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Abstract. Players One and Two play the following game: In the nth inning One
chooses a set On from a prescribed family F of subsets of a space X; Two responds by
choosing an open subset Tn of X. The players must obey the rule that On ⊆ On+1 ⊆
Tn+1 ⊆ Tn for each n. Two wins if the intersection of Two’s sets is equal to the union of
One’s sets. If One has no winning strategy, then each element of F is a Gδ-set. To what
extent is the converse true? We show that:

(A) For F the collection of countable subsets of X:

1. There are subsets of the real line for which neither player has a winning
strategy in this game.

2. The statement “If X is a set of real numbers, then One does not have a
winning strategy if, and only if, every countable subset of X is a Gδ-set” is
independent of the axioms of classical mathematics.

3. There are spaces whose countable subsets are Gδ-sets, and yet One has a
winning strategy in this game.

4. For a hereditarily Lindelöf space X, Two has a winning strategy if, and only
if, X is countable.

(B) For F the collection of Fσ-subsets of a subset X of the real line the determinacy
of this game is independent of ZFC.

1. Definitions and conventions. A subset of a topological space is a
Gδ-set if it is the intersection of countably many open sets; it is an Fσ-set if
it is the complement of a Gδ-set. Let F be a family of subsets of a topological

1991 Mathematics Subject Classification: Primary 90D44.
Key words and phrases: game, strategy, Lusin set, Sierpiński set, Rothberger’s prop-

erty C′′, concentrated set, λ-set, σ-set, perfectly meager set, Q-set, s0-set, A1-set, A2-set,
A3-set, b, d.

The first author partially supported by NSF grant DMS 93-12363.
The second author partially supported by NSF grant DMS 95-05375.
The third author supported by an NSERC grant.

[41]



42 W. Just et al.

space such that A ∪ B is in F whenever A and B are, and all one-element
subsets are elements of F . Some classes of topological spaces are defined by
specifying such a family F and then requiring that each element of F is a
Gδ-set. For example:

1. According to K. Kuratowski, a topological space is a rarified space (or
λ-space) if all its countable subsets are Gδ-sets [9].

2. According to W. Sierpiński and E. Szpilrajn (Marczewski), a space is
a σ-space if every Fσ-set is a Gδ-set.

3. According to F. Rothberger, a space is a Q-space if every subset is a
Gδ-set [15].

4. A space is perfect if every closed subset is a Gδ-set [18], p. 162.
According to E. Čech, a normal space which is perfect is called per-
fectly normal [4].

Since countable operations are involved in defining these concepts, they are
susceptible to game-theoretic analysis. We introduce such an analysis by
using the game defined in the abstract. For a family F this game is denoted
by G(F).

A space X has property C′′ if for every sequence (Un : n ∈ ω) of open
covers of X there is an open cover (Un : n ∈ ω) such that Un ∈ Un for each
n. This property was introduced by Rothberger in [14].

The symbol ωω denotes the set of functions from ω to ω. Define the
binary relation ≺ on ωω by f ≺ g if for all but finitely many n, f(n) < g(n).
Then ≺ is a pre-ordering on ωω. When f ≺ g, we say that “g eventually
dominates f”. A subset S of ωω is unbounded if there is no g such that for
each f ∈ S we have f ≺ g. The least cardinality of an unbounded subset
of ωω is denoted by b. A subset S is dominating if for each g there is an
f ∈ S such that g ≺ f . The least cardinality of a dominating subset of ωω
is denoted by d. It is well known that ℵ1 ≤ b ≤ d and that there is always
a subset of ωω which is of cardinality b and well-ordered by ≺. When b = d
one has a chain of length d which is well-ordered by the eventual domination
order and is cofinal in ωω. According to Hausdorff such a chain is said to be
a d-scale.

Consider ω as a discrete topological space. Then ωω, endowed with the
Tychonoff product topology, is homeomorphic to the space of irrational
numbers. For a finite sequence σ of finite ordinals, [σ] denotes the sub-
set {f ∈ ωω : σ ⊂ f} of ωω. Subsets of this form constitute a basis for
the Tychonoff product topology of ωω. We shall also borrow the following
notation from Descriptive Set Theory: The collection of closed subsets of a
space is denoted by Π0

1 , while the collection of Fσ-subsets is denoted by Σ0
2 .

Next we recall some notions from [2]: the space X is an A1-space if for
every Borel function Ψ : X → ωω, Ψ [X] has property C′′; it is an A2-space if
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for every Borel function Ψ from X to ωω, Ψ [X] is a bounded subset of ωω;
it is an A3-space if for any Borel function Ψ from X to ωω, Ψ [X] is not a
dominating family.

We would like to thank the referee for pointing out gaps in earlier versions
of two proofs in this paper.

2. Strategies for player One

Lemma 1. If One does not have a winning strategy in the game G(F),
then every element of F is a Gδ-set.

P r o o f. Let A be an element of F and consider the strategy for One
which calls on One to choose A each inning. Since One has no winning
strategy, this is not a winning strategy. Look at a play which defeats it; the
sequence of open sets chosen by Two during such a play witnesses that A
is a Gδ-set.

Theorem 2. If (X, τ) is an A3-space, then the following are equivalent :

1. Each element of F is a Gδ-set.
2. One does not have a winning strategy in the game G(F).

P r o o f. We must prove 1⇒2: Let σ be a strategy for One. For each
F ∈ F fix a descending sequence of open sets (Vn(F ) : n ∈ ω) such that⋂
n∈ω Vn(F ) = F . Let F∅ = σ(∅) be One’s opening move in the game. For

each n, put F(n) = σ(V(n)(F∅)). Let 0 < k < ω be given, and assume that
for each (n1, . . . , nk) in kω we have defined V(n1,...,nk) and F(n1,...,nk) such
that

1. V(n1,...,nk−1,m) = Vm(F(n1,...,nk−1)) for each m < ω,
2. F(n1) ⊆ F(n1,n2) ⊆ . . . ⊆ F(n1,...,nk), and
3. F(n1,...,nk) = σ(V∅, V(n1), . . . , V(n1,...,nk)).

Let F(n1,...,nk,m) be the set σ(V∅, V(n1), . . . , V(n1,...,nk), V(n1,...,nk,m)).
This defines Fτ and Vτ for each τ in <ωω such that:

• Fτ is an element of F and Vτ is an open subset of X,
• if τ is extended by ν, then Fτ ⊆ Fν ⊆ Vν ⊆ Vτ ,
• Fτ =

⋂
n<ω Vτ_(n), and

• if m < n then Vτ_(n) ⊆ Vτ_(m).

Defeating the given strategy for One amounts to finding a g ∈ ωω such
that ⋃

n∈ω
Fg|n =

⋂
n∈ω

Vg|n.

For this we use the hypothesis that X is an A3-space: For each x 6∈ F∅,
define fx in ωω as follows:
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1. fx(0) = min{n > 0 : x 6∈ V(n)}.
2. fx(n+ 1) is the least m larger than fx(n) such that

(∀i ≤ fx(n))(∀n1, . . . , ni ≤ fx(n))(x 6∈ F(n1,...,ni) ⇒ x 6∈ V(n1,...,ni,m)).

The mapping which assigns fx to x is a Borel mapping from X to ωω.
Since X is an A3-space, we find an f in ωω such that:

1. f is strictly increasing,
2. 1 < f(0), and
3. for each x ∈ X there are infinitely many n such that fx(n) < f(n).

For each n < ω put g(n) = fn+1(0). Then the play

(F∅, Vg|1, Fg|1, Vg|2, Fg|2, . . .)

is lost by One: For consider a point x 6∈ ⋃n<ω Fg|n. Pick the smallest positive
n such that fx(n) < fn(0). Then we have f1(0) < . . . < fn−1(0) ≤ fx(n−1).
We see that x 6∈ V(f1(0),...,fn−1(0),fx(n)). But then x 6∈ V(f1(0),...,fn(0)), and so
we have x 6∈ ⋂n<ω Vg|n. It follows that

⋃
n<ω Fg|n =

⋂
n<ω Vg|n.

We shall later give an example which shows that the hypothesis that the
space is an A3-space, though sufficient, is not necessary.

Lusin sets and Sierpiński sets. A set of real numbers is said to be a Lusin
set if it is uncountable but its intersection with every first category set of
real numbers is countable. It is well known that Lusin sets have Rothberger’s
property. It is also well known that if X is a subset of ωω and has Roth-
berger’s property, then there is a g in ωω such that for each x ∈ X the set
{n : x(n) = g(n)} is infinite. The following theorem is well known; its proof
is included for completeness.

Theorem 3. Every Lusin set is an A3-space.

P r o o f. Let X ⊂ R be a Lusin set, and let f : X → ωω be a Borel
function. Then there is a first category set K ⊂ L such that f restricted to
L\K is continuous ([8], Chapter II, §32.II). But K is a countable subset of L
since L is a Lusin set. Then L\K is still a Lusin set and thus has Rothberger’s
property. Rothberger’s property is preserved by continuous images. Thus,
f [L \ K] is a subset of ωω which has Rothberger’s property. Since f [K] is
countable, it also has Rothberger’s property, and so f [X] has Rothberger’s
property. Then there is a g in ωω such that for each x ∈ X there are infinitely
many n such that f(x)(n) = g(n). This g is not eventually dominated by
any f(x).

Corollary 4. If X is a Lusin set and F is a collection of subsets of X,
then the following are equivalent :

1. Each element of F is a Gδ-set.
2. One does not have a winning strategy in G(F).



Gδ-sets in topological spaces and games 45

A set of real numbers is said to be a Sierpiński set if it is uncountable
but its intersection with every set of Lebesgue measure zero is countable.
Sierpiński showed that the Continuum Hypothesis implies that Sierpiński
sets exist [16]. The following theorem is well known (see [6]).

Theorem 5. Every Sierpiński set is an A2-set.

Corollary 6. For a collection F of subsets of a Sierpiński set X, the
following are equivalent :

1. Each element of F is a Gδ-set.
2. One does not have a winning strategy in G(F).

I. F is the collection of finite subsets of X. If a space is a λ-space, then
every countable subset (and in particular, every finite subset) is a Gδ-set.
This implies that X is a T1-space.

Theorem 7. If X is a first countable λ-space, then One does not have
a winning strategy in G([X]<ℵ0).

P r o o f. Let σ be a strategy for One. Using the assumption that X is a
λ-space, for each countable subset C of X we choose a descending sequence
of open sets, (Gn(C) : n < ω), with intersection equal to C. For finite C we
assume that (Gn(C) : n < ω) is a base at C in X. Define sets Fτ and Gτ
for τ ∈ <ωω by recursion over the length of τ as follows:

G∅ = X, Fτ = σ(Gτ |0, Gτ |1, . . . , Gτ ), Gτ_m = Gm(Fτ ).

Let C =
⋃
τ∈<ωω Fτ , a countable subset of X. We may assume that C is

infinite (the case when C is finite is even easier). Enumerate C bijectively
as {ck : k < ω}.

Here is how Two defeats One’s strategy σ: Let m1 be the minimal m
such that cm 6∈ F∅. Then choose n1 so large that cm1 6∈ G(n1), and G(n1) ⊂
G1(C) (we used T1 here, and it is used similarly in the rest of the selection
of the ni’s). Then let m2 be the least m such that cm ∈ G(n1) \ F(n1), and
choose n2 so large that cm2 6∈ G(n1,n2), and G(n1,n2) ⊂ G2(C). Continuing
in this manner we find two infinite sequences (m1,m2, . . .) and (n1, n2, . . .)
such that for each k,

1. mk is the least m such that cm ∈ G(n1,...,nk−1) \ F(n1,...,nk−1), and
2. nk is so large that cmk 6∈ G(n1,...,nk), and G(n1,...,nk) ⊂ Gk(C).

Then
⋃

0<k<ω F(n1,...,nk) =
⋂

0<k<ω G(n1,...,nk), and so One lost this play.

The assumption of first countability in the previous theorem is essential.
In Section II.2 we will construct a λ-space on which One has a winning
strategy in the game G([X]<ℵ0).

Every first countable T1-space which is also an A2-space is a λ-space.
Thus Theorem 7 includes all first countable A2-spaces. By Theorem 2 we
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could have assumed that X is an A3-space instead of a λ-space. This is
not subsumed by Theorem 7, because it is consistent that there are first
countable A3-spaces which are not λ-spaces: According to Besicovitch a set
X of real numbers is concentrated on a countable set Y if for every open
set U which contains Y , X \ U is countable [3]. In some sense, sets concen-
trated on a countable subset of itself are opposites of λ-sets. For example a
Lusin set is an A3-set which is concentrated on each of its countable dense
subsets.

Some hypothesis besides first countability is needed in Theorem 7: Ac-
cording to Szpilrajn [21] a set X of real numbers is said to have property s0

if for every perfect set P of real numbers there is a perfect set Q such that
Q ⊂ P and Q ∩X = ∅.

Theorem 8. If X is a set of real numbers for which One does not have
a winning strategy in G([X]<ℵ0), then X has property s0.

P r o o f. Let P be a perfect subset of R. If X ∩P is not dense in P , then
pick an open U such that U ∩ P 6= ∅ and U ∩ P ∩ X = ∅, and let Q be
a perfect subset of U ∩ P . If X ∩ P is dense in P , then we need to find a
perfect Q ⊂ P such that Q ∩X = ∅. Consider the following strategy σ for
player One: In the first inning, σ chooses x1 ∈ X ∩ P . In the nth inning
suppose One has chosen {x1, . . . , xk−1}. Let U be any open set containing
this set of points (typically, U is Two’s response). Since X ∩ P is dense
in P and P has no isolated points, we find for every l < k two points
xk+2l and xk+2l+1 in (xl − 2−n, xl + 2−n)∩X ∩ P ∩U such that the points
x1, . . . , xk−1, xk, . . . , x3k−1 are all distinct. The strategy σ chooses the set
{x1, . . . , x3k−1} in the nth inning as the response to Two’s move U .

Since σ is not a winning strategy for One, consider a σ-play

O1, T1, O2, T2, . . . , On, Tn, . . .

which is lost by One. Write
⋃
n<∞On = {x1, x2, . . .}. Then

⋃
n<∞On is

a subset of P and is dense in itself. Thus, O = cl(
⋃
n∈ω On) is perfect.

Moreover, for each n, Tn∩O is a dense open subset of O; hence
⋂
n<∞ Tn∩O

is comeager in O and so contains a perfect subset Q that is disjoint from
the countable set {x0, x1, . . .}. Since X ∩ ⋂n<∞ Tn = {x1, x2, . . .}, we see
that Q ∩X = ∅. Since Q ⊂ O ⊂ P , we are done.

Sets of real numbers where One does not have a winning strategy in
this game share some of the properties of λ-sets, but not all. For example:
A set of real numbers is perfectly meager if its intersection with each per-
fect set is meager in the relative topology of that perfect set. Every λ-set is
perfectly meager (cf. [11], pp. 118–119), and every perfectly meager set has
property s0.
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Corollary 9. If X is a Lusin set , then

(a) X is not meager (and hence not perfectly meager), and
(b) One has no winning strategy in G([X]<ℵ0).

P r o o f. Let X be a Lusin set. Then X is an A3-space (Theorem 3), and
as it is a metric space, each finite subset of it is a Gδ-set. Then Theorem 2
implies that One has no winning strategy in G([X]<ℵ0). Being a Lusin set,
X is not meager and thus not perfectly meager.

II. F is the collection of countable subsets of X. Our results so far show
that an A3-space X is a λ-space if and only if One does not have a winning
strategy in the game G([X]≤ℵ0). We explore this a little further.

II.1. The A3-hypothesis is sufficient but not necessary

Theorem 10. Let κ be an infinite ordinal. For every subspace X of ωω
which is of the form {fα : α < κ}, where fα ≺ fβ when α < β, One does
not have a winning strategy in the game G([X]≤ℵ0).

P r o o f. One not having a winning strategy in G([X]≤ℵ0) is hereditary
so we may assume that cof(κ) > ω. Fix a strategy σ for player One in the
game. We define for each F ∈ [X]≤ℵ0 , each open U ⊃ F , each Γ ∈ [X]<ℵ0 ,
and each n ∈ ω an open set UΓ,U,n(F ) containing F and contained in U as
follows. For each f ∈ F fix nf > n minimal so that

(a) For each g ∈ Γ , if f ≺ g then f(l) < g(l) for each l ≥ nf .
(b) For each g ∈ Γ , if g ≺ f then g(l) < f(l) for each l ≥ nf .
(c) [f |nf ] ⊂ U .

Now let
UΓ,U,n(F ) =

⋃

f∈F
[f |nf + 1].

It is worth noting that g(nf ) 6= f(nf ) whenever f ∈ F and g ∈ Γ \ F .
Therefore

(d) If g ∈ Γ and g 6∈ F , then g 6∈ UΓ,U,n(F ) for open U and n ∈ ω.

Next we choose a countable G ⊂ X on which we may effectively restrict
our play of the game. Fix a countable G ⊂ X satisfying the following:
Suppose (F0, U0, . . . , Fm−1, Um−1) is a play of the game such that

• σ(F0, U0, . . . , Fi−1, Ui−1) = Fi for each i < m, and
• Ui = UΓ,Ui−1,n(Fi−1) for each i < m and for some finite Γ ⊂ G and
n ∈ ω (both depending on i).

Then

(e) σ(F0, U0, . . . , Fn−1, Un−1) ⊂ G, and
(f) if β = sup{α < β : fα ∈ Fi} then fβ ∈ G.
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In particular, F0 = σ(∅) ⊂ G. G can be constructed by a simple closing
off argument (or by letting G = M∩X for M an appropriate elementary
submodel).

Let A = {α ∈ κ : fα ∈ G} and let B be the closure of A in κ. Then
A and B are countable subsets of κ. We now describe how Two should
play to defeat One. Enumerate A as {αi : i ∈ ω} and enumerate B \ A as
{βi : i ∈ ω} (if B \A is finite the proof is the same).

Consider a partial play of the game (F0, U0, . . . , Fm−1, Um−1, Fm). For
each i < m the set {α < βi : fα ∈ Fm} is bounded below βi (since βi 6∈ A).
Therefore there is an α(βi) ∈ A ∩ βi such that α < α(βi) whenever α < βi
and fα ∈ Fm. Let

Γm = {fαi : i ≤ m} ∪ {fα(βi) : i ≤ m}.
Let n(m) > m be large enough so that for any fγ , fδ ∈ Γm ∪ {fβi : i ≤ m}
if γ < δ then fγ(l) < fδ(l) for each l > n(m). Two then plays the open set

Um = UΓm,Um−1,n(m)(Fm).

Now suppose that (F0, U0, . . . , Fm, Um, . . .) is a play of the game where One
uses the strategy σ and Two responds as described above.

Claim 11. Two wins the play (F0, U0, . . . , Fm, Um, . . .).

P r o o f. Fix f ∈ ⋂m∈ω Um.

C a s e 1: f ∈ G. Then there exists an i ∈ ω such that f = fαi . So
f ∈ Γi+1. If f 6∈ Fi+1, we would deduce by (d) that f 6∈ Ui+1. Therefore
f ∈ ⋃Fm.

C a s e 2: f 6∈ G. Fix γ such that f = fγ . Let β = maxB ∩ γ + 1 (B is
closed in κ) and let α = minA \ γ. We only consider the most difficult case
where α exists and where β ∈ B \ A. We therefore have β < α, and there
are i, j ∈ ω such that β = βi and α = αj . Fix m ∈ ω large enough so that
i, j < m and so that

(g) fβ(l) ≤ f(l) < fα(l) for each l > m.

Claim 12. f 6∈ Um.

P r o o f. Otherwise there is a δ such that fδ ∈ Fm and f(i) = fδ(i) for
each i < nfδ + 1. (Recall that Um =

⋃
f∈Fm [f |nf + 1]). Suppose that δ < βi;

then there is an α(βi) ∈ Γm such that δ < α(βi) < βi. By (a) and (g) and
the fact that mfδ > m, we have

fδ(l) < fα(βi)(l) < fβi(l) ≤ f(l) for each l > mfδ .

In particular, fδ(mfδ ) < fβi(mfδ) ≤ f(mfδ ); this shows that f(i) = fδ(i)
does not hold for each i < mfδ + 1. In the case where δ > α the proof is
similar.
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Theorem 10 generalizes the well-known fact (already noted on p. 128
of [9]) that the ≺-well-ordered subsets of ωω are λ-sets and thus perfectly
meager sets ([10] and [11]).

Corollary 13. If d = b, then there is a set X of real numbers which is
not an A3-space, and yet One does not have a winning strategy in the game
G([X]≤ℵ0).

The Continuum Hypothesis or Martin’s Axiom, each a statement which
is consistent with classical mathematics, implies that b is equal to d.

Lemma 1 gives for a subset X of the real line

“One does not have a winning strategy in G([X]≤ℵ0)⇒ X is a λ-set”.

While the converse of this implication is false for Tychonoff spaces, for sets of
reals the converse is independent of ZFC. One direction is straightforward
from the result of A. Miller that in the Cohen model every λ-set of real
numbers is of size < 2ℵ0 (see Theorem 9.8 in [13]). Since every dominating
family in this model is of size 2ℵ0 it follows that every λ-set of real numbers
is A3 in the Cohen model. Therefore we have the following corollary to
Theorem 2:

Corollary 14. In the model obtained by adding > 2ℵ0 many Cohen
reals to a model of set theory the following are equivalent for a set X of
reals:

1. X is a λ-set.
2. One does not have a winning strategy in the game G([X]≤ℵ0).

We shall now show:

(I) There exists a λ-space such that One has a winning strategy in
G([X]≤ℵ0).

(II) The Continuum Hypothesis implies that there is a λ-set X of real
numbers such that One has a winning strategy in G([X]≤ℵ0).

II.2. A λ-space for which One has a winning strategy in the game
G([X]<ℵ0). The next example shows that the property of One not having
a winning strategy in G([X]≤ℵ0) is strictly stronger than being a λ-space.
Also, this example shows that the assumption of first countability in Theo-
rem 7 is essential.

Theorem 15. Let κ, ν be uncountable cardinals such that κ<ν = κ. Then
there exists a zero-dimensional T1-space (X, τ) with |X| = κ such that every
subset of X of cardinality ν is a Gδ-set and One has a winning strategy
in the game G([X]<ℵ0). In particular , there exists a zero-dimensional T1

λ-space (X, τ) with |X| = c such that One has a winning strategy in the
game G([X]<ℵ0).
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P r o o f. Let κ, ν be as in the assumptions. The underlying set of the
space will be the initial ordinal κ. In order to construct τ , we will define for
each Y ∈ [κ]<ν a function gY : κ→ ω + 1. For Y ∈ [κ]<ν and m ∈ ω let

GY,m = g−1
Y ([m,ω]) and HY,m = g−1

Y {m}.
Let τ be the topology generated by the subbase

{GY,m : Y ∈ [κ]<ν , m ∈ ω} ∪ {HY,m : Y ∈ [κ]<ν , m ∈ ω}.
We will require that for all Y ∈ [κ]<ν and x ∈ X,

(1) gY (x) = ω if and only if x ∈ Y .

Moreover, for all countable subsets Y of [κ]<ν and all functions f : Y → ω
we will require that

(2) |⋂Y ∈Y HY,f(Y )| = κ.

In order to construct the family {gY : Y ∈ [κ]<ν}, fix an enumeration
(fβ : β < κ) of all functions that map a countable subset of [κ]<ν into ω
such that each of these functions appears κ times in the enumeration. Now
let us define the gY ’s. If β ∈ Y , then gY (β) = ω. This will take care of
(1). If β 6∈ Y and Y is in the domain of fβ , then let gY (β) = fβ(Y ). Since
our assumptions imply that the union of each countable subset of [κ]<ν has
fewer than κ elements, the latter clause ensures (2). Finally, if β 6∈ Y and
Y 6∈ dom(fβ), then let gY (β) = 0.

It is not hard to see that the space (X, τ) just defined is zero-dimensional
and that every set Y ∈ [κ]<ν is equal to

⋂
m∈ω GY,m, and is thus a Gδ-set.

Moreover, considering Y = {x}, we see that the space is T1.
It remains to define a winning strategy σ for player One. For sets A and

B let Fn(A,B) denote the set of all finite partial functions from A to B. For
p ∈ Fn([κ]<ν , ω), let

Wp =
⋂
{HY,p(Y ) : Y ∈ dom(p)} and W = {Wp : p ∈ Fn([κ]<ν , ω)}.

Each Wp is a clopen subset of X, and (2) implies in particular that

(3) each element of W has size κ.

Moreover, it follows immediately from the definition of the topology that

(4) every nonempty open set in X contains an element ofW as a subset.

Fix α0 ∈ X and let One’s opening play of the game be σ(∅) = {α0}.
Suppose that

({α0}, U0, {α0, α1}, . . . , {α0, . . . , αn−1}, Un−1)

is a partial play of the game and that p0, . . . , pn−1 ∈ Fn([κ]<ν , ω)} are
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such that

(a) Wpi ⊆ Ui for all i < n,
(b) for each i < j < n, pj extends pi.

Then fix αn ∈Wpn−1 so that αn 6∈ {αi : i < n} and let

σ({α0}, U0, {α0, α1}, . . . , {α0, . . . , αn−1}, Un−1) = {αi : i ≤ n}.
Suppose that Two responds with the open set Un. We must still show how
to define pn preserving the properties (a) and (b). Fix a basic open set V
containing αn such that V ⊆ Un. Then

V =
( ⋂

Y ∈F0

HY,ny

)
∩
( ⋂

Y ∈F0

GY,ny

)

for some finite disjoint sets F0, F1 ⊆ [κ]<ν and sequence of integers {ny :
Y ∈ F0 ∪ F1}. Notice that if Y ∈ dom(pn−1) ∩ F0 then pn−1(Y ) = ny and
if Y ∈ dom(pn−1) ∩ F1 then pn−1(Y ) ≥ ny. Let pn = pn−1 ∪ {(Y, nY ) : Y ∈
(F0 ∪F1) \ dom(pn−1)}. Clearly, pn satisfies (a) and (b). Therefore if we let
f =

⋃
n∈ω pn then

⋂

Y ∈Y
HY,f(Y ) =

⋂
n∈ω

Wpn ⊆
⋂
Un

and by construction
⋂
Y ∈Y HY,f(Y ) is of size κ. Therefore σ is a winning

strategy for player One.

II.3. A λ-set of real numbers where One has a winning strategy . In
this section we assume the Continuum Hypothesis. We partition ω into
countably many pairwise disjoint infinite subsets (an : n < ω). For each n
we let Pn = Fn(ω, an). Partially order elements of Pn by the order <n so
that if p and q are elements of Pn, then p <n q if p extends q.

Let (Mη : η < ω1) be a sequence of elementary submodels of (Hω2 ,∈)
such that:

1. for all η < ω1, Mη ∈ Mη+1,
2. {(an : n < ω), ω,<ωω} ⊆ M0, and
3.
⋃
η∈ω1

Mη ⊇ [ω1]ℵ0 .

For each subset X of ωω define what we call a Skolem strategy σX for
One in G([X]≤ℵ0) as follows:

S.1. O1 = σX(∅) = X ∩M0;
S.n. Assume open subsets T1 ⊇ . . . ⊇ Tn of ωω are given such that

O1 ⊆ σX(T1) ⊆ . . . ⊆ σX(T1, . . . , Tn−1) ⊆ X ∩ Tn.
First choose the least %n+1 < ω1 such that %n+1 is a limit ordinal
and:
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1. Tn ∈ M%n+1 , and
2. σ(T1, . . . , Tn−1) ⊆ M%n+1 .

Then define

σX(T1, . . . , Tn) = X ∩ Tn ∩M%n+1+ω.

The latter set will also be denoted by Xn. We shall construct an X such
that σX is a winning strategy for One. X will be of the form {fη : η < ω1},
where the fη’s will be selected recursively. Along with selecting the fη’s we
shall also select terms of an ω1 × ω matrix (Hn

η : n < ω, η < ω1) such that
each Hn

α is a function from an to ω. For further reference define for each
η < ω1 and for each n < ω the set

Fnη = {f ∈ ωω : f ∩Hn
η = ∅}.

In the course of this construction we need to consider sequences which are po-
tential plays by player Two and which are legitimate candidates for Skolem
strategies. To this end fix an enumeration

(((Wn
ξ : n < ω), (%ξn+1 : n ∈ ω)) : ξ ∈ ω1 ∩ LIM)

of all pairs such that (Wn
ξ : n ∈ ω) is a nonincreasing sequence of open

subsets of ωω and (%ξn+1 : n ∈ ω) is an increasing sequence of countable
ordinals such that for each n, Wn

ξ is in M%ξ
n+1

and %ξn+1 < ξ.
We require that for each η:

R.1. (fη, {Hn
η }n∈ω) ∈ Mη+1;

R.2. For each n and f ∈ ωω ∩Mη, the sets {m ∈ an : f(m) = Hn
η (m)}

and {m ∈ an : f(m) 6= Hn
η (m)} are both infinite;

R.3. (∀β ≥ η)(∃n)(fβ ∩Hn
η = ∅);

R.4. (∀H ∈ [η]<ℵ0)(∀π : H → ω)({fη+k : k ∈ ω} ∩⋂α∈H Fπ(α)
α is dense

in
⋂
α∈H F

π(α)
α );

R.5. If η is a limit and (Wn
η )n∈ω is a possible sequence of Two’s moves in

a game where One follows σX and (%ηn+1)n∈ω is the corresponding
sequence of %n+1’s, then fη ∈

⋂
n∈ωW

n
η .

Proposition 16. If R.1 through R.5 are satisfied , then X is a λ-set.

P r o o f. Observe that each Fnη is a closed set, whence its complement Gnη
is open. By R.3, X∩(

⋂
n<ω G

n
η ) ⊆ {fδ : δ < η}, and by R.2,

⋂
n<ω G

n
η ∩X ⊇

{fδ : δ ≤ η}.
Proposition 17. If there is a sequence (fη, {Hn

η }n∈ω) so that R.1–R.5
are satisfied , then σX is a winning strategy for One in G([X]≤ℵ0).

P r o o f. Let (Xn,Wn : n ∈ ω) be a play of the game where One follows
σX . Fix η such that Wn = Wn

η for all n ∈ ω and such that fη 6∈
⋃
Xn. Then

R.5 implies that
⋂
n∈ωWn 6=

⋃
n∈ωXn, and hence One wins the game.
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Theorem 18. There is a sequence (fη, {Hn
η }n∈ω) so that R.1–R.5 are

satisfied.

P r o o f. Choose for each η < ω1 and n ∈ ω functions Hn
η ∈ Mη+1 that

are Pn-generic over Mη. This ensures that R.2 is satisfied.
For reasons that will become apparent later in the proof, we will also

make sure that if β0 < β1 < . . . < βk < ω1 and (n0, . . . , nk) ∈ ωk+1, then

(Hn0
β0
,Hn1

β1
, . . . ,Hnk

βk
) is Pn0 × Pn1 × . . .× Pnk -generic over Mβ0 .

We will also require that for all β ∈ ω1 ∩ LIM the set {fβ+k : k ∈ ω} is
dense in ωω.

At limit stages η, consult the pair of sequences (Wn
η : n < ω) and (%ηn+1 :

n < ω). We may assume that (Wn
η )n∈ω is a possible sequence of Two’s

moves in a game where One follows σX and (%ηn+1)n∈ω is the corresponding
sequence of %n+1’s (otherwise R.5 holds vacuously).

Let δ = sup{%ηk : k ∈ ω}. We consider here only the case where δ < η;
the case δ = η is similar, and even easier. Let {αk : k ∈ ω} be a one-to-one
enumeration of δ such that αk < %ηk+1 for every k ∈ ω, and let {βk : k ∈ ω}
be a one-to-one enumeration of η\δ. We will construct recursively a sequence
(sk)k∈ω of functions in <ωω and a sequence (nk)k∈ω of natural numbers such
that

(a) sk ⊆ sk+1 for all k ∈ ω;
(b) [sk](= {g ∈ ωω : sk ⊂ g}) ⊂W k

η ;
(c) min ank > max dom(sk) for all k ∈ ω;
(d) sk ∩Hnl

αl
= ∅ and sk ∩Hnl

βl
= ∅ for all l ≤ k < ω.

To get the construction started, consider W 0
η . Since this set contains

X ∩M0, and since the extra requirement on the fβ+k’s mentioned at the
beginning of this proof insures that X is dense in ωω, W 0

η is also a dense
subset of ωω. Choose s0 such that [s0] ⊂ W 0

η . Then choose n0 such that
min an0 > max dom(s0). Note that Fn0

α0
∩Fn0

β0
∩ [s0] is nonempty and perfect.

Having constructed (si : i ≤ k) and (ni : i ≤ k) such that (a)–(d) hold,
notice that the closed set [sk] ∩ ⋂i≤k Fniαi is nonempty, and hence perfect.
By R.4, {f%η

k+m
: m ∈ ω} contains a dense subset D of [sk] ∩⋂i≤k Fniαi , and

by (b), D ⊆W k
η . Since One plays X ∩W k

η ∩M%η
k
+ω in inning number k+ 1,

and since W k+1
η covers this set, D is also a subset of W k+1

η . Thus W k+1
η ∩[sk]

contains a dense subset of [sk] ∩ ⋂i≤k Fniαi . Now we have to use the fact
that W k+1

η ∈Mδ and (Hn0
β0
,Hn1

β1
, . . . ,Hnk

βk
) is Pn0 × Pn1 × . . .× Pnk -generic

over Mδ.

Claim. There exists sk+1 ⊃ sk such that [sk+1] ⊂ W k+1
η and [sk+1] ∩⋂

i≤k F
ni
αi ∩

⋂
i≤k F

ni
βi
6= ∅.
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P r o o f. Let p = (pn0 , pn1 , . . . , pnk) ∈ Pn0 × Pn1 × . . . × Pnk be any
condition such that p ° [sk] ∩ ⋂i≤k Fniβi 6= ∅, i.e., such that dom(pni) ⊆
dom(sk)∩ani and pni ∩sk = ∅ for all i ≤ k. We want to show that there are
q ≤ p and sk+1 ⊃ sk such that [sk+1] ⊂ W k+1

η and q ° [sk+1] ∩⋂i≤k Fniαi ∩⋂
i≤k F

ni
βi
6= ∅. Let m ∈ ω be such that dom(pni) ⊆ m for all i ≤ k, and

let tk ∈ mω be such that sk ⊆ tk and tk(j) 6= pni(j) and tk(j) 6= Hni
αi (j)

for all i ≤ k and all eligible j. Then [tk] ⊆ [sk] and [tk] ∩ ⋂i≤k Fniαi 6= ∅.
Since W k+1

η ∩ [sk] is dense in [sk] ∩ ⋂i≤k Fniαi , there exists sk+1 ⊇ tk such
that [sk+1] ⊂ W k+1

η and [sk+1] ∩ ⋂i≤k Fniαi 6= ∅. Let M = dom(sk+1), and
let qni = pni ∪ {(j, sk+1(j) + 1) : j ∈ M ∩ ani \ dom(pni)}. Define q =
(qn0 , qn1 , . . . , qnk). Then q ≤ p, and q ° [sk+1] ∩⋂i≤k Fniαi ∩

⋂
i≤k F

ni
βi
6= ∅,

as required.

Note that sk+1 ∩Hni
αi = ∅ = sk+1 ∩Hni

βi
for all i ≤ k. Choose nk+1 such

that min ank+1 > max dom(sk+1). Then sk+1 ∩Hnk+1
αk+1 = ∅ = sk+1 ∩Hnk+1

βk+1
.

Letting fη =
⋃
k∈ω sk, R.3 and R.5 are satisfied as required.

It only remains to construct {fη+k : k > 0} so that this set is dense in
ωω and R.4 holds. This is easily done by fixing an appropriate enumeration
of pairs of finite subsets of η and basic open sets in ωω and defining fη+k

recursively using the following lemma:

Lemma 19. If S is a finite subset of ω1 and π : S → ω is a function,
then

⋂
η∈S F

π(η)
η is a nonempty subspace of ωω without isolated points.

III. Other examples. The special case of our game for which F is Π0
1 ,

the collection of closed subsets of X, is naturally associated with the notion
of a perfect space. Since Π0

1 is not closed under countable unions and since
typically the set of points covered by One during a play is a countable union
of closed sets, one would expect that our game is not an accurate instrument
for detecting whether a space is perfect or not. We have only partial results
in this direction. According to Theorem 2 we know the following:

Proposition 20. If X is an A3-space, then the following are equivalent :

1. (X, τ) is a perfect space.
2. One does not have a winning strategy in the game G(Π0

1 ).

In particular, we see that if X is a Lusin set of real numbers (and thus
an A3-set, by Theorem 3) then One does not have a winning strategy in
the game G(Π0

1 ). Lusin sets are not σ-sets.
For T1-spaces, if One has a winning strategy in the game G([X]<ℵ0), then

One has a winning strategy in the game G(Π0
1 ). We see from Theorem 8

that One has a winning strategy in the game G(Π0
1 ) played on any set of real

numbers which does not have property s0. This shows that in Proposition
20 some hypothesis, perhaps weaker than being an A3-space, is needed.
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A perfect space which is also an A2-space is a σ-space in which One
does not have a winning strategy in the game G(Π0

1 ). It is not clear if
the hypothesis that X is a σ-space plays as important a role in identifying
the spaces for which One does not have a winning strategy in the game
G(Π0

1 ), as did the hypothesis that X be a λ-space (in Theorem 7) in iden-
tifying spaces where One did not have a winning strategy in the game
G([X]<ℵ0).

Problem 1. Is there a σ-space for which One has a winning strategy in
the game G(Π0

1 )?

The instance of our game when F is the set of Fσ-sets is naturally as-
sociated with the notion of a σ-space, and is denoted by G(Σ0

2). From our
earlier results we deduce the following:

Theorem 21. Let X be an A3-space. Then the following are equivalent :

1. X is a σ-space.
2. One does not have a winning strategy in G(Σ0

2).

When F is the power set of X we obtain an instance of our game which is
naturally associated with the notion of a Q-space. We also have very limited
information about the exact relation of our game to Q-spaces.

Lemma 22. For a Q-space X ⊆ R, the following are equivalent :

1. X is an A3-set.
2. |X| < d.

Applying Theorem 2, we see that:

Theorem 23. For a set X ⊆ R such that |X| < d, the following are
equivalent :

1. X is a Q-space.
2. One does not have a winning strategy in G(P(X)).

It is not clear that the cardinality hypothesis is really needed:

Problem 2. Could there be a subset of the real line which is a Q-space,
and for which One has a winning strategy in G(P(X))?

Problem 3. Is there a Q-space X for which One has a winning strategy
in G(P(X))? Or even in G([X]≤ℵ0)?

3. Strategies for player Two. Every Q-space is a σ-space and ev-
ery T1 σ-space is a λ-space. Similarly, if Two has a winning strategy in
the game G(P(X)), then Two has a winning strategy in G(Σ0

2). If X is a
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T1-space, then the latter implies that Two has a winning strategy in the
game G([X]≤ℵ0).

Theorem 24. If (X, τ) is a hereditarily Lindelöf space, then the following
are equivalent :

1. X is countable.
2. Two has a winning strategy in the game G([X]≤ℵ0).
3. Two has a winning strategy in the game G([X]<ℵ0).

P r o o f. The proof that 1 implies 2 and that 2 implies 3 is easy. We
show that the negation of 1 implies the negation of 3. Assume that X is
uncountable. Let σ be a strategy for Two. For τ ∈ ωω \ {∅}, define by
recursion over the length of τ a set Cτ ∈ [X]<ℵ0 as follows: First pick
{C(n) : n ∈ ω} such that {σ(C(n)) : n ∈ ω} is an open cover of X. Given Cτ ,
choose {Cτ_n : n ∈ ω} in such a way that {σ(Cτ |1, . . . , Cτ , Cτ_n) : n ∈ ω}
is an open cover of σ(Cτ |1, . . . , Cτ ). This is possible since X is hereditarily
Lindelöf.

Then the set

C =
⋃

τ∈<ωω\{∅}
Cτ

is a countable subset of X. Using the uncountability of X we fix a point
y ∈ X \C. Here is how One now defeats Two’s strategy σ: Choose n0 such
that y ∈ σ(C(n0)), then choose n1 such that y ∈ σ(C(n0), C(n0,n1)), then
choose n2 such that y ∈ σ(C(n0), C(n0,n1), C(n0,n1,n2)), and so on. We find a
sequence (n0, n1, . . . , nk, . . .) of integers such that for each k we have:

1. y ∈ σ(C(n0), . . . , C(n0,...,nk)), and yet
2. y 6∈ C.

Thus, Two loses this play.

4. Undetermined games and Set Theory. Theorem 10 and Theorem
24 combined show that there is subspace X of the real line such that neither
player has a winning strategy in the game G([X]≤ℵ0).

It is not possible to show in ZFC that there is a subspace of the real line
so that the corresponding game G(Σ0

2) is not determined. On the one hand,
A. W. Miller has proved in [12] that it is relatively consistent with ZFC that
every subset of the real line which is a σ-space is countable. Under these
circumstances we see that for a set X of real numbers One has a winning
strategy in G(Σ0

2) if, and only if, X is uncountable; Two has a winning
strategy in the game G(Σ0

2) if, and only if, X is countable. On the other
hand, we have:
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Proposition 25. If X is a Sierpiński set of real numbers, then:

1. G([X]≤ℵ0) is undetermined.
2. G(Σ0

2) is undetermined.
3. G(Π0

1 ) is undetermined.

P r o o f. It follows from Theorem 24 that Two does not have a winning
strategy in any of these games. If One has a winning strategy in one of these
games, then One has a winning strategy in G(Σ0

2). But by Corollary 6 this
would be the case only if there were a Σ0

2 -subset of a Sierpiński set that is
not a Gδ-set. But suppose that Y is a Σ0

2 -subset of a Sierpiński set X. Then
there is a Lebesgue measurable set of reals Z such that Z ∩X = Y . Then
there is a Gδ-set G of reals, containing Z and of the same measure as Z.
Therefore G∩X \ Y is countable and we see that Y is a Gδ-subset of X (in
fact we have shown that for any Lebesgue measurable set Z of reals, Z ∩X
is a relative Gδ-set in X).

References

[1] Z. Balogh, There is a Q-set space in ZFC , Proc. Amer. Math. Soc. 113 (1991),
557–561.

[2] T. Bartoszyńsk i and M. Scheepers, A-sets, Real Anal. Exchange 19 (1993-94),
521–528.

[3] A. S. Bes icov i tch, Concentrated and rarified sets of points, Acta Math. 62 (1934),
289–300.
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