθ:

(i) f(R∗0) ∩R∗0 = f(I∗ × Im).
(ii) For some λ ∈ (0, 1) there are a C1 mapping ϕ : I∗ → I whose

restriction to each component Ii of I∗ is an expanding C1 mapping onto I
and a C0 mapping ψ : I∗ → [0, 1− λ]m such that

(1) f(t, x) = (ϕ(t), ψ(t) + λx) ((t, x) ∈ I∗ × Im).

(iii) f is injective on I∗ × Im.

(See Fig. 1, where m = 2, θ = 3.)

Fig. 1
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It is well known (and not hard to prove) that f concentrates to a shift
space Z. Moreover, the global attractor A of f is homeomorphic to the
cartesian product I ×C0 of I with a Cantor set C0, and each component of
A is a C0 arc running upwards from the bottom {0} × Im of R∗0 to the top
{1}× Im. These facts remain true for more general mappings f (see e.g. [3],
Ch. III), but they may fail to hold if (iii) is dropped from our assumptions
(see Fig. 2, where m = 2, θ = 2).

Fig. 2

This paper is concerned with mappings f satisfying (i) and (ii). If θ and
ϕ are fixed we shall show that for “almost all” ψ the mapping f concentrates
to a shift space and A has the structure mentioned above even if f is not
injective on I∗ × Im, provided λ is sufficiently small.

A natural technical simplification in the definition is obtained by ne-
glecting the part of R0 = Rm+1 outside R∗0 = I × Im, i.e., we shall start
with R = I × Im, R∗ = I∗ × Im and the restriction of the original f to
f : R∗ → R. Then the whole mapping f is defined by (1). We shall assume
that θ, I∗, ϕ : I∗ → I and λ ∈ (0, 1) are fixed while ψ : I∗ → [0, 1 − λ]m is
variable. Then f is determined by ψ, and sometimes instead of f we shall
write fψ. The interval [0, 1− λ] will be denoted by J .

The maximal subset I∗k of I on which ϕk is defined (k = 0, 1, 2, . . .)
consists of θk disjoint intervals, where I∗0 = I ⊃ I∗1 = I∗ ⊃ I∗2 ⊃ I∗3 ⊃ . . . ,
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and

I∗∞ =
∞⋂

k=0

I∗k

is a Cantor set in I. The Hausdorff dimension dimH I
∗
∞ of I∗∞ coincides with

the box counting dimension dimB I
∗
∞ (see [2]) and will be denoted by d∗.

The end points of the interval Ii (1 ≤ i ≤ θ) will be denoted by si, ti so that
ϕ(si) = 0 and ϕ(ti) = 1.

To avoid considerable technical difficulties (as e.g. piecewise linear ap-
proximations of ϕ and ψ) Theorem 1, Theorem 2 and its corollaries will be
restricted to the piecewise linear case; i.e., we shall assume that the restric-
tions of ϕ and ψ to the components Ii of I∗ are linear mappings onto I or into
[0, 1−λ]m, respectively. (See [1], where for nonlinear mapppings in a similar
situation the attractor A is considered. Indeed, using the techniques applied
there, facts analogous to those stated as Corollary 1 and Corollary 2 can be
proved in the nonlinear case provided “full measure in J2θm” is replaced by
“open and dense in the space of all C0 mappings ψ : I∗ → Jm ”.)

Now we consider the piecewise linear case. Here d∗ is determined by
|I1|d∗ + . . .+ |Iθ|d∗ = 1, where |Ii| denotes the length of Ii. Since the map-
pings ψ are linear on each interval Ii they are completely determined by
the 2θ points ai = ψ(si), bi = ψ(ti) in Jm or, equivalently, by the point
(a1, b1, a2, b2, . . . , aθ, bθ) in J2θm. So all possible mappings ψ are in 1-to-1
correspondence with the points in J2θm, and we shall not distinguish be-
tween ψ and the corresponding point.

The following sets will play an important role in the piecewise linear
case. (A denotes the global attractor of fψ.)

Ψ = {ψ ∈ J2θm | fψ does not concentrate to a shift space},
ΨA = {ψ ∈ J2θm | fψ|A∩R∗ is not injective}.

In Section 2 (Proposition 3) we shall see that Ψ and ΨA are compact, Ψ ⊂
ΨA and that for ψ ∈ J2θm\ΨA the global attractor A of fψ is homeomorphic
to the cartesian product of an interval with a Cantor set. Moreover, since
A∩R∗ is compact and fψ(A∩R∗) = A, for each ψ ∈ J2θm\ΨA the restriction
f |A∩R∗ : A∩R∗ → A is a homeomorphism. The main results of this paper are
stated in the following two theorems concerning the Hausdorff dimensions
of Ψ and ΨA.

Theorem 1. If λ < 1/2 then

dimH Ψ ≤ 2θm−
(
m− d∗ − 2 log θ

log(1/λ)

)
.
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Theorem 2. If λ < 1/2 then

dimH ΨA ≤ 2θm−
(
m− 1− 2 log θ

log(1/λ)

)
.

Corollary 1. If λ < θ−2/(m−d∗) and λ < 1/2, then the set of all those
ψ ∈ J2θm for which fψ concentrates to a shift space is open in J2θm and
has full measure (1− λ)2θm.

Corollary 2. If m > 1, λ < θ−2/(m−1) and λ < 1/2, then for all ψ in
an open subset of J2θm with full measure (1−λ)2θm the global attractor A of
fψ is the cartesian product of an interval with a Cantor set , and fψ|A∩R∗ :
A ∩R∗ → A is a homeomorphism.

This corollary can be regarded as a partial answer to a problem of
F. Przytycki in [4].

P r o o f o f t h e c o r o l l a r i e s. In these cases dimH Ψ < 2θm or
dimH ΨA < 2θm, respectively, and, by Proposition 3 of Section 2, Ψ and
ΨA are compact.

Propositions 1 and 2 in Section 2 will yield some further details.

R e m a r k 1. Our condition λ < 1/2 reflects the fact that two m-dimen-
sional cubes in Im of edge length at least 1/2 and with edges parallel to
those of Im must intersect. We do not know whether it is necessary. (Here
it is essentially used only in the proof of Lemma 1.)

R e m a r k 2. We do not know whether the bounds for dimB Ψ and
dimB ΨA in the theorems are sharp. As is easily seen all points

ψ =
(
a1, a1, a2,

1
t
a1 +

(
1− 1

t

)
a2, a3, b3, . . . , aθ, bθ

)

belong to Ψ if t ∈ I∗∞ \ {0} and to ΨA if t ∈ (0, 1]. Therefore

dimH Ψ ≥ 2θm− (2m− d∗), dimH ΨA ≥ 2θm− (2m− 1),

but these lower bounds are rather weak, and they do not depend on λ.

The fact stated in Theorem 3 below seems to be more interesting than
Remark 2. Though for small m the bounds for θ and λ are by no means
exciting (owing to the factor 12 in the theorem) this theorem shows that
the exponent −2/(m − 1) in Corollary 2 is optimal at least if m is odd.
Here it is possible, and by the topological methods used in the proof even
natural, to consider the general case, where ϕ and ψ are not necessarily
linear. (Concerning the piecewise linear case see Remark 4 below.) With m,
λ, I∗ and ϕ : I∗ → I fixed (ϕ not necessarily piecewise linear) we consider
the space F of all C0 mappings ψ : I∗ → Jm with the subspace G consisting
of all those ψ ∈ F for which the restriction of fψ to A∩R∗ is not injective and
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the attractor A does not have the structure mentioned above. Therefore G
corresponds to the set ΨA in the restricted case. By Proposition 3 of Section 2
the set G is closed in F .

Theorem 3. If m ≥ 3 is odd and λ > 12θ−2/(m−1) then G has interior
points.

For m ≥ 3 and θ ≥ 2 let α(m, θ) be the infimum of all real α′ > 0
with the following property. For each I∗ consisting of θ components, each
ϕ : I∗ → I (not necessarily piecewise linear) and each λ ∈ (α′θ−2/(m−1), 1)
the set G has interior points in F . Then Theorem 3 is equivalent to

(2) α(m, θ) ≤ 12 (m ≥ 3 odd).

R e m a r k 3. Besides (2) the proof of Theorem 3 will show for odd
positive integers m,

(3) lim
m→∞

lim
θ→∞

α(m, θ) ≤ 8,

so that for each ε > 0 the factor 12 in the theorem can be replaced by 8 + ε
provided m and θ are sufficiently large.

R e m a r k 4. The proof of Theorem 3 can be modified to show that for
m, θ, λ as in the theorem the set G ∩ J2θm (J2θm ⊂ F in the obvious way)
has interior points in J2θm.

2. Preliminaries. For integers θ ≥ 2 and k′ ≤ k′′ let θ[k′,k′′] be the set
of all sequences (ik′ , ik′+1, . . . , ik′′) where il ∈ {1, . . . , θ}, and let θ[−∞,k′′],
θ[k′,∞], θ[−∞,∞] consist of the sequences which are infinite to the left, to
the right or in both directions, respectively. So θ[−∞,∞] coincides with the
Cantor set Σθ of Section 1, and θ[−∞,k′′], θ[k′,∞] also have a natural Cantor
set structure. The shift map σ : θ[k′,k′′] → θ[k′−1,k′′−1] is defined in the
obvious way.

As in Section 1 we assume that I∗ = I1∪ . . .∪Iθ (θ ≥ 2) is the union of θ
disjoint closed subintervals of I and that ϕ : I∗ → I is a C1 mapping whose
restrictions to the intervals Ii are expanding mappings onto I. Moreover,
for some continuous ψ : I∗ → Jm let f : R∗ = I∗ × Im → R = I × Im be
defined by (1).

The θk components of the domain I∗k of ϕk (k ≥ 1) will be denoted by
Ii (i ∈ θ[1,k]), where the indices are chosen so that for k > 1,

I(i1,...,ik) ⊂ I(i1,...,ik−1), ϕ(I(i1,...,ik)) = I(j1,...,jk−1), where jl = il+1.

For i = (i1, i2, . . .) ∈ θ[1,∞] the intersection
⋂∞
k=1 I(i1,...,ik) contains exactly

one point which will be denoted by ti. The sets Ri = Ii × Im (i ∈ θ[1,k],
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1 ≤ k <∞) are slices of R = I × Im while for i = (i1, i2, . . .) ∈ θ[1,∞],

Ri =
∞⋂

k=1

R(i1,...,ik)

is the m-dimensional cube {ti} × Im.

For i ∈ θ[1,k′′] (1 ≤ k′′ ≤ ∞) and 1 ≤ k′ ≤ k′′, k′ <∞, the image fk
′
(Ri)

is well defined and will be denoted by Rσk′ (i). So Ri is now defined for all

i ∈ θ[k′,k′′] provided k′ ≤ k′′, and −∞ < k′ ≤ 1 and 0 ≤ k′′ ≤ ∞. By setting

Ri =
−∞⋂

k=0

R(ik,...,i0,...)

for i = (. . . , i−1, i0, . . .) ∈ θ[−∞,k′′] (0 ≤ k′′ ≤ ∞) we include the case
k′ = −∞ into our definition.

R(ik′ ,...,i0)

R(ik′ ,...,ik′′ )

R(i1,...,ik′′ )

Fig. 3

For k′ and k′′ finite with k′ ≤ 0 the set Ri is an (m + 1)-dimensional

curved prism over an m-dimensional cube with edge length λ−k
′+1, which

for k′′ = 0 has its bottom in {0} × Im and its top in {1} × Im, while for
k′ ≤ 0 and k′′ ≥ 1,

R(ik′ ,...,ik′′ ) = R(ik′ ,...,i0) ∩R(i1,...,ik′′ )

(see Fig. 3). In the piecewise linear case all these prisms are straight. For
i ∈ θ[−∞,0] the set Ri is an arc (or a straight segment in the piecewise linear
case) running upwards from a point in {0}× Im to a point on {1}× Im, and
if i ∈ θ[−∞,∞] then Ri contains exactly one point which will be denoted by
pi. As is easily seen,

(4) f(Ri) = Rσ(i)

wherever Ri and Rσ(i) are defined. Moreover, Rj ⊂ Ri provided i is a part

of j, i.e., if i can be obtained from j by cancelling digits on one or both
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ends. The domain of fk (k ≥ 1) is

R∗k = I∗k × Im =
⋃

i∈θ[1,k]

Ri,

and

R∗∞ = I∗∞ × Im =
∞⋂

k=1

R∗k

is the maximal set on which all iterations fk (k ≥ 1) are defined.
The global attractor of f is given by

A =
⋃

i∈θ[−∞,0]

Ri.

The maximal invariant set of f is

Z =
⋃

i∈θ[−∞,∞]

Ri,

i.e., Z consists of the points pi (i ∈ θ[−∞,∞]), and by setting h(i) = pi we

get a surjective mapping h : Σθ = θ[−∞,∞] → Z. As is easily seen, h is
continuous, and (4) implies hσ = fh. For t ∈ I and i ∈ θ[−∞,0] we define
g(t, i) to be the intersection point of {t}× Im and Ri. So we get a surjective

continuous mapping g : I × θ[−∞,0] → A.

Proposition 1. The following conditions are equivalent.

(i) f concentrates to a shift space.
(ii) h : Σθ → Z is a homeomorphism.

(iii) If i, j ∈ θ[−∞,0], i 6= j, then Ri ∩Rj ∩R∗∞ = ∅.
P r o o f. The equivalence of (ii) and (iii) is an immediate consequence

of the following fact. If i− = (. . . , i−1, i0) ∈ θ[−∞,0] then the mapping
hi− : θ[1,∞] → Ri− ∩ R∗∞ given by hi−(i1, i2, . . .) = h(. . . , i−1, i0, i1, . . .)
is a homeomorphism.

The implication (ii)⇒(i) follows from (4).
To complete the proof we assume (i) and prove (ii). Since Σθ is compact

and h is surjective it is sufficient to show that h is injective.
If for i = (. . . , i−1, i0, i1, . . .), j = (. . . , j−1, j0, j1, . . .) ∈ θ[−∞,∞] the

positive halves i+ = (i1, i2, . . .) and j+ = (j1, j2, . . .) are different, then
h(i) ∈ Ri+ , h(j) ∈ Rj+ , Ri+ ∩ Rj+ = ∅ implies h(i) 6= h(j). If i+ = j+ but

i 6= j then for some k < 0 the positive halves σk(i)+ and σk(j)+ of σk(i)
and σk(j) will differ, and we get

h(σk(i)) 6= h(σk(j)).



Noninvertible horseshoes 275

By (i), f |Z : Z → Z is a homeomorphism, and (f |Z)kh = hσk for our
negative exponent k. So we get (f |Z)kh(i) 6= (f |Z)kh(j) and therefore h(i) 6=
h(j).

Proposition 2. The following conditions are equivalent.

(i) f |A∩R∗ : A ∩R∗ → A is a homeomorphism.
(ii) g : I × θ[−∞,0] → A is a homeomorphism.

(iii) If i, j ∈ θ[−∞,0], i 6= j, then Ri ∩Rj = ∅.

P r o o f. Since g maps each interval I×{i} injectively onto Ri, the equiv-
alence of (ii) and (iii) is obvious.

Now we prove (i)⇒(iii). By (i) for k ≥ 1 the mapping fk : A ∩ R∗k → A
is a homeomorphism. To prove (iii) we show that for i = (. . . , i−1, i0), j =
(. . . , j−1, j0) ∈ θ[−∞,0] the existence of a common point p = (t, x) of Ri and
Rj (t ∈ I, x ∈ Im) implies i = j.

For k ≥ 1 there is a unique p∗ = (t∗, x) ∈ A ∩ R∗k such that fk(p∗) = p.
Here t∗ ∈ Ii∗ , where i∗ = (i∗1, . . . , i

∗
k) ∈ θ[1,k] with i∗l = il−k = jl−k (1 ≤ l

≤ k). Since k ≥ 1 is arbitrary this shows in = jn for all n ≤ 0.
To prove (iii)⇒(i) we assume that all arcs Ri (i ∈ θ[−∞,0]) are disjoint.

Then each component of A∩R∗ is an arc Ri∩Ri (i = (. . . , i−1, i0) ∈ θ[−∞,0],
1 ≤ i ≤ θ), and f maps this arc injectively ontoRj , where j = (. . . , j−1, j0) ∈
θ[−∞,0] is given by jl = jl+1 if l < 0 and j0 = i. So f is injective on each
component of A∩R∗, and by (iii) different components have disjoint images.
Since A∩R∗ is compact, injectivity of f |A∩R∗ together with f(A∩R∗) = A
implies (i).

Proposition 3. Ψ and ΨA are compact , and G is closed in F .

P r o o f. Since the proofs of the three assertions are similar we consider Ψ
(in the piecewise linear case) only. For ψ ∈ J2θm, f = fψ : R∗ → R the cor-
responding mapping and 1 ≤ i ≤ θ let Zi(ψ) denote the union of all Ri∩R∗∞,

where i = (. . . , i−1, i0) ∈ θ[−∞,0] and i0 = i. Obviously Z1(ψ), . . . , Zθ(ψ) are
compact and their union is the set Z belonging to fψ.

If fψ concentrates to a shift space then (by Proposition 1(iii)) the sets
Zi(ψ) are disjoint. We show that the converse also holds. Suppose that
Z1(ψ), . . . , Zθ(ψ) are disjoint, and let i = (. . . , i−1, i0, i1, . . .), j = (. . . , j−1,

j0, j1, . . .) ∈ θ[−∞,∞], i 6= j, be given. We have to show that h(i) 6= h(j).
If il 6= jl for some l ≥ 1, then h(i) and h(j) lie in different components
of R∗∞, and h(i) 6= h(j) is obvious. Now we assume that l0 ≤ 0 is the
maximal index with il0 6= jl0 . Then for i′ = (. . . , i′−1, i

′
0, i
′
1, . . .) = σl0(i) and
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j′ = (. . . , j′−1, j
′
0, j
′
1, . . .) = σl0(j) we have i′0 6= j′0 but i′l = j′l if l ≥ 1. The

points h(i′) and h(j′) lie in the same component {t} × Im of R∗∞ but in
different and therefore disjoint sets Zi′0(ψ) and Zj′0(ψ). So h(i′) 6= h(j′), and
since f−l0 is injective on {t} × Im this gives

h(i) = hσ−l0(i′) = f−l0h(i′) 6= f−l0h(j′) = hσ−l0(j′) = h(j).

To prove that Ψ is compact we show that each point ψ ∈ J2θm \ Ψ has
a neighbourhood which does not intersect Ψ . If ψ 6∈ Ψ the corresponding
sets Z1(ψ), . . . , Zθ(ψ) are disjoint and since they are compact there is a
positive ε such that the distance between any two of them is at least ε.
As is easily seen, the segments Ri (i ∈ θ[−∞,0]) depend continuously on ψ,

and this continuity is uniform with respect to i. Therefore, if ψ′ ∈ J2θm is
sufficiently close to ψ the sets Zi(ψ′) belonging to ψ′ are close to the sets
Zi(ψ) and hence mutually disjoint. This proves ψ′ 6∈ Ψ .

3. Proof of Theorems 1 and 2. We assume that ϕ : I∗ → I, λ ∈
(0, 1/2) and therefore θ, I∗k (1 ≤ k ≤ ∞), Ii, Ri (i ∈ θ[1,k], 1 ≤ k ≤ ∞)

and ti (i ∈ θ[1,∞]) are fixed. Let H denote one of the sets I∗∞ or I, and let
q∗ = dimHH = dimBH. We define

Ψ∗ = {ψ ∈ J2θm | Ri(ψ) ∩Rj(ψ) ∩ (H × Im) 6= 0

for at least one pair i 6= j ∈ θ[−∞,0]},

where Ri(ψ) denotes the set Ri which is constructed with the mapping ψ.
Looking at the equivalences between (i) and (iii) of the first two propositions
in Section 2 we see that both theorems of Section 1 are combined in

(5) dimH Ψ
∗ ≤ 2θm−

(
m− q∗ − 2 log θ

log(1/λ)

)
.

We shall prove (5) at the end of this section after some lemmas are stated
and proved.

Besides Ψ∗, for 1 ≤ k < ∞, i = (i1, . . . , ik), j = (j1, . . . , jk) ∈ θ[1,k],
i 6= j, we shall consider the sets

(6)
Ψ∗
i,j

= {ψ ∈ J2θm | Rσk(i)(ψ) ∩Rσk(j)(ψ) ∩ (H × Im) 6= ∅},

Ψ∗k =
⋃

i,j∈θ[1,k]

ik 6=jk

Ψ∗
i,j
.
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Since R(l−k,...,l0) ⊂ R(l−k+1,...,l0), we have Ψ∗1 ⊃ Ψ∗2 ⊃ . . . , and together
with

Ψ∗ =
∞⋂

k=1

⋃

i,j∈θ[1,k]

i 6=j

Ψ∗
i,j

the proof of Proposition 3 implies

(7) Ψ∗ =
∞⋂

k=1

Ψ∗k .

For k ≥ 1 and i, j ∈ θ[1,k], i 6= j, we define the mapping

πi,j : J2θm → I4m = (Im)4

by πi,j(ψ) = (a, b, c, d), where the points a, b, c, d ∈ Im are determined by

fkψ(si, o) = (0, a), fkψ(ti, o) = (1, b),

fkψ(sj , o) = (0, c), fkψ(tj , o) = (1, d),

with si, ti the end points of Ii such that ϕk(si) = 0 and ϕk(ti) = 1, and
o = (0, . . . , 0) ∈ Im. Therefore (0, a), (1, b) are the end points of the segment
fkψ(Ii × {o}) and (0, c), (1, d) those of fkψ(Ij × {o}). Moreover, the segments

[(0, a), (1, b)] and [(0, c), (1, d)] are edges of the prisms fk(Ri) = Rσk(i) and

fk(Rj) = Rσk(j), respectively, such that for (t, y) ∈ [(0, a), (1, b)] and (t, z) ∈
[(0, c), (1, d)] we have the cubes

(8)
Rσk(i) ∩ ({t} × Im) = {t} × (y + [0, λk]m),

Rσk(j) ∩ ({t} × Im) = {t} × (z + [0, λk]m).

For (a, b, c, d) ∈ (Im)4 = I4m we define

π(a, b, c, d) = (c− a, d− b)
and get a mapping π : I4m → [−1, 1]2m. Finally, we consider the composition

%i,j = ππi,j : J2θm → I2m.

Lemma 1. There is a real α1 > 0 not depending on k, i = (i1, . . . , ik), j =
(j1, . . . , jk) ∈ θ[1,k] such that for any measurable set X in I4m,

vol2θm(π−1
i,j

(X)) ≤ α1 vol4m(X)

provided ik 6= jk. (By volp we denote the p-dimensional Lebesgue measure
in Rp.)
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Lemma 2. There is a real α2 > 0 such that for any measurable set X in
[−1, 1]2m,

vol4m(π−1(X)) ≤ α2 vol2m(X).

Corollary. There is a real α > 0 not depending on k, i = (i1, . . . , ik),
j = (j1, . . . , jk) ∈ θ[1,k] such that for any measurable set X in [−1, 1]2m,

vol2θm(%−1
i,j

(X)) ≤ α vol2m(X)

provided ik 6= jk.

Since the proof of Lemma 2 is trivial it is sufficient to prove Lemma 1.

P r o o f o f L e m m a 1. We start with the remark that πi,j can be ex-

tended to a linear mapping πi,j : R2θm → R4m.

The proof will proceed as follows. We define a 4m-dimensional linear
subspace L of R2θm (depending on i, j) such that πi,j |L : L → R4m is a

linear isomorphism and that for any measurable set X in R4m we have

(9) vol4m((πi,j |L)−1(X)) ≤ α∗ vol4m(X),

where

α∗ =
(

1− λ
1− 2λ

)4m

.

(This is the point where we need λ < 1/2.) Obviously πi,j = πi,j |Lπ∗ with

a linear projection π∗ : R2θm → L, and therefore, if X ⊂ I4m then

vol2θm(π−1
i,j

(X)) = vol2θm(π−1
i,j

(X) ∩ J2θm)

= vol2θm(π∗−1(πi,j |L)−1(X) ∩ J2θm)

≤ (diam J2θm)2θm−4m vol4m((πi,j |L)−1(X))

≤ (diam J2θm)2θm−4mα∗ vol4m(X),

so that the lemma will be proved with

α2 = (diam J2θm)2θm−4m
(

1− λ
1− 2λ

)4m

,

provided (9) is proved.
Thinking of our identification of the mappings ψ : I∗ → Jm with

the points in J2θm we regard J2θm as (Jm)2θ and its points as sequences
(a1, b1, . . . , aθ, bθ), where ai, bi ∈ Jm. Let J4m

i,j
denote the 4m-dimensional

face of J2θm consisting of all (a1, b1, . . . , aθ, bθ) with ai = bi = o for ik 6=
i 6= jk. (Here ik, jk are the last digits of i, j, respectively, and o denotes the
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point (0, . . . , 0) in Rm.) Then L is defined to be the 4m-dimensional linear
subspace of R2θm which contains J4m

i,j
.

Since πi,j is linear there is a real δ such that for any measurable Y in L

we have

vol4m(πi,j(Y )) = δ vol4m(Y ),

and, since vol4m J4m
i,j

= (1− λ)4m, to prove (9) it is sufficient to show that

vol4m(πi,j(J
4m
i,j

)) ≥
(

1− 2λ
1− λ

)4m

(1− λ)4m = (1− 2λ)4m

or that πi,j(J
4m
i,j

) contains the cube Q = [λ, 1− λ]4m.

It will be convenient to identify L with R4m via the mapping L→ R4m

which is obtained by neglecting in points (x1, . . . , x2θm) = (a1, b1, . . . , aθ, bθ)
∈ L (ai, bi ∈ Rm) all coordinates not belonging to aik , bik , ajk , bjk . Then
J4m
i,j

= J4m and we have to show

(10) πi,j(J
4m) ⊃ Q.

Starting with the cube Q∗ = [0, λ]4m for each vertex ψ of J4m we define the
cube Q∗ψ = ψ+Q∗. By a simple geometric argument illustrated in Figure 4
it can be proved that any convex set which intersects all 24m cubes Q∗ψ must
contain Q. Therefore to prove (10) it is sufficient to show that for any vertex

ψ +Q∗ ψ +Q∗

J4m Q

Fig. 4
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ψ of J4m, πi,j(ψ) ∈ Q∗ψ, or, equivalently,

(11) πi,j(ψ)− ψ ∈ [0, λ]4m.

Assume ik < jk. For a vertex ψ = (aik , bik , ajk , bjk) of J4m we shall write
πi,j(ψ) = πi,j(ψ) = (a, b, c, d). To prove (11) it is sufficient to prove

(12) a− aik , b− bik , c− ajk , d− bjk ∈ [0, λ]m.

We consider a − aik ; the remaining cases are analogous. Our identification
ψ = (a1, b1, . . . , aθ, bθ) made in Section 1 implies, for 1 ≤ i ≤ θ,

fψ(Ri) ∩ ({0} × Im) = fψ({si} × Im) = {0} × (ai + [0, λ]m).

Therefore we have by the definition of πi,j ,

(0, a) = fkψ(si, o) = fψf
k−1
ψ (si, o)

and, since ϕ(s(i1,...,il))=s(i2,...,il) ((i2, . . . , il) regarded as element of θ[1,l−1]),

fk−1
ψ (si, o) ∈ {ϕk−1(si)} × Im = {sik} × Im ⊂ Rik .

Therefore

(0, a) ∈ fψ(Rik) ∩ ({0} × Im) = {0} × (aik + [0, λ]m),

which proves (12) for a− aik and hence the lemma.

We consider the compact subset

K = {(a, b) ∈ ([−1, 1]m)2 = [−1, 1]2m | (1− t)a+ tb = o for some t ∈ H}
of [−1, 1]2m.

Lemma 3. Let (a, b, c, d) ∈ I4m. Then the segments [(0, a), (1, b)] and
[(0, c), (1, d)] intersect in a point (t, x) with t ∈ H and x ∈ Im if and only if
π(a, b, c, d) ∈ K.

This lemma is an immediate consequence of the definitions of π
and K.

Lemma 4. There is a real β > 0 such that for any k ≥ 1 and i, j ∈ θ[1,k],
i 6= j, we have

Nλk(Ψ∗
i,j

) ⊂ %−1
i,j

(Nβλk(K)),

where Nλk(Ψ∗
i,j

) denotes the λk-neighbourhood of Ψ∗
i,j

in J2θm while Nβλk(K)

is the βλk-neighbourhood of K in [−1, 1]2m.

P r o o f. For an arbitrarily given ψ = (a1, b1, . . . , aθ, bθ) ∈ Nλk(Ψ∗
i,j

) we

choose ψ′ = (a′1, b
′
1, . . . , a

′
θ, b
′
θ) ∈ Ψ∗i,j so that

|a′i − ai| ≤ λk, |b′i − bi| ≤ λk (1 ≤ i ≤ θ).
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A simple geometric argument (by induction with respect to k) shows
that for

(a, b, c, d) = πi,j(ψ), (a′, b′, c′, d′) = πi,j(ψ
′)

each of the distances |a′ − a|, |b′ − b|, |c′ − c|, |d′ − d| is at most

(13) λk
k−1∑

i=0

λi <
λk

1− λ < 2λk.

(The last inequality is a consequence of our assumption λ < 1/2. Instead
of applying this assumption we could proceed with 1/(1 − λ) instead of 2
and choose β = 4/(1 − λ) + 4

√
m. Therefore in this proof λ < 1/2 is not

essential.) As an immediate consequence of (13) we have

|πi,j(ψ′)− πi,j(ψ)| < 4λk

and from |π(p)− π(q)| < 2|p− q| we get

(14) |%i,j(ψ′)− %i,j(ψ)| < 8λk.

Since ψ′ ∈ Ψ∗
i,j

, we can find points t ∈ H and x ∈ Im such that

(15) (t, x) ∈ Rσk(i)(ψ
′) ∩Rσk(j)(ψ

′).

Let (t, y) and (t, z) be the points at which {t} × Im intersects the segments
fkψ′(Ii × {o}) and fkψ′(Ij × {o}), respectively. The end points of these seg-

ments are (0, a′), (1, b′) and (0, c′), (1, d′) respectively, and (8) together with
fkψ′(Ii × {o}) ⊂ Rσk(i)(ψ

′), fkψ′(Ij × {o}) ⊂ Rσk(j)(ψ
′) and (15) implies

(16) |x− y| ≤ √mλk, |x− z| ≤ √mλk.

Let a∗ = a′+x−y, b∗ = b′+x−y, c∗ = c′+x−z and d∗ = d′+x−z. Then
(a∗, b∗, c∗, d∗) ∈ I4m, and since (t, x) ∈ [(0, a∗), (1, b∗)] ∩ [(0, c∗), (1, d∗)] and
t ∈ H, by Lemma 3 we have π(a∗, b∗, c∗, d∗) ∈ K.

Applying (16) we get

|(a′, b′, c′, d′)− (a∗, b∗, c∗, d∗)| ≤ 2
√
mλk

and therefore, by the definition of π,

dist(%i,j(ψ
′),K) ≤ |π(a′, b′, c′, d′)− π(a∗, b∗, c∗, d∗)| ≤ 4

√
mλk.

This together with (14) shows %i,j(ψ) ∈ Nβλk(K), where β = 8 + 4
√
m.

Lemma 5. dimBK = m+ q∗.
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P r o o f. K is the intersection of a cone with [−1, 1]2m, i.e., if v ∈ K,
γ ∈ R and γv ∈ [−1, 1]2m, then γv ∈ K. The full cone is

K = {γv | v ∈ K, γ ∈ R}
= {(a, b) ∈ (Rm)2 = R2m | (1− t)a+ tb = 0 for some t ∈ H},

and K = K ∩ [−1, 1]2m. So it is sufficient to prove

dimBK = m+ q∗.

To describe K we consider the boundary ∂(Dm × Dm) = (Sm−1 × Dm)
∪ (Dm × Sm−1) of the topological ball Dm × Dm in R2m, where Dm =
{a ∈ Rm | |a| ≤ 1} and Sm−1 = {a ∈ Rm | |a| = 1}. Then, since

dimBK = 1 + dimB(∂(Dm × Dm) ∩K),

it is sufficient to show

(17) max[dimB((Sm−1×Dm)∩K), dimB((Dm×Sm−1)∩K)] = m−1+q∗.

We consider the first term

(Sm−1 × Dm) ∩K =
{(

a,
t− 1
t

a

) ∣∣∣∣ a ∈ Sm−1, t ∈ H ∩ [1/2, 1]
}
.

Let F = Sm−1 × [1/2, 1], and let χ : F → Sm−1 ×Dm be the mapping given
by

χ(a, t) =
(
a,
t− 1
t

a

)
.

Obviously, χ is an injective C∞ embedding satisfying χ(Sm−1×(H∩[1/2, 1]))
= (Sm−1 × Dm) ∩K. Then since

dimB(Sm−1 × (H ∩ [1/2, 1])) = m− 1 + dimB(H ∩ (1/2, 1]),

we have

dimB((Sm−1×Dm)∩K) = m− 1 + dimB(H ∩ [1/2, 1]) if H ∩ [1/2, 1] 6= ∅.
In the same way we get

(Dm × Sm−1) ∩K =
{(

t

t− 1
b, b

) ∣∣∣∣ b ∈ Sm−1, t ∈ H ∩ [0, 1/2]
}
,

dimB((Dm × Sm−1) ∩K) = m− 1 + dimB(H ∩ [0, 1/2]) if H∩ [0, 1/2] 6= ∅.
Since q∗ = max(dimB(H ∩ [0, 1/2]), dimB(H ∩ [1/2, 1])), this implies
(17).

To prove (5) we apply the following result of C. Tricot Jr. [6], in which
dimB and dimB denote the upper and the lower box counting dimension,
respectively (see e.g. [2]).
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Lemma 6. If X is a bounded subset of Rp then

dimBX = p− lim inf
ε→0

log volpNε(X)
log ε

,(18)

dimBX = p− lim sup
ε→0

log volpNε(X)
log ε

,(19)

where Nε(X) denotes the ε-neighbourhood of X in Rp.

P r o o f o f (5). Lemma 6 for X = K together with Lemma 5 implies

2m− lim
ε→0

log vol2mNε(K)
log ε

= m+ q∗,

lim
ε→0

log vol2mNε(K)
log ε

= m− q∗.(20)

Applying Lemma 4 and the corollary to Lemmas 1 and 2 we get for k ≥ 1
and i = (i1, . . . , ik), j = (j1, . . . , jk) ∈ θ[1,k], ik 6= jk,

vol2θmNλk(Ψ∗
i,j

) ≤ α vol2mNβλk(K),

where α, β do not depend on k, i, j. By (6) and (7) we have, for k ≥ 1,

Nε(Ψ∗) ⊂ Nε(Ψ∗k ) =
⋃

i,j∈θ[1,k]

ik 6=jk

Nε(Ψ∗i,j).

There are less than θ2k summands on the right hand side, and therefore

vol2θmNλk(Ψ∗) ≤ θ2kα vol2m(Nβλk(K)).

Since λ < 1, i.e., log λ < 0, this together with (20) implies

lim sup
k→∞

log vol2θmNλk(Ψ∗)
log λk

≥ 2 log θ
log λ

+ lim
k→∞

logα
log λk

+ lim sup
k→∞

log vol2mNβλk(K)
log λk

=
2 log θ
log λ

+ lim
k→∞

log vol2mNβλk(K)
log λk − log β

=
2 log θ
log λ

+m− q∗,

and a fortiori

lim sup
ε→0

log vol2θmNε(Ψ∗)
log ε

≥ 2 log θ
log λ

+m− q∗.

Then

2θm− lim sup
ε→0

log vol2θmNε(Ψ∗)
log ε

≤ 2θm−m+ q∗ − 2 log θ
log λ

,
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and, since Ψ∗ lies in R2θm, (19) implies

dimB Ψ
∗ ≤ 2θm−m+ q∗ +

2 log θ
log(1/λ)

.

Now (5) is a consequence of the well known inequality dimH ≤ dimB.

4. Proof of Theorem 3. In this proof the dimension m of the cube
Im is odd and at least 3. So we shall write m = 2n + 1, where n ≥ 1. Let
Q be an m-dimensional cube. The k-dimensional skeleton (0 ≤ k ≤ m) of
Q, i.e. the union of all k-dimensional faces of Q, will be denoted by SkkQ.
For r ≥ 3 we consider the subdivision of Q into rm congruent cubes and the
family Pr(Q) = {Q1, . . . , Qθm,r} of all those cubes of this subdivision which
intersect SknQ. The number θm,r of cubes in Pr(Q) satisfies

(21) θm,r =
n∑

k=0

22n+1−k
(

2n+ 1
k

)
(r − 2)k < 2n+1

(
2n+ 1
n

)
rn.

(Since Q has 2m−k
(
m
k

)
k-dimensional faces the kth summand in the sum

above is the number of cubes which intersect SkkQ but are disjoint from
Skk−1Q. The upper bound becomes clear by the fact that each of the
2n+1

(2n+1
n

)
faces in SknQ intersects exactly rn cubes of Pr(Q).)

In the following lemma α(m, θ) is the real number defined in Section 1;
here m = 2n+ 1 or, equivalently, n = (m− 1)/2 (n = 1, 2, . . .).

Lemma 7.

(22) α(m, θ) ≤ θ(n+1)/[n(2n+1)].

Lemma 8.

(23) α(m, θm,r) ≤ 1
r
θ1/n
m,r ≤ 21+1/n

(
2n+ 1
n

)1/n

.

Before proving these lemmas (the second of which is the crucial point of
the whole proof) we show how they imply Theorem 3, i.e. (2), and Remark 3,
i.e. (3).

Let m = 2n+ 1 (n ≥ 1) be fixed. Obviously θm,3 < θm,4 < . . . The proof
will be divided into the two cases θ ≥ θm,3 and θ < θm,3.

We begin with θ ≥ θm,3 and choose r so that θm,r ≤ θ < θm,r+1. As an
immediate consequence of the definition of α(m, θ) in Section 1 we have the
implication θ′ ≤ θ′′ ⇒ α(m, θ′)θ′−1/n ≥ α(m, θ′′)θ′′−1/n (since m = 2n + 1
we have −1/n = −2/(m− 1)). Therefore

α(m, θm,r)
(
θm,r+1

θm,r

)1/n

θ−1/n > α(m, θm,r)
(

θ

θm,r

)1/n

θ−1/n

= α(m, θm,r)θ−1/n
m,r ≥ α(m, θ)θ−1/n,
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and by Lemma 8 and (21),

α(m, θ) ≤ α(m, θm,r)
(
θm,r+1

θm,r

)1/n

(24)

≤ 1
r
θ

1/n
m,r+1 =

1
r

[ n∑

k=0

22n+1−k
(

2n+ 1
k

)
(r − 1)k

]1/n

.

As is easily seen, if n is fixed and r →∞ the last term is increasing with limit
12 for n = 1 and smaller than 12 for n > 1. This proves (2) for θ ≥ θm,3.

To prove (2) for 2 ≤ θ < θm,3 we apply Lemma 7 and (21). So we get

α(m, θ) ≤ θ(n+1)/[n(2n+1)] < θ
(n+1)/[n(2n+1)]
m,3

<

[
2n+1

(
2n+ 1
n

)
3n
](n+1)/[n(2n+1)]

.

This easily shows α(m, θ) ≤ 12 in this case.
Now we prove (3). Applying (24), (23) and (21) we get

lim
θ→∞

α(m, θ) ≤ lim
r→∞

1
r
θ

1/n
m,r+1 = lim

r→∞
r + 1
r
· 1
r + 1

θ
1/n
m,r+1

≤ lim
r→∞

21+1/n r + 1
r

(
2n+ 1
n

)1/n

= 21+1/n
(

2n+ 1
n

)1/n

and by Stirling’s formula we have limn→∞
(2n+1

n

)1/n
= 4.

P r o o f o f L e m m a 7. For m = 2n + 1, ϕ : I∗ → I, θ the number of
components of I∗ and λ ∈ (0, 1) we consider the space F with the subset G
as defined in Section 1 in connection with Theorem 3. To prove the lemma
it must be shown that G has interior points provided

(25) λ > θ(n+1)/[n(2n+1)]θ−1/n.

We shall even prove that (25) implies G = F or, equivalently, that the
existence of a mapping ψ ∈ F \ G implies

(26) λ ≤ θ(n+1)/[n(2n+1)]θ−1/n.

Let ψ ∈ F \ G be fixed. By the proof of Proposition 2 in Section 2 we can
find an integer q ≥ 0 such that for k ≤ −q and any two sequences i =
(ik, . . . , i0), j = (jk, . . . , j0) ∈ θ[k,0] satisfying (ik+q, . . . , i0) 6= (jk+q, . . . , j0)
we have Ri ∩ Rj = ∅, where Ri, Rj are defined as in Section 2 with the

mapping fψ : R∗ → R.
Then using standard methods for any t ∈ I the Hausdorff dimension of

the sets A ∩ ({t} × Im) can be calculated to be

dimH(A ∩ ({t} × Im)) = − log θ/ log λ.
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Obviously this dimension does not exceed m = 2n+ 1, i.e., − log θ/ log λ ≤
2n+ 1, which is equivalent to (26).

The proof of Lemma 8 will use the following elementary fact concerning
linking of n-skeletons of (2n+ 1)-dimensional cubes.

Lemma 9. Let Q′(t), Q′′(t) (t ∈ I) be two continuous families of m-
dimensional cubes in Rm, where the edges of all these cubes are of equal
length and parallel to the axes of Rm. Assume Q′(0)∩Q′′(0) 6= ∅ and Q′(1)∩
Q′′(1) = ∅. Then for some t′ ∈ I the skeletons Skn(Q′(t′)) and Skn(Q′′(t′))
intersect.

P r o o f. The topological background of this lemma is the fact that for
t = 0 the skeletons Skn(Q′(0)) and Skn(Q′′(0)) either intersect or are linked
as indicated for n = 1 and m = 3 in Fig. 5, while by disjointness of Q′(1)
and Q′′(1), the skeletons Skn(Q′(1)) and Skn(Q′′(1)) are unlinked.

Fig. 5

We shall apply the following simple fact concerning two cubes F ′ and
F ′′ of dimension m− 1 = 2n lying in Rm−1. If the edges of F ′′ are parallel
to and of the same length as the edges of F ′ then F ′ ∩ F ′′ 6= 0 implies
SknF ′ ∩ SknF ′′ 6= ∅. Therefore to prove the lemma it is sufficient to find
some t′ ∈ I and (m− 1)-dimensional faces F ′ and F ′′ of Q′(t′) and Q′′(t′),
respectively, such that F ′ and F ′′ intersect and lie in a common hyperplane
of Rm. We define

t′ = sup{t ∈ I | Q′(t) ∩Q′′(t) 6= ∅}.
Then Q′(t′)∩Q′′(t′) 6= ∅, but IntQ′(t′)∩ IntQ′′(t′) = ∅. If H1, . . . , H2m are
the hyperplanes in Rm each of which contains an (m−1)-dimensional face of
Q′(t′), then there is at least oneHi such thatQ′(t′) andQ′′(t′) lie on opposite
sides of Hi. (Otherwise the interiors of the two cubes would intersect.) Let
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F ′ and F ′′ be the (m− 1)-faces of Q′(t′) and Q′′(t′), respectively, which lie
in Hi. Then F ′ ∩ F ′′ 6= ∅.

P r o o f o f L e m m a 8. For m = 2n + 1 ≥ 3, r ≥ 3, ϕ : I∗ → I, θm,r
the number of components of I∗ and λ ∈ (0, 1) we consider the space F with
the subset G.

We shall prove that G has interior points provided λ > 1/2. By the
definition of α(m, θm,r) in Section 1 this implies the first inequality in (23).
The second follows from (21).

The equality of (21) together with r ≥ 3 implies

θ(n+1)/[n(2n+1)]
m,r θ−1/n

m,r = θ−1/(2n+1)
m,r < 1/2,

and using Lemma 7 we get

α(m, θm,r)θ−2/(m−1)
m,r < 1/2.

Then by the definition of α(m, θm,r) the set G has interior points provided
λ ≥ 1/2. In the remaining crucial case λ ∈ (1/r, 1/2) we proceed as follows.

For m, r, I∗, ϕ and θm,r as above and λ ∈ (1/r, 1/2) fixed we define an
open subsetH 6= ∅ of F . Then for each ψ ∈ H we construct two sequences i =
(. . . , i−1, i0) and j = (. . . , j−1, j0) in θ[−∞,0]

m,r such that i0 = 1, j0 6= 1 and for
any k ≥ 0 the two curved prisms R(i−k,...,i0) and R(j−k,...,j0) corresponding
to fψ intersect, i.e.,

(27) R(i−k,...,i0) ∩R(j−k,...,j0) 6= ∅.
Since

R(i−k−1,...,i0) ⊂ R(i−k,...,i0), R(j−k−1,...,j0) ⊂ R(j−k,...,j0),

and the prisms are compact the arcs

Ri =
∞⋂

k=0

R(i−k,...,i0), Rj =
∞⋂

k=0

R(j−k,...,j0)

also intersect, and we have ψ ∈ G. This implies H ⊂ G, and G is shown to
have interior points.

Construction of H. Let Q = [δ, 1−δ]m be a subcube of Im, and let P be
the set of all those cubes from the subdivision of Q into rm cubes with edge
length (1 − 2δ)r−1 which intersect the skeleton SknQ. By the definition of
the number θm,r at the beginning of this section, P consists of θm,r cubes
and these will be denoted by Q1, . . . , Qθm,r .

Then for an arbitrarily chosen point t+ in I \ I∗ the set H consists of all
ψ ∈ F for which the corresponding map fψ : I∗× Im → R has the following
two properties, where the points t+i ∈ Ii are determined by ϕ(t+i ) = t+:

(A) If t ∈ Ii, ϕ(t) ∈ I∗ then {ϕ(t)}×Qi ⊂ fψ({t}× IntQ) (i = 1, . . . , θm,r).
(B) fψ({t+1 } × Im) ∩ fψ({t+i } × Im) = ∅ (i = 2, . . . , θm,r).
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Obviously H is open. To show H 6= ∅ we remark that using λ < 1/2 it is not
hard to find a mapping ψ ∈ F which satisfies (A) and (B) and is constant
on I∗ \ ϕ−1(I+), where I+ denotes the component of I \ I∗ containing t+.
Then, as indicated in Fig. 6, the curved prisms Ri (i ∈ θ[0,0]

m,r ) are straight
outside I+× Im while possibly bended inside I+× Im so that (B) holds. In
order that this construction is possible (i.e. that these prisms lie in R) we
have to assume that Q is sufficiently small.

}
I+ × Im

Fig. 6

Construction of i, j. With ψ ∈ H fixed we shall define i0, i−1, . . . , j0,
j−1, . . . successively together with points t0, t1, . . . ∈ I such that for any
k ≥ 0,

(28) (IntR(i−k,...,i0) ∩ ({tk} × Im)) ∩ (IntR(j−k,...,j0) ∩ ({tk} × Im)) 6= ∅,
where

R(i−k,...,i0) = fk+1(Iσ−k−1(i−k,...,i0) ×Q),

R(j−k,...,j0) = fk+1(Iσ−k−1(j−k,...,j0) ×Q),
are the prisms contained in and concentric to R(i−k,...,i0), R(j−k,...,j0), re-
spectively, and which intersect the cubes {t} × Im (t ∈ I) in cubes with
edge length λk+1(1− 2δ).

We start with i0 = 1 and fix j0 ∈ {2, . . . , θm,r} so that Q1, Qj0 are
neighbours in P, i.e. Q1 ∩Qj0 6= ∅.

The point t0 can be arbitrarily chosen in I∗. Then property (A) of ψ
implies

IntR(i0) ∩ ({t0} × Im) ⊃ Q1 × ({t0} × Im),

IntR(j0) ∩ ({t0} × Im) ⊃ Qj0 × ({t0} × Im),
and we get (28) for k = 0.

Now we assume that t0, . . . , tk, (i−k, . . . , i0) and (j−k, . . . , j0) are defined
where R(i−k,...,i0) ∩ ({tk}× Im) and R(j−k,...,j0) ∩ ({tk}× Im) have common
interior points. By the definition of t+ and since i0 = 1 and j0 6= 1 the cubes
R(i−k,...,i0) ∩ ({t+} × Im) and R(j−k,...,j0) ∩ ({t+} × Im) are disjoint. (Here
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we use the property (B) of ψ.) Applying Lemma 9 we get a point tk+1 in
the subinterval of I with end points t+ and tk such that the k-skeletons
of the cubes R(i−k,...,i0) ∩ ({tk+1} × Im) and R(j−k,...,j0) ∩ ({tk+1} × Im)
intersect. Using the fact that these skeletons are covered by the interiors
of the cubes R(i,i−k,...,i0) ∩ ({tk+1} × Im) and R(j,j−k,...,j0) ∩ ({tk+1} × Im)
(1 ≤ i, j ≤ θm,r), respectively, we can find indices i−(k+1) and j−(k+1) such
that R(i−(k+1),...,i0) ∩ ({tk+1}× Im) and R(j−(k+1),...,j0) ∩ ({tk+1}× Im) have
common interior points. So our induction is complete.
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