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o-Entangled linear orders and narrowness
of products of Boolean algebras
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Saharon Shelah (Jerusalem and New Brunswick, N.J.)

Abstract. We investigate o-entangled linear orders and narrowness of Boolean al-
gebras. We show existence of o-entangled linear orders in many cardinals, and we build
Boolean algebras with neither large chains nor large pies. We study the behavior of these
notions in ultraproducts.

Annotated content
0. Introduction

1. Basic properties. We define Ens,, o-entangled (Definition 1.1); we give their
basic properties (1.2) and the connection between those properties of linear orders and
(the o-completion of) the interval Boolean algebras (Definition 1.3) which they generate
(1.5). We recall the definition of inc(H(B) (see 1.4) and we state its properties. Then
we formulate the properties of linear orders required to have inc(B? /D) > (inc(B))? /D
(1.7).

2. Constructions for A = A<*. In 2.3, assuming A\ = 2* = p* (and ¢, which
usually follows), we build some Boolean algebras derived from a tree, using a construction
principle (see [Sh 405]). The tree is a AT-Aronszajn tree, the derived linear order is locally
p-entangled (of cardinality AT). Next, in 2.5, we force a subtree T of *Z X of cardinality
AT, the derived linear order is p-entangled (of cardinality A™). It provides an example of
Boolean algebras By (for o < p) with inc(Bgy) = A, inc((Bs)*/D) = A1 for each uniform
ultrafilter D on pu.

3. Constructions related to pcf theory. We give sufficient conditions for
Ense (A, k) when A can be represented as tcf([],A;/D) with A; > max pcf({\; : j <i}) (see
3.1). If 2" > sup; \; (and more) we can get a o-entangled linear order (3.2). Also we can
utilize Ensqs (A, ki) (see 3.3, 3.4). Now relying on a generalization of “6 < Rg = pp(N;5) <
N|5+4”, we prove that if y = ©<? then for many 0 € [u, N, +4) we have Ense (07, 1) and

if 2/ > R 44 also o-entangled linear orders of cardinality 0" (see 3.6). Hence for each
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o for a class of successor cardinals there is a o-entangled linear order of cardinality AT
(see 3.7).

4. Boolean algebras with neither pies nor chains. Refining results in Section 3,
we get Boolean algebras (again derived from trees (J;< 5 [[;<; Aj using A = tef([]; Ai/D),
but not as interval Boolean algebras), which have neither large chains nor large pies. For
this we need more on how A = tcf(I]; \;/D).

5. More on entangledness. In 5.1, 5.4 we deal with cases 2<* < 2*. Then we get
finer results from assumption on pp(u)’s, improving Section 3. We also deal with pcf(a),
defining pef*(a) = ({pcf(a\ b) : b C a, |b] < &}, proving for it the parallel of the old
theorem and connecting it to entangledness, mainly: if each p € a is (A, k, 2)-inaccessible,
then 6 € pcf*(a) = Ens(6,2"). We extract from the proof of [Sh 410, §4] on the existence
of entangled linear orders a statement more relevant to pcf. We lastly prove: for a singular
fix point p and pug < p there is 6 € (u, pp™ (1)) in which there is an entangled linear
order of density € (ug, 1) (see 5.13(2, 3)).

6. Variants of entangledness in ultraproducts. We investigate what kinds of
entangledness (and inc(—) < p) are preserved by ultraproducts (6.4). We also find that
entangledness can be destroyed by ultrapowers with little connection to its structure, just
its cardinality, for non-separative ultrafilters. So to show the possibility of (inc(B))“/D >
inc(B% /D) it suffices to find B = BAjpter(Z) such that |B| > (inc(B))¥0.

0. Introduction. In the present paper we investigate o-entangled linear
orders and narrowness of Boolean algebras (if B is the interval Boolean alge-
bra of a linear order Z, then the algebra B is narrow if and only if Z is entan-
gled). On entangled = Wy-entangled (= narrow interval Boolean algebra) lin-
ear orders (Definition 1.1(4)) see Bonnet [Bo|, Abraham—Shelah [AbSh 106],
Abraham-Rubin-Shelah [ARSh 153], Bonnet-Shelah [BoSh 210], Todorce-
vié [To] and [Sh 345, §4] [Sh 345b, §4], [Sh 355, 4.9-4.14], [Sh 410, §4].

We prove that for many cardinals A there is a o-entangled linear order
of cardinality A\ (see 3.7). For example, if A is a limit cardinal, A\ = A<7,
2% > A+ then for some singular cardinal p € [\, Ry+4) there is one in p™.
We also prove that for a class of cardinals A, there is a Boolean algebra B
of cardinality AT with neither a chain of cardinality A™ nor a pie (= set of
pairwise incomparable elements) of cardinality A" (see 4.3).

Another focus is a problem of Monk [M1]: for a Boolean algebra B,
let inc(B) be sup{|X| : X C B is a pie}. He asked: are there a Boolean
algebra B, a cardinal ¢ and an ultrafilter D on o such that inc(B?/D) >
(inc(B))?/D, and we may ask whether this holds for ¢ but for no smaller
o’ < o. Now, if Z is a o-entangled linear order of cardinality AT, A = X then
we get examples: the interval Boolean algebra B of 7 satisfies inc(B) = A
(hence (inc(B))?/D = X), but in the cases we construct Z, we get inc(B? /D)
= AT for any uniform ultrafilter D on o (on sufficiency see 1.7; on existence
see 2.3(3), 3.2, 3.6(3)). Similarly for the entangledness of a linear order.
Unfortunately, though we know that there are o-entangled linear orders of
cardinality AT for many cardinals A\ (as needed), we do not know this for
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cardinals A satisfying A = A% (even A®0 = )\), and A < \? implies usually
(inc(B))?/D > A*. Still, the unresolved case requires quite peculiar cardinal
arithmetic (everywhere): “usually” 2* is not so large in the aleph sequence,
and there are additional strong restrictions on the power structure in V.
For instance, for every p,

po =p = 2 <N 4
and
p is strong limit of cofinality > o = 2" < ™ & (Ix)(x < X7 = 2*)
and
pw>3, =28 >t
To make the paper more self-contained we give fully the straight general-
izations of [Sh 345], [Sh 355] and [Sh 410]. The research is continued in

Magidor—Shelah [MgSh 433], Shafir-Shelah [SaSh 553], Rostanowski—Shelah
[RoSh 534], [RoSh 599], and lately [Sh 620].

We thank Andrzej Rostanowski and Opher Shafir for reading, correcting,
pointing out various flaws and writing down significant expansions.

NoOTATION. Our notation is rather standard. We will keep the following
rules for our notation:

(1) o, 8,7,0,&,(, 4,7 ... will denote ordinals,

(2) Kk, A\, p,0,... will stand for cardinal numbers,

(3) a bar above a name indicates that the object is a sequence; usually
X will be (X; : i <lg(X)), where 1g(X) denotes the length of X,

(4) for two sequences 7, v we write v <I 7 whenever v is a proper initial
segment of 7, and v < i when either v <17 or v = 7.

For a set A of ordinals with no last element, J5¢ is the ideal of bounded
subsets of A.

1. Basic properties. In this section we formulate basic definitions and
prove fundamental dependencies between the notions we introduce.

DEFINITION 1.1. Let A, u, s, 0 be cardinal numbers.
(1) A sequence Z = (. : € < k) of linear orders is (u, 0)-entangled if

(®)  for any disjoint subsets u, v of k such that |[uUv| < 140 and sequences
(ts, : o < p) of pairwise distinct elements of Z. (for e € uw Uv), there
are o < 3 < p such that

ecu=t, <zt and e€v=1t, >z t5.

Ens(A, p1, k,0) = Ensy (A, 1, k) means: there is a (u, 0)-entangled sequence
T = (I, : € < k) of linear orders, each of cardinality .
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(2) If we omit u, this means A = p (i.e. |Zc| = ), if we omit o it means
o = NO-

(3) A linear order Z is (u,o)-entangled if (Z has cardinality > p and)
for every e(x) < o and a partition (u,v) of e(x) and pairwise distinct t5, € 7
(for e € wUv and o < p), there are a < 3 < p such that

(@) for each € < g(*) we have
e€u=t, <ztz; and c€v=t; >rt;

(4) We omit p if |Z| = p (and so we write “Z is o-entangled” instead of
“Z is (|Z], 0)-entangled”); we also omit o if it is Ny.
(5) A sequence (Z : ¢ < ) of linear orders is strongly (i, o, 0’)-entangled
if
(a) each Z¢ is of cardinality > p,
(b) if u,v are disjoint subsets of v, [u Uv| < 1+ 0, £(e) < o' for
e€uUvand g, € I, (for a < p, e € ulUw, § <§(¢)) are such
that

(Ve € uUv)(VE,¢ < &(e)(Va < B < p)(t8e #12)
then for some o < B < p we have:
ecu= (V&< @)t <t2y),
eev= (VE< &)t <t2y).

PROPOSITION 1.2. (1) Assume X\ > Ay > uy > p, k1 < K and 01 < 0.
Then Ens, (A, u, k) implies Ens,, (A1, 1, K1).

(2) If T is a (u, 0)-entangled linear order, J C I, and |Z| > |T| > p1 >
W, o1 < o then J is (u1,01)-entangled.

(3) If a linear order I has density x, x<7 < u, p = cf(u) and o > 2 then
in Definition 1.1(3) of “Z is (u,0)-entangled” we can add to the assumptions

(®)  there is a sequence ([ac,b;] : € < e(x)) of pairwise disjoint intervals
of T such that t5, € (ac,be).

(4) Moreover, if a linear order T has density x and x<° < p = cf(p),
then for each e(x) < o and sequences to, = (t5, : € < (%)) C I (for a < p)
such that ¢ # ¢ = t5, # tS,, there are A C p with |A| = p and a sequence
([ac,be] : € < e(x)) of pairwise disjoint intervals of T such that for each
e < e(x), either

(Va € A)(t, € (ag,b:)) or (NVae A)(t, = ac).
(5) If o > 2 and a linear order T is (u,o)-entangled then T has density

< W
(6) If there exists a (u,o0)-entangled linear order of size X then we have
Ensg (A, i, A).
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(7) In Definition 1.1(3), if o is infinite, we can weaken “a < 3 < p” to

faFEfa<p, <l
(8) If there is a (u,0)-entangled linear order of size X\ and (%), below
holds then Ens, (A, u, k), where:

(x)x  one of the following holds true:
() Kk =pT and if X = p then cf(n) > o,
(B) there are A; C X fori < K, |A;| = X such thati # j = |A;NAj] <
w and cf(p) > o,
() there are A; C X for i < K, |A;] = X such that sup{|4; N A;| :
i1 <j<K}<p.

Proof. (1), (2) are left to the reader.

(3) Clearly the new definition is weaker, so we shall prove that the one
from 1.1(3) holds assuming the one from 1.2(3). Let J C 7 be dense in 7
and |J| < x. Thus for each a,b € Z with a <z b, there exists s € J such
that a <7 s <z b.

Suppose that e(x), u, v and (¢, : € < e(*), a < p) are as in 1.1(3). For
each ¢, < e(*) and a < p such that ¢, < t§ there exists s5¢ € J such that
5, < 55¢ <t (and at least one inequality is strict). Define functions hq,
h1> h27 h3 on f by

ho(a) = {(g,¢) 1 &,¢ < e(x) and t5, < t5},

h(a) = (55 (5.€) € hofa),

ha(a) = (&, ¢, &, TV (e = 53°)) : (5,0) € ho(a), € < (%)),

he(0) = (5,66, TV(ES < 55)) : (,C) € hola), £ < (),
where TV (—) is the truth value of —. Now, for each | < 4, dom(h;) = p and
lrang(hy)| < | TE®P° < < < . Since cf(y) = p, there exists A € [p]*
such that the restrictions h; [ A are constant for [ =0, 1,2, 3.

So let s5¢ = 556 for a € A. As the t£’s were pairwise distinct (for each
) we conclude

(e A&e<e(x) =t &{s5:(£() € hola)}.
For e < e(x) define
T. = {t € T : for every (,& < £(x) such that s> is well defined and

for every (= some) o € A we have
[t <55 o t5, <s5and [t > s8¢ <t > 5L

— — ~— ~—

Note that the value of « is immaterial.

Now, clearly Z. does not have cofinality > x (as Z has no monotonic
sequence of length > x*; remember Z has density < x). Hence we find an
unbounded well ordered subset Jf C Z. with |7;"| < x. Similarly there
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is an anti-well ordered J C Z. with |7 | < x which is unbounded from
below (in Z.). Let J* = ... (J" UJ). Again, for some set A" C A of
size u, the Dedekind cut which ¢, realizes in J* does not depend on « for
ac A and t5, ¢ J*. Now we can easily choose (ac,b:): a. is any member
of J- which is < t& for all @ € A’ and b, is any member of J. which is
> ¢ for all € A'.

(4) Included in the proof of 1.2(3).

(5) By 1.2(2), without loss of generality o = 2. Suppose that Z has
density at least p. By induction on o < p we try to choose t2, ¢! such that

(i) to < ta,
(ii) to.ta & {tg.t5: B < a},
(ili) (V8 < a)(Vl € {0,1})(t5, <ty &t} < th).

Continue to define for as long as possible. There are two possible outcomes.
OUTCOME (a): One gets stuck at some a < p. Let J = {to,té 1B < al.
Then

(Vi <tr e Z\T)3Fs € T)(t° < s & —[t' < s)).

Since 0, t! ¢ J, it follows that t9 < s < t'. So J is dense in Z and is of
cardinality 2|a| < p—a contradiction.

OuTcoME (b): One can define 2t} for every a < p. Then (t0 ] :
a < p), uw={1}, v={0} constitute an easy counterexample to the (y,2)-
entangledness of 7.

(6) Suppose T is (p,0)-entangled and |Z| = A. Take a sequence (Z. :
e < \) of pairwise disjoint subsets of Z, each of power A. This sequence wit-
nesses Ens, (A, 1, A): suppose u, v are disjoint subsets of A with |[u Uv| < o
and let t, € Z, for o < p and € € u U v be pairwise distinct. Now apply
“T is (u,0)-entangled”.

(7) Let u, v, t§, (for e € wuUw, a < p) be as in Definition 1.1(3). Put

W ={2:ecutU{2+1:c€v}, vV ={2:e€v}U{2+1:¢c€cu},
Sia = t;a? Si£+1 = t;a—l—l'

Now we apply the 1.2(7) version of Definition 1.1(3) to «/, v" and (s, : € €

' Uv,a < p), and we get o/ # (3 as required there. If o/ < [’ then

a =2a’ and 8 = 20 are as required in 1.1(3). Otherwise o/ > 3’ and then

a =203 +1and f=2a’ +1 are as required in 1.1(3).

(8) (a) Suppose A = p (and so cf(p) > o) and let Z be a (p, 0)-entangled
linear order of size A. Choose a family {A. : ¢ < put} C [Z]* such that
(Ve < ¢ < uM)(JA: N A¢] < p), and let Z, = ZTA, (for e < p™). We claim
that the sequence (7. : ¢ < pt) witnesses Ens, (A, p, ut). Why? Clearly
|J-| = A = p. Suppose that u,v C pt are disjoint, |[u Uv| < 1+ o and for
e €ulUwvlet (t : a < u) C J. be pairwise distinct. Since o < cf(p) we find
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a(x) < p such that
(Veo,e1 € unv)(Vap, a1 < p)(go # €1 & ap, a1 > ax) =52 # 1))

(remember the choice of the A.’s). Now apply the assumption that Z is
(u, 0)-entangled to the sequence

(t, e €eulv, a€ (afx),pn) CT.

If A > u then we can choose a family {A. : ¢ < u*} of pairwise disjoint sets
from [Z]* and proceed as above.

(8), (7) Similarly. wy
DEFINITION 1.3. Let Z be a linear order.

(1) The interval Boolean algebra BAjper(Z) determined by 7 is the alge-
bra of finite unions of closed-open intervals of Z (including [—o0, ), [z, c0),
[—OO, OO))

(2) For a regular cardinal o, BA{ .. (Z) is the closure of the family of
subsets of Z of the form [— oo,s) (for s € 7) under complementation and
taking unions and intersections of < o members (1).

DEFINITION 1.4. Let B be an infinite Boolean algebra.

(1) A set Y C B is a pie if any two members of Y are incomparable (in
B; “pie” comes from “a set of pairwise incomparable elements”).

(2) inc(B) =sup{|Y|:Y C B is a pie}.

(3) inc™(B) = sup{|Y|* : Y C B is a pie}.

(4) The algebra B is p-narrow if there is no pie of cardinality > pu.

(5) Length(B) =sup{|Y|: Y C B is a chain},

Length™ (B) = sup{|Y|* : Y C B is a chain}.
PROPOSITION 1.5. Suppose that T is a linear order and that the reqular

cardinals Ry < o < p satisfy (V0 < p)[0<? < wu|. Then the following
conditions are equivalent:

(a) The order T is (u,o0)-entangled.
(b) If e(x) < o, and u,v C e(x) are disjoint and t5, € T (for ¢ < e(x)
and o < p) then for some o < 3 < p we have

e€u=ty, <rtz and c€v=t, >1t;

(Note: if the t&, are pairwise distinct then the inequalities are in fact strict;
as in the proof of 1.2(7), changing the demand o < [ to o # [ does not
matter.)

(c) The algebra BA] .. (Z) is p-narrow.

(1) Equivalently, the Boolean algebra o-generated by {x; : t € Z} freely except s < x¢
when 7 = s < t.
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Proof. (a)=(c). By 1.2(5) the order 7 has density < u. Let (A, : a <
i) be a sequence of distinct elements of the algebra BAJ .. (Z). We know
that for each « there are: an ordinal £, < o, a Boolean term 7, (with all
unions and intersections of size < ¢ and ¢, free variables) and a sequence
(ts 1 e < eq) € 7 such that Ay, = 74(...,t5,...)ece,- By 1.2(4), without
loss of generality for some e(x) and pairwise disjoint intervals [a.,b:] we
have ¢, = e(x) and for each £ < e(x) either (Va < p)(a. < t§ < b.) or
(Yo < p)(ts, = a.). Since pu = cf(u) > Rg and (V0 < ) (015 < 1) we may
apply the A-lemma to the family {z, : @ < p}, where x,, := {t§, : € < e(x)}.
Consequently, we may assume that {z, : a < p} forms a A-system with
the kernel = (i.e. @« < f < p = xzo, Naxg = z). Note that if ¢t;, € x for
some a < p then (Va < 8 < p)(t; = t3) and if t;, ¢ z for some a < p
then (Va < 8 < p)(t; # t3). Thus for each € < e(x) either g, (for a < )
are pairwise distinct or they are pairwise equal. Since p = cf(pu) > o and

0<? < p for O < u, without loss of generality 7, = 7. Let
w = {e <e(x): (L, : a < p) are pairwise distinct}.

Then for some disjoint sets v,u C w and a set A C Z\ |J
have

e€ulUv [a’57 bE] we
Ao =AU ] 7(ac, t5,b2),
eculUv
where we let

- | [z,y) ife€u,
T(x’y’z)_{[y,z) if e € v.

Since 7 is (u, o)-entangled, we can find oo < 3 such that
(Ve e uUw)(t, <15 &€ €u).

Clearly this implies that A, C Ag, so we are done.

(c)=(a). First we note that the linear order Z has density < p. [Why?
Clearly 7 has no well ordered subset of power p nor an inverse well ordered
subset of power p. Assume 7 has density > p. First we show that there are
disjoint closed-open intervals Zy, Z; of Z with density > p. To prove the
existence of Zy,Z; define the relation E on Z by

a Eb if and only if a=b or [a < b and density ([a,b)) < u] or
[a > b and density([b,a)) < p].

Clearly E is an equivalence relation and its equivalence classes are convex.
Moreover, the density of each E-equivalence class is less than u (as there
is no monotonic sequence of length p of members of 7). Consequently, we
find a,b € 7 such that a < b and —a E b. Next we can find ¢,d € (a,b) with
¢ < d such that neither a E ¢ nor d E b. Thus we may put Zp = [a,c) and
7, = [d,b). Now for each Z,, we choose by induction on 5 < p elements
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ap < by from I, such that [ajy', bj}'] is disjoint from {ag’, b5 : o < B}. So

a o

a < B=lay,by) & [aff,bF). Now, <[a%,b%) U(Zy\ [aé,bé)) : B < p) shows

a )l
that the algebra BA{ . (7) is not p-narrow, a contradiction].
By 1.2(7) it is enough to prove that if e(x) < o and ¢, € T are distinct
for @ < p, € < (%) and u,v are disjoint subsets of €(x) then we can find

« # 3 such that
e€u=t;, <tz and c€v=t;>1t5

By 1.2(4), without loss of generality for some pairwise disjoint intervals
[ac,b:] of T, we have t& € (ac,b.). Let x, := x!, U2, where

o U{[as,tZ) cecu}, x2:i= U{[tz,be) te € vl
So x4 € BA{ . (Z) for @ < p. The algebra BAY ., (Z) is p-narrow, so for

inter inter

some a # 3 (< p) we have z, C xg. Then for each ¢,
ccu=TFt, <ty and ecv=TEt, >t;
This is as required.
(a)=-(b). This is included in the proof of (a)=(c).
(b):>(a) Trivial. mq 4
PrOPOSITION 1.6. Let B be a Boolean algebra.
(1) If inct(B) is a successor cardinal then [inc(B)]T = inc™ (B).
(2) If inct(B) is a limit cardinal then inc(B) = inct(B).
(3) B is p-narrow if and only if inc™(B) < p.
(4) If B is p-narrow then so is every homomorphic image of B.

(5) If D is a filter on o and the product algebra B is p-narrow then
the algebra B? /D is p-narrow. my g

CONCLUSION 1.7. Assume \* > u, A > p=cf(u) >k >0 =cf(o) > N
and (V0 < p)[0<7 < pl.
(1) Then (A)x= xpon = (B)ar apons using Bj = BAiner(Z; + J5),
where
(A)x* xpo  there are linear orders I;, J; (for j < k) of cardinality X
such that each I; + J; is (u,0)-entangled and for any uni-

form wltrafilter D on k the linear orders Hj<ﬁIj/D and
Hj<,_i J;/D have isomorphic subsets of cardinality \*;

(B)x* A p,on  there are interval Boolean algebras B; (for j < k) which
are p-narrow and of cardinality \ such that for any uniform
ultrafilter D on k the algebra B = [[,_. Bi/D is not \*-
narrow.

(2) Also (A)f.

<K

= (B)+ (using B = BAjpter (Z+ J)), where

M0, K >‘*7)‘7M7055
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(14);\2‘7)\%0’,,i there are linear orders I, J of cardinality A such that T+ J
is (u,0)-entangled and for any uniform ultrafilter D on k
the linear orders I%/D and J"/D have isomorphic subsets
of cardinality \*;

(B)X

A0 there is a p-narrow interval Boolean algebra B of cardinality

A such that \* < inct[B®/D] for any uniform ultrafilter D
on k (i.e. the algebra is not \*-narrow).

(3) We can replace “uniform ultrafilter D” by “regular ultrafilter D” or
fix a filter D on k.

Proof. Just note that if B is a Boolean algebra, Z, J are linear orders,
a; € B for t € T+ J are such that t < s = a; <p as and f is an (order)
isomorphism from 7 to J then {afy) —a; :t € I} is a pie of B. my 7

CONCLUSION 1.8. Assume that o < p" = p < X\ and there is a (p,0)-
entangled linear order T+ 7 such that for each uniform ultrafilter D on k the
linear orderings Z" /D and J"/D contain isomorphic subsets of cardinality
A > p. Then

inct (BAinte: (Z+ J)) < p and  inc((BAiner(Z + J))*/D) > A
and even
inc™ (BAinter (T + J))"/D) > A
(so inc((BAinter(Z + J))"/D) > inc(BAipter (Z + J))*/D). m

Remark. See an example in 3.2(3).

DEFINITION 1.9. We say that a linear order Z has exact (A, i, k)-density
if for every J C 7 of cardinality > A we have density(J) € [k, u).

If 4 = k™ we may omit yu; if A = |Z| we may omit it. We may also say T
has exact density (A, u, k) or (A, u, k) is an exact density of T (and replace
(A p,K) by (A, p) or (p, k) or K).

DEFINITION 1.10. (1) A linear order Z is positively o-entangled if for each
e(x) <140, ue{be(x)} and an indexed set {t*: a < |Z|, e <e(x)} CT

such that
(Va < B < |T|)(Ve < e(x))(te # tF)
(

)
there exist a < 3 < |Z] such that (Ve < e(x))(e € u & 12 < t92).
(2) Similarly we define when Z = (Z; : ¢ < i*) is positively o-entangled
and PosEns, (A, , k), PosEns, (A, k).

For more on entangledness in ultraproducts see Section 6.

2. Constructions for A\ = A<*. In this section we will build entangled
linear orders from instances of GCH. Our main tool here is the construction
principle presented in [HLSh 162] and developed in [Sh 405]. The main point
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of the principle is that for standard AT-semiuniform partial orders (see 2.1
below) there are “sufficiently generic” filters G, provided <, holds (actually,
a weaker assumption suffices). For the precise definition of “sufficiently
generic” we refer the reader to [Sh 405, Appendix] (compare also [HLSh 162,
§1]). Here we recall the definition of standard A*-semiuniform partial orders,
as it lists the conditions we will have to check later.

DEFINITION 2.1. Let A be a regular cardinal.

(1) A set u C AT is closed if 0 € u and § = sup(d Nu) = 0 € u.
(2) Let (P, <) be a partial order such that

PCAx{uCA:|ul <At & u is closed}.

If p = (a,u) € P then we write dom(p) = u. For an ordinal 8 < AT
we let Pg = {p € P : dom(p) C B}. We say that (P, <) is a standard
AT -semiuniform partial order if the following conditions are satisfied:

(a) If p < g then dom(p) C dom(q).

(b) If p € P, a < AT is either a successor ordinal or cf(a) = A then
there exists ¢ € P such that ¢ < p and dom(q) = dom(p) N
«; moreover, there is a unique maximal such ¢ which will be
denoted by pla.

() Ifp=(a,u) €P, h:u =14 € A* is an order isomorphism onto
v such that (Va € u)(cf(a) = A < cf(h(a)) = A) and v is closed
then h[p] := (a,v) € P; moreover, ¢ < p implies hlg] < h[p].

(d) If p,qg € P, a < AT is either a successor ordinal or cf(a) = A
and pla < g € P, then there is r € P such that p,q < r.

(e) If (p; : i < §) C P is an increasing sequence and & < A then
there is ¢ € P such that

dom(q) = cl( U dom(pi)> and (Vi <9)(p; <q).
<4

(f) Suppose that (p; : i < §) C Pgq is increasing, § < Aand § < AT
has cofinality A. Assume that ¢ € Pz is such that (Vi < ¢)
(pilB < q). Then the family {p; : i < d} U {q} has an upper
bound r such that g < r[g.

(g) Assume that (8; : i < §) C AT is strictly increasing, each 3
is either a successor or has cofinality A, and § < X is a limit
ordinal. Suppose that ¢ € P and (Vi < 6)(¢[8; < p; € Pg,), and
(p; :i < ) C P is increasing. Then the family {p; : i < 0} U{q}
has an upper bound r € P such that (Vi < §)(p; < r15;).

(h) Suppose that 1,02 < A are limit ordinals and (3; : j < d2) C AT
is a strictly increasing sequence of ordinals, each (3; either a
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successor or of cofinality A. Let

(pij : (i,5) € (61 +1) x (62 + 1)\ {(01,62)}) € P
be such that

pij €Pp;y i <i = pij<pij, J<i =pij<pijlb

Then the family {p; ; : (i,j) € (61 +1) x (02 + 1) \ {(61,62)}}
has an upper bound r € P such that (Vj < é2)(r[8; = ps, ;).

NOTATION 2.2. Let A, u be cardinals and T be a tree.

(1) For an ordinal «, the ath level of the tree 7" is denoted by T,; for
x € T, lev(x) is the unique « such that = € T,.

(2) We say that the tree T is normal if for each y,z € T we have: if
(Vx € T)(x <r y = x <r z) and lev(y) = lev(z) is a limit ordinal then
y = z. Usually we assume that T is normal.

(3) We say that the tree T' is A™-Aronszajn if it has AT levels, each level
is of size < A, there is no A*-branch in T, T' is normal, and

yeT, lev(y) < B< AT = (FzeTy <7 2 & lev(z) = 3].

(4) For ordinals ¢ and « let T be the set of all sequences of length (
with no repetition from 7T,,. We let Tl¢! = Ua T O[f], but we may identify 7
and T (and similarly for 7% below).

(5) For a sequence Z € T!¢, let lev(z) be the unique a such that Z € T

(6) For z,5 € T, let z < § mean (Ve < ¢)(z. <7 y.); similarly for
7 < 3.

(7) Let 7 € TL. We define T := {g e TV : z <4 g}.

(8) T© = U{T&d : either « is a successor ordinal or cf(a) = A} and
T3 =1l N 740,

(9) For z,y € T let x A y be their maximal lower bound (in T, exists
when T is normal).

(10) For x € T and an ordinal o < lev(z) let z[a be the unique y <7 x
such that lev(y) = a.

(11) For Z = (z. : ¢ < ¢) € T} and an ordinal a < lev(z) let Zla =
(xela:e < ().

(12) Let H}, be the family of all functions h with domains included in
U{(put x pt) : ¢ < p} and such that for ¢ < pand Z € S(ut x pt) we
have: h(z) C ¢(u*) (if defined, and then) there are u* members of h(Z)
with pairwise disjoint ranges.

If h € H}, is a partial function, ¢ < p, & € ¢(u*) and h(z) is not defined
then h(Z) will mean ¢(u™).
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We use mainly h € H }L* where

Hy,,=|JH,, H\ ={heH): dom(h)="(u*xp")}
(<p
(13) Let HJ) be the set of all h from H} such that the value of h(((a2, a}) :
e < ()) does not depend on (a? : € < ¢) (so we may write h((al : e < ())).

€

(14) Let H? be the family of all functions h with domain y such that
h(¢) is a subset of ¢((u+)?) with the following property:

(X)  for each (a:e < () C u™ and every 8 < pT there is {(al : e < () C
(B, 1) with
(V8 < )32 1 < ) C (B 1) (0t 0?) - e <€) € h(Q)).
(15) H? is the collection of those h € Hj} such that the truth value of
“(a2al,a2) e < ¢) € h(¢)” does not depend on (a? : € € ) (so we may
write ((al,a?) e < u) € h(Q)).
THEOREM 2.3. Suppose A = pu+ = 2% and < (the second follows e.g. if
w > 3, see [Sh 460, 3.5(1)]).

(1) There exists a dense linear order T of cardinality X™ and density AT
(really exact density \*, see 1.9) such that:

(x)1 T s hereditarily of cellularity A%, i.e. every interval in I contains

AT pairwise disjoint subintervals, and

(x)2 T is p-locally entangled, i.e. if K < p and (a;,b;)7 (for i < k) are

pairwise disjoint intervals then the sequence (I[(a;,b;) @i < K)) s

kT -entangled (?).

(2) Let H}L* - H}L and Hﬁ* - Hﬁ have cardinality < \. There is a
AT -Aronszajn tree T C ES in which each node has A immediate successors
and there are two functions c,d such that:

(a) ¢ is a function from T to \,

(b) for every z € TW and a function h € H}L* U Hﬁ’* we have
dz.p: Ti[c”] — A\ such that if y,Zz € Tg—ﬁm are distinct and dz 5,(y) =
dz n(Z) then for somet € Tg—w we have

) ti = yi A z;, and the values of lev(t;) do not depend on i,

) lev(t) < lev(z), lev(t) < lev(y),

) if don(§) < dan(t) then (Ve < p)(3"i < p)(c(t;) =€),

(0) if (< pand h € H}/* then for u ordinals i < p divisible by
¢ we have either

(a
(B
(v

(?) Note: for g € (2,\), A = cf(X) such that (Voo < A)(|a|<* < A) and a linear order 7
of cardinality A we have: 7 is u-entangled if and only if 7 is p-locally entangled of density
<A
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(i) (zie(lev(t)) : € <) € h((c(tive), yire(lev(t)) : € < (),

(i) (yive(lev(t)) : € < ) € h((c(tite), 2zipe(lev(D)) s € < (),
(e) if ¢ < p and h € HY* and dz () < dzn(t) then for p

ordinals © < p divisible by ¢ we have either

(i) ((c(tive), yive(lev(D)), zipe(lev(D))) - € <C) € h(C), or

(if) ((c(tive), zite(lev(D)), yite(lev(?))) 1 € < () € A(C).

Ezplanation. Some points in 2.3(2) may look unnatural.

(1) Why g,z € Té“ ! and not dom(dz,,)? As in proving amalgamation we
should compare (xzﬁ 21 < p) and (z¢ : i < p); necessary when a = sup(w?).
However, working a little bit harder we may waive this.

(2) Why e.g. in clause (b)(e) we demand dz 5 (y) < dz n(t)? Otherwise

we will not be able to prove the density of
Dsz phy:=1{p € AP :y € dom(dz ) (or = < 7)}.
(3) Why do we have clauses (b)(d) and (b)(e)? For the application here

(b)(0) suffices; if this is enough for the reader then clause (J) in the definition
of AP may be omitted. But they both look “local maximal”.

Proof of 2.3(1). We will use (2). Let T C * >\ and ¢, d be as there
and let all the functions h , € Hﬂ defined in the continuation of the proof
of 2.3(1) below be in H,*. We may assume that if z € T and a < X
then 27(a) € T. Let <® be a linear order on A such that (\,<®) has
neither first nor last element and is A-dense (i.e. if a; <® ; for i <ig < A,
J < jo < Athen a; <® v <® §3; for some 7). We define the order <z on
T=T" = {2 € T :lev(x) is a successor or of cofinality A}:

y <z z if and only if either z = (yAz) <y
or y(a)) <® z(a), where a = lev(y A 2).

Clearly (Z,<7z) is a dense linear order of density A™T and size AT. To show
that Z has exact density A™ (i.e. its exact density is (AT, ATT,AT)) assume
that 7 C 7 and |J| = A*. We want to show that J has density AT. Suppose
that Jo C J and |Jo| < A\. Then Jy C Ua<a(*) T, for some a(x) < AT,
and we may find distinct 2,y € J \ Up<q(s) Ta such that zfa(x) = yla(x).
Then x,y show that Jj is not dense in 7.

Now we are proving that Z satisfies (x)2. Suppose that x < p and (a;, b;)
are disjoint intervals in Z (for ¢ < k). Suppose that g = (yt i < k) (for
& < A1) are such that a; <7 yf <z b; and yf’s are pairwise distinct for & <
At Let u C k. Take a(x) < AT such that (Vi < k)(lev(a;),lev(b;) < a(x)).
As yf’s are pairwise distinct we may assume that

(Ve < A1) (Vi < K)(a(*) < lev(yf) and £ < lev(yf)).
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Note that if i < j < & and &,¢ < At then 3 la(x) # Y; “la(x). Now the
following claim is applicable to ( <yZ (1< k)€ € [a(x),N)) and as we shall
see later this finishes the proof of 2.3(1) shortly.

CLAIM 2.3.1. Assume (for the objects constructed in 2.3(2)):

(a) K < p,

(b) for each & < A\t we have a sequence §* = (yf 14 < K) such that
yf €T and either

(a) (€%i1) # (i) = wiy, #5, or
(8) lev(y}) > &,
(c) he Hy* UHD™,
(d) for some a(x) < AT,
§C<AT, i <j <r=yfla(x) # yjlalx).
Then we can find & < & < AT such that clause (b)(6)(i) ( ( )(e)(d),
respectively) of 2.3(2) holds with (', y%?) standing for (i, z), i
(8) if h € H* then
(1) (&2 (lev(f)) : € < k) € h((c(te), g (lev (D)) € < k),
(e) if he HY* then
(i) {(c(te), y& (lev(D)), y2 (lev (1)) : & < k) € h(x),
where t = (t; : j < k) and t; = y;' Ny;° ete.

Proof. First note that, by easy thinning (as either (b)(«) or (b)(3)
holds; remember clause (e)) we can assume (b)(«) & (b)(8). As A = \* we
may assume that (yoa(x) : i < ) is the same for all § € AT, Let

Z ={a € [a(x),\T):

Y € [T ){E <A (Vi< w)(yila € Y)} < N}

First we are going to show that Z # [a(*),A\T). If not then for each o €
[a(x), A\T) we find a set Y,, € [T,]<* and an ordinal £(a) < AT such that

{E<AT (Vi <R la € Y)} CE().
For a € [a(*),AT), choose 7 € T4 such that:
(i) (Vi < w)(yi o = 27),
(i) Ya C {2 11 < p}.

For each ¢ € [a(*),AT) with c¢f(d) = A we can find 75 < J such that z} =
(20175 : i < p) is with no repetition (recall that 2 € T are pairwise distinct,
i < p < X\ and the tree T is normal). By Fodor’s lemma, for some v* the
set

So:={6 € [a(¥),\T) : cf(0) = X & 75 = v*}



214 S. Shelah

is stationary. For § € Sy there are at most A* = X possibilities for (z9[y* :

i < w) and hence for some z* = (zf :i < p) € Tag‘i] the set

Sy :={6eSy:7 =@y i< )}
is stationary. Hence the set
S5 = {5 € [a(x), \F) N Sy 1 (Vi < p)(al 17" = o) & (Yo < 9)(€(a) < 0)}

is stationary. Look at dz«; (really any h' € H fL* will do here). Note
that 2° € dom(dz-p) for § € Sy (remember cf(§) = )), and therefore
we find 1,0, € Sy with §; < do such that di*7h(j:51) = da—;*,h(a’:‘gz). As
£(01) < d2 we can find i < k such that y?Q [0y € Ys,. Thus for some
j < p necessarily y?z [01 = m?l ?1,
fo [v* = x?l [v*. This implies ¢ = j (as 1,02 € Sy C Sp and hence 75, =
v* = 75, and now apply the definition of ~s,,7s,,S2) and thus xfl < :1:?2,
which contradicts clause (3) of 2.3(2b). So we have proved Z # [a(x), AT).
But by its definition Z is an initial segment of [a(*), AT). Hence for some
B(x) € [a(x), A1) we have Z = [a(x), B(*)).

Let B € [B(x),AT) be a successor ordinal. By induction on ¢ < pu

and hence x?z [01 = x3*, and consequently

choose (3) pairwise disjoint z° = (25 : i < k) € Tﬁ[f] such that the sets

(2

Ze = {6 € [B, M%) : (Vi <m)(y{ 16 =)}
are of size AT. Suppose we have defined z° for ¢ < ¢’. Let Y = {af :
i <k, € <e'}. Then Y € [T3]<* and by the choice of 3 the set {£ < AT :
(Vi < )56 € Y)} is of size At. As A" = X we can find 7° € Tﬁ[f] such
that
{e <A (vi<m)(yf 1B =2f ¢Y)} =A%,

Now for ¢ < ppand i < k let @x.cq; = 25 and let T = (x; : j < p). Thus
T e Tﬁ[“]. For each « € [3, A1) choose (Cyc : € < p) such that . € Z. and
a1 < ag implies a1 < Cay e < Cage- For e < p, i < k and a € [3,AT) put
2y = yf“’e la. Then 2% = (28 1 j < p) € T and z < z*. Consider the
function dz . Let S5 := {§ € (B,\7) : ¢f(6) = A} and note that for each
a € Ss the restriction dz ,[{Z*[y : f < 7 < a} is a one-to-one function
(since cf(a) = A and we have clause () of 2.3(2b)). Consequently, for
a € S3, we find §(«) such that

o) <0 <a=dzp(Z0) > dz pn(2Y), d(a) > B.
Next, applying Fodor’s lemma, we find a stationary set Sj C S3 and §* > /8
such that dz 5, (2%[9) > dz n(2%) for o € S} and § € (6%, ), and z* [0* =

() We could have done it for e < A, but it is not necessary here.
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z*2[6* for all ay, a9 € S). Let
Sy:=1{0€8):(Va<d)({B € S;:Pla=2la} =T}

If Sy is not stationary then for § € S \ Sy choose a5 < § contradicting the
demand in the definition of Sy. For some stationary S* C S \ Sy we have
as = o for § € S* and we get an easy contradiction.

As rang(dz ) C A, for some stationary S5 C Sy, dz p[{Z% : @ € S5} is
constant. Choose o # ap from S5. By clauses (a), (5) of 2.3(2b) we see
that if t; = 25" A2§? (for j < p) thent € T and lev(z) <lev(t) < lev(z*),
lev(t) < lev(z®?). Moreover, by the definition of S we have lev(¢) > ¢* and
dz p(t) > dz n(2*). Hence by clause (8) of 2.3(2b) we find i < y divisible by
 such that either (i) or (ii) of clause (&) of 2.3(2b) holds with (y, ) there
standing for (z%*, 2%2) here. By symmetry, without loss of generality, (i) of
2.3(2b)(8) holds. Let lev(t) < 8; < oy (for I = 1,2). Hence by the definition
of Sy (and as as € S; C Sy) and by the character of the requirement on
a1, o we have, without loss of generality, a; < ap, so we are done. mg 3.1

Continuation of the proof of 2.3(1). Remember we have k <
w, (ai,b;) (for i < p), u C k and (g : € € [a(x), A\T)) with ¢* = (yf 1< K).

Define h = h,, ,, € HS (and assume that for each k < p and u C k we have
hyu € H;lf*):

R((BY i < k) ={(B% i< k) €"N: (Vi<r)B] <® P2 eicu)l).

By the choice of <® it is easy to check that h € Hﬂ. So by Claim 2.3.1 for
k, h, 75, there are o' < o2 as there and we are done.

We still have to prove (x);. Suppose that a,b € Z and a <7 b. By the
definition of the order there is t € T' such that t < s € T' = s € (a,b)z.

As the tree T is A\*-Aronszajn we find 7 € T4 (for some a € (lev(t), A*))
such that (Vj < w)(t < z;). Next for every 3 € (a,A") we can choose

s € T[[;“] such that T < yg. Take any h € H}L* UHﬁv*. For some unbounded
S C (a,A\T) the sequence (dz n(yg) : B € S) is constant. Consequently,
elements yg for B € S are pairwise <-incomparable (in the tree 7"). Hence

HyeT: yg dy}: B €S} isa family of pairwise disjoint convex subsets of
(a,b)z (each with AT elements), so we have finished. m 31)

Proof of 2.3(2). We want to apply [Sh 405, Appendix]. For this we
have to define a set AP of approximations and check the conditions of 2.1.

DEFINITION 2.3.2. The set AP of approximations consists of all tuples
p=(t,w,<,D,d,e, f,c) (we may write tP, wP etc.) such that:

(A) t is a subset of AT of cardinality < A, t N [0,\) = {0},
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B)w={a<AT:[A-a,\-(a+1))Nt+# 0D} is such that
Va < AN (aew s a+1cw),

and the set {o < AT : w -« € w} is closed,

(C) < = <, is a partial order on ¢ such that ¢t = tP = (¢, <) is a normal
tree (so x Ay is well defined) and for each a € w the set tN[A-a, A-(a+1))
is the otp(w N «)th level of ¢ (but possibly a < 3 are in w, and for some x
in the ath level of ¢ there is no y in the fth level, x <; y) [obviously, the
intention is: ¢ approximates T'; we may use ¢ for (¢, <;)],

(D) D is a set of < \ pairs (Z,h) such that z € tl*l and h € H)*UH™,

(E) d = (dz : (%,h) € D), each dz 5 is a partial function from té“] to A
with domain of cardinality < A such that

[y € té"] &<, y<iz2&z e dom(ds )] =y € dom(dyzp),

(F) € = (ez.n : (T,h) € D), each ez, is a partial function from t[;] X A
to {0,1,2} of size < A and such that:

(i) (5,7) € dom(ez,n) = § € dom(dz,n), and

dom(ez p)
2 {(#,7) : y € dom(dz,p) & (37 € dom(dz,n)) (v < dz,n(2))},

(i) if g € t;[zf‘], T <y <z € dom(dz ) and ez 1 (2, () is defined then
ez.n(7.9) is defined and e5,1(7,9) < exn(7,5), and if § € )
then at most one of them is 1 [here, we interpret té” ) as the set
of those § € t[; I such that lev(y) is either a successor ordinal or
is otp(w N a) for some «a € w such that cf(a) = A,

(iil) dzn(y) = o & ezn(y, ) =1,

[the intention: ez is not explicitly present in 2.3(2b), but ez »(y,v) =
will mean that: if [ = 0 then for some zZ we have y < z and dz 5 (2) = v; if
! =1 then dz 5 (y) = v and if [ = 2 then none of these],

(G) f is a function from t* = {a € t : a is of a successor level in t}
to A such that if v # [ are immediate successors (in ¢) of some « then
f(B) # f(~) [the intention is that if o represents n € T; 41, then f(a) = n(7)],

(H) c is a function from ¢ to A,

() if (z,h) € D, ez n(y,a),ez,n(2,a) <1 and =y <; 2] and [z <; 7]
then clauses (a)—(g) of 2.3(2b) hold (with (f(ye[(i + 1)), f(2e[(i + 1))) re-
placing {y.(7), (1)) and a in place of s (7) = dz.1(2))

D ifaewr, z <y’ <y, alin ()M, (z,h) € D, h € H}* and
7,9t € dom(dzp), lev(y®) = a, lev(g') = a+ 1, ez n(7',y) < 1 and
v < dz 1 (§°) then in looking at 7°, §' as candidates for £, 7 (or ¢, 2) in clause
(I) (i.e. in clauses (a)—(¢) of 2.3(2b)) in () there, for each ( < p, for p
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ordinals ¢ < p divisible by (, the values we have, i.e. cp(y?JrE), fp(yilJrE) for
e < (, are compatible with the demand (i) there, i.e. for every 5 < A there
are a2 € (8, \) for € < ¢ such that

<(Cp(y?+e)7fp(yi1+a)7ag) e < C> € h(C),

(K) if < g are in tl, (z,h) € D, § € dom(dz ), @ < dgn(7) and
ez n(y,a) = 0 then (Ve < p)(F* < p)(c(y;) = €) (i.e. looking at y as a
candidate for ¢ in 2.3(2b)() the values we have are compatible with the
demand there).

The set AP of approximations is equipped with the natural partial order.

We will want to apply the machinery of [Sh 405, Appendix] to the par-
tial order (AP,<). For this we have to represent it as a standard A\T-
semiuniform partial order. In representing it as a partial order on A x [AT]<*
we define the set of terms such that:

(a) {7(u) : 7 a term with otp(u) places} = {p € AP : {a <At :w-a €
wP} = u}, for a closed set u € [A\T]<*,

(b) if p; = 7(w) for I = 1,2 then otp(tP*,<) = otp(tP?,<) and the
one-to-one order preserving mapping g from ¢P* onto P2 maps p; to ps (i.e.
a <P o gla) <P g(f), etc.).

Note that for p € AP, its domain dom(p) (in the sense of 2.1) is {« :
w-a € wP}. Hence, AP, ={p € AP :wP Cw-a}.

Now we have to check that (with this representation) AP satisfies the
demands 2.1(2)(a)-(h). Clauses (a) and (c) there should be clear.

To deal with clause (b) of 2.1(2), for an approximation p € AP and
a < AT such that either « is a successor ordinal or cf(a) = )\, we define
q =plw-a by:

e l1=tPNA (w-a)w! =wPNw-a, <T=<P[t9,

e DI ={(z,h) € DP : & C 9},

o if (z,h) € DY then d? , = d? , 1(t) ¥ and e? , = €2, [((t) x N,

o f9= fPI(t? Ndom(f7)) and c¢? = cP[t9.

OBSERVATION 2.3.3. If p € AP is an approximation and o < AT is
either a successor or of cofinality \ then plwa € AP is a unique mazimal
approzimation such that plw- o < p and wWP'“* =wP Nw- - o. =

Thus p|w-a corresponds to pla as required in 2.1(2¢). The main difficulty
of the proof is checking the amalgamation property 2.1(2d). Before we deal
with this demand we will check that some sets are dense in AP (which will
allow us to simplify some arguments and will be of importance in drawing
conclusions) and we will deal with existence of some upper bounds.
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CrLAam 2.3.4. In AP, if (p; 1 i < d) is increasing, § < X\ and forig < i3 <
0 we have wPio = wPir then its union (defined naturally) is its least upper

bound in AP. m

CrLAM 2.3.5 (Density Observation). Assume p € AP.

(1) Suppose that o € wP, u C [A-a, A-a+ X))\ tp, [u] <X and fori e u
we are given a full branch A; of (tP N\ -, <P) (i.e. A; is linearly ordered
by <P and B ewPNa= A-BX-B+XNNA #0),i#j= A #A,.

Furthermore, assume that if a is limit then
yetPNA-a,d-a+N&icu= A, #{yetl .y <P~}

Then there is ¢ € AP with p < q such that t9 = t? Uu, <? = <P U {(y,1) :
y € A;i € u}, and the rest is equal (i.e. w? = wP, D! = DP d% = dP,
el =eP, f12 fP % D cP naturally).

(2) Ifa € wP and i € [A- o, A - a+ \) then there is ¢ € AP with p < q
such that i € t9, wP = wi, DI = DP, d? = dP, &1 = eP, and naturally
JI2 [P, et 2P

(3) If z € (t7,<P)M and h € Hy*UH™ then there is ¢ € AP such that
p<q and D?=DPU{(z,h)}.

(4) If (z,h) € D? and & < § € (t?, <P)I¥ then for some ¢ € AP with
p<q we have: y€dom(d}, ,)=dom(d} ,)U{y : 2<y' <y, ¥ € (¢, <p)luly,
th =19, wP = wl, <P =<9, DV = D9, di,,, =d, ., el , =€, . for
(z',n") € DP\ {(Z,h)}, and f9= fP, ¢1=cP.

Proof. (1) Check.

(2) Iterate (1) (the jth time—on the jth level of t) using 2.3.4 for the limit
stage. More elaborately, for each 3 € wP\ {0} choose ig € [X\- G, X- B+ )\ ¥
such that i, = i. Next by induction on § € w” N (a+1) choose an increasing
sequence (pg : € wP N (a+ 1)) C AP of approximations such that pyg = p
and tP¢ =tPU{i, : 0 <y € wPN(B+1)} (sowP? = wP) and the sequence
(iy : 0 <y €ewPN(B+1))is <Ps-increasing.

(3) We just put t9 = ¢, w? = wP, f4 = fP, ¢t =cP, dl,, =d,, if
(z',h') € DP, d}, ,, is empty if (%, h) ¢ DP, and similarly for e, ;..

(4) Let {ge : € < (} list dom(d3 ;) \ dom(d}, ;) in the <P-increasing way
and let a* = sup(rang(d}, ,) U {y: (37')((¥',7) € dom(e} ,))}). Now put

dom(el ;) = {(g,) : g € dom(d} ;) & o < @™ +1+(},
declare that egh C eqi’h and

o if y € dom(d} ), ¥ < e, € < thenel ,(y,a" +1+¢) =0,
o e%,h(gﬁa* + 1 + 5) = 17
e e, (y,7) = 2 in all other instances.
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It should be clear that this defines correctly an approximation ¢ € AP and
that it is as required. [Note that clauses (), () of 2.3(2b) relevant to
clauses (J), (K) in the definition of AP hold by the requirement “dz 5 (t) <

dz n(J) = dz,n(2)".] w35

CLAIM 2.3.6. If p € AP and an ordinal o € X\ wP is divisible by w then
for some q € AP with p < q we have w? = wP U [a,  +w), DP = D9 and

Bewl =t"NA-BA-B+X)=tPN[X-B,A-6+N).

Proof. Let # = min(w? \ ) (if 8 is undefined then it is much easier; of
course § > « as a ¢ wP and therefore § > a+w). Let tPN[A-B,A-B+A) =
{y;g 1 < 1i*} be an enumeration with no repetitions and for n < w let

{ydt™ i<} C A (a+n),A- (a+n)+N)

(2

be with no repetition. Let t9 = t? U {y®™™ :n < w, i < i*}, and

< =<PU{M Y™ in<m<w, i <i*}
U{@®™™ ) i n <w, i <i*, yiﬁ <Pz}
U{(z,y0™) in<w, i <i*, 2 <P y;g}
By 2.3.5 we may assume that i* = . For (z,h) € DP = DY we let
dom(d? ) = dom(dZ ) U{g € (t))" : (37 € dom(dZ ,))(z < § < ¢) and
(In<w) (Ve < p)(ye €A (a+n), A\ (a+n+1)))},

and let a2, = sup(rang(dZ,,) U {7 : (37')(7',7) € dom(Z,))}). Fix an
enumeration {ge : § < ¢} of dom(dZ ;) \ dom(d} ;) such that g, < ¢, =
o < &1 We put df ,(g¢) = o ), + 1+ ¢ for § < ¢ (and we declare df , O
d? ;). Next we define e} ; similarly to 2.3.5(4) putting the value 2 whenever
possible (so dom(ef ) = {(9,7) : ¥ € dom(d} ;) & v < o} ), + 1+ (}).
Now comes the main point: we have to define functions f7,¢? (extending
fP,cP, respectively) such that clauses (I) + (J) + (K) hold. But it should
be clear that each instance of clause (I) in t? can be reduced to an instance
of this clause in ¥ (just look at the definitions of t9,d} ; el ;). Thus what
we really have to take care of are instances of (J) and (K). For this we define
AM{ydt" i < p} and fO{yd™" ! 1 i < p} by induction on n < w. At the

first stage (for n = 0) we let
P={(¢2h,y,2): (z,h) € D! and ( < ppand # < y < Z € dom(d} ),
and 2 C {yd i< pyand g C {y@ i < u}}.

Take a list (X7,¢Y, 27, nY,g7,27): T < p) of
{(X.¢,2,h,y,2): X € {J, K} & (¢, T, h, ¥, %) € P}
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in which each 6-tuple appears p times and (¥ < 1+ 7. Next by induction
on T < p choose a sequence (cy, fr : T < p) such that:

(@) ey : dom(cr) — p, dom(cy) C {ye : i < p}, |[dom(cr)| < o + |77,

(B) fr : dom(fy) — A, dom(fy) C {y®™ i < u}, |[dom(fr)| < No +
7,

(7) {er : T < p) and (fr : T < p) are increasing continuous,

() for each T < pu there is ¥ < p divisible by ¢T such that

rang(z7 [[i7,i¥ +¢7)) C dom(fr41) \ dom(fr),
rang(y” [[i",i" 4+ (7)) C dom(eryq) \ dom(er),
(e) if X¥ = J and b € H}* then condition 2.3.2(J) holds for z¥, A",
g’ 27 with i =47,
(¢) if XT = K then crq1 (g7 )ir) = (7,
(1) y§ € dom(cry1), y3' € dom(frin).

There are no difficulties with carrying out the construction: the only
possible troubles could come from demand (¢) above. But look at the def-
inition 2.2(14) of H 3 Taking sufficiently large 8 < pu™ = )\, the respec-
tive sequences (ol : e < (1), {al : ¢ < ¢¥) will be good candidates for
crp (G +¢T)) and froq [(Z7 117, i7 +¢7)) in clause (e).

The functions ¢, f, will be the respective restrictions c?[{y* : i < u}
and fq[{yf“rl 11 < p}. Next, arriving at stage n + 1 of the definition we
repeat the above procedure with no changes. Note that at this stage we
know c?[{y®T™ : i < u} and fI[{y>"" ! i < u} but they have no influence
on defining ¢? and f? at levels a+n+1and a+n+ 2. mo35

CrAm 2.3.7 (The Amalgamation Property). Assume that a < A\ is
either a successor ordinal or cf(a) = A, p,q € AP and plw - a < q € AP,,.
Then there is r € AP such that p,q < r.

Proof. First try just the r defined by
wh=wPUw!, ¢ =tPUtd, <" =<PyU<i D" =DPUDI,

d ), if (z,h) € DP\ DY,
Th=4 dl, if (z,h) € D7\ DP,

i, uds, if (z,h) € D'NDP,

and e}, , 2 el ,Uel | (defined naturally, i.e. with dom(e], ;) minimal possible
to satisfy demand (F) and value 2 whenever possible), f" = fP U f? and
c"=cPUcl Clearly p <rand g <r, w" = wP Uw?, but does r belong to
AP? The things that might go wrong are:

e there is y € tP \ t? which has nothing below it in some levels, or
e y A z is not defined for some y, z, or
e the relevant cases of clauses (I)—(K) fail.
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Let Bo = U{y : w-7 € wP Nw - a} = sup(dom(p) N a). Note that Gy €
dom(p) N« (as « is either a successor or of cofinality \) and

(®) if w! Cw- By +w then r € AP.

So we assume from now on that w? € w- fy + w (by (®) above). Then
necessarily fp+1 < a (as w? C w-a). Without loss of generality dom(p)\« #
0 (as if w? C w-a we can let r = ¢q) and qlw - (Bp + 1) = plw - a. Let
a* := min(dom(p) \ «) and #* := min(dom(q) \ (Bp + 1)). By 2.3.6 we
may assume that 3* = ﬂg +1 (ie. w-fo +w € wd). Let {a2* i < i*}
list P N [A- (w-a*), A (w-a*)+ A). By 2.3.5(1) (i.e. increasing g only by
increasing t? N [A- (w- B*), - ((w- B*) + 1)) we may assume that there is a
list {z"” A"+ i < i*} of distinct members of 4 ﬁ [ (w B*) (w-BF)+A)
such that (Vz € tP N19)[z <P 4@ = 2 < 2" ] Let 27 € [A-B,X- B+ N)
(for € w?\ (w-F*+1) and ¢ < i*) be pairwise distinct and not in ¢?. Now
we shall “correct” r to r*:

tr*:tru{wf:ﬁewq\(w-ﬁ*—i-l),i<i*}, w =W,
ST*ZSTU{(mf,m):i<2‘*, x € tP, :c‘fa <Pz fewl\w-[*}
U{(z,2?) i <i*, zetd, J:Sqaf-dﬂ* fewl\w- (3"}

U{(z7z) /80,/816111[1\&)/8 ﬁ0<ﬂ171<1}
Put D" = D". If (z,h) € D"\ DP!“"® then we can let dg’h = dy ,,, but if
(Z,h) € DPI*" then we first let
Va.n = sup(rang(dz ) U {7 : (37)((,7) € dom(e} ;) Udom(e] ;))})
and
dom(dgth) ={ge@ ). ye dom(dy, ;,) or for some
F= (@ <) € () iy a0 B € W\ (w57 +1)
we have z € dom(d}, ) and g = <:1:5(j) cj <)t

Choose d7, ., in such a manner that dr, 2d. ., and the values dz’, (%), if not
defined before are distinct ordinals from ('Yx noA). Thus, in partlcular,

en(®) =i (2) &5 # 2= (9,2} C dom(dy ).

Next we define egh extending e ;, to satisfy clause (F)—we put the value 2
whenever possible. [Note that this is the place where the assumption that
ye tfﬁ“ ) in clause (F)(ii), and so the respective assumption in 2.3(2b), plays
a role: the values of e%h at the level w - 8* = w - By + w do not interfere

with the values of e, at the level w - a* since 3* is a successor, not of
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cofinality A.] Now we have to define ¢ D and fr* D f7, i.e. to define

Il i<, fewt\ (w5 +1)},
fr F{mf ci<i*, few?\w- PG is a successor},
such that clauses 2.3.2(G)—(K) hold. This is done as in 2.3.6, but now the
clause (I) is “active” too. Of course, the point is that we have p commit-
ments, each has “u disjoint chances”, so we list them in a list of length
and inductively we can easily do it (for p singular—at place i of the list
there may appear only a commitment of “size < |i| + Ry”). More fully, let
P'={(¢,Z,h,7,2) : (£,h) € DN D? and ¢ < p and for some e,
(z,¢) € dom(egth) \ dom(ez ;) and (g,¢) € dom(ef ) and
egjh(é,f-:) <landef,(y,¢) <1and
JCAw- B+ 1), Mw- B +1)+A) and 2 C {27 i < i*}).
Defining f we have to take care of condition (I) for all (¢,z,h,7,2) € P
We also have to take care of conditions (J), (K) for
P?={(¢,%,h,5,%): (Z,h) € DPN DY and ¢ < p and
zZe dom(dgth), FC{x)™ i <i*), g=Zly, yew! \w- ).
So we use a list (X, ¢V, 27, hY, g7, 27): T < ) of {(X,(,%,h,75,2): X €
{1,2} and (¢, Z,h,¥,2) € P U P?} in which each 6-tuple appears y times
and (T <14 7. Let {27 : T < u} list t"" \ t". Now we define by induction
on 7" < u functions ¢y, fr such that:
(a) cr is a function extending ¢ with rang(cy) C A,
(8) dom(cr) \ dom(c") is a subset of {xf i<it, fewl\ (w-f5*+1)}
of cardinality < Ng + |7|,
(7) fr is a function extending f” with rang(fr) C A,
(6) dom(fy) \ dom(f") is a subset of

{a:f 1 <1i*, [ 1is a successor ordinal and § € w? \ (w- 5"+ 1)}
of cardinality < Ng + |7'|,

(e) the sequences (cr : T < p) and (fr : 1 < u) are increasing continu-
ous,

(¢) for each Y there is i¥ < pu divisible by ¢T such that if X7 = I then

rang(z" [[i",i" +¢")) C [dom(cr41) \ dom(cr)] N [dom(fr41) \ dom(fr)],
and if X¥ € {J, K}, (¢¥,z7,nY, g7, z") € P? then

rang(z" [[i7,i" + (7)) € dom(fri1) \ dom(fr),
rang(y7 [[i¥,i7 +¢7)) C (dom(cyyq) \ dom(ey)) U,
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(1) if XT =T and (¢7,z7,h7, 57, 27) € P! then condition 2.3.2(I) holds
for (¢¥,zT,nY, g7, 27 ,iT),

(k) if XT =J, ¢V, 27, h7,57,27) € P? and hT ¢ Hﬁ* then condition
2.3.2(J) holds for (z¥,hT g7, 27 i7),

() if XT = K and 47 € dom(c") then cyi1((g7);r) = (7,

(n) ¥ € dom(cyyq) and if 27 is from a successor level of " then
¥ € dom(fry1),

(v) mng(fT[{a:;”ﬂ*Jrl ti < d*}) Nrang(f7) = 0.
The definition is carried out as in 2.3.6. The new points are clause (:) and
instances of clause (k) for T such that ¥ C {:1:;”5 Thi< i*}. In the second
case a potential trouble could be caused by the fact that the function cy is
defined on g7 already. But the definition 2.2(14) of H o was exactly what we
need to handle this: we may find suitable values for fyr,1[(2[[iT,i',¢T)).
To deal with clause (¢) note that if k¥ € H 3% then demand 2.3.2(J) for g
provides the needed candidates for values of fy,i; if KT € H i* then the
definition 2.2(12) of H}, works.

The functions ¢, f, are as required. ms 3.7

The demands (e)—(h) of 2.1(2) are easy now:

CrLAam 2.3.8. (1) If a sequence (p; : i < 0) C AP is increasing and § < A
then it has an upper bound q € AP such that dom(q) = cl({J,; .5 dom(p;))).

(2) Assume B < A\t cf(B) = X and § < A\. Let (p; : i < ) C APy
be an increasing sequence and let ¢ € APg be an upper bound for (p;lw - 3 :
i < 0). Then the family {p; : i < 6} U{q} has an upper bound r such that
rlw- 4 2q.

(3) Assume that (3; : i < 8) C AT is strictly increasing, each [3; is either
a successor or has cofinality X\, and § < X\ is limit. Suppose that ¢ € AP
and (p; : 1 < §) C AP is an increasing sequence such that

(V’L < (5)((][&) -0 < p; € A'Pﬁz)

Then the family {p; : i < 0} U {q} has an upper bound r € AP such that
(Vi < 0)(pi <rlw-fi).

(4) Suppose that 81,02 < X are limit ordinals and (3; : j < d2) C AT is
a strictly increasing sequence of ordinals, each [3; either a successor or of
cofinality \. Let

(pij:(i,7) € (61 +1) x (62 + 1) \ {(d1,62)}) € AP
be such that
pij €EAPg,, i <1 =pi; <pij, J<Jj =pi;<pijylw-Bb;.

Then the family {p; ; : (i,5) € (61 +1) x (62 + 1) \ {(1,92)}} has an upper
bound r € AP such that (Vj < 02)(r|w - Bj = ps, ;)-
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Proof. (1) The first try may be to take the natural union of the sequence
(pi : i < 0). However, it may happen that we will not get a legal approxi-
mation, as | J; 5 dom(p;) does not have to be closed. But we may take its
closure cl(|J,; .5 dom(p;)) and apply a procedure similar to the one described
in 2.3.6 (successively at each element of cl(|J,; s dom(p;)) \ ;s dom(p;))
and construct the required gq.

(2)—(4) Similarly to (1) above plus the proof of 2.3.7. m235

Now we apply [Sh 405, Appendix]: we find a “sufficiently generic” G C
AP which gives the T ¢,d we need (remember 2.3.5):

T = {n. : € € t? for some p € G}
where for € € [Aa, A\ + A) we define n. € *X by v = n.(f) if and only if
(Fe@@E eN-B+1),A-B+1)+ X)) E “' <e” & fP(e) =7).
This finishes the proof. ms 3

Remark 2.4. (1) Theorem 2.3 is close to [Sh 50], which is a strength-
ening of the construction of special Aronszajn trees. There essentially we
replace (y) + (0) by

(7) yi(lev(t;)), z(lev(t;)) do not depend on i.

(2) By the proof of 2.3(2), T is A-complete.
(3) We may add to 2.3(2):

(c) T is special, i.e. there is a function d : | J, To, — A such that

d(n) = d(p) = =[n <z p].

[Just in the definition of p € AP (see 2.3.2) add such dP : t¥ — A ]

(4) The reader may wonder why we need the condition “h(z) has pu
pairwise disjoint members”. The point is that when we amalgamate p and ¢
when pla < ¢, it may happen that p gives information on levels o, < ay11
(forn <w), 8= U, <, an < a, q gives information on the level 3, and when
amalgamating the function f? gives information on f on this level and f is
supposed to be one-to-one on every succr(n). So considering Z € (t?)g41,
7 € (tP)4, when we try to define f[rang(y[(8+1)), some values are excluded.

THEOREM 2.5. Assume that A\ = ™ = 2#. Then there is a forcing notion
P which is (< X)-complete of size A\t and satisfies the A" -cc (so it preserves
cardinalities, cofinalities and cardinal arithmetic) and such that in V:

(1) There is a p-entangled linear order I of cardinality \* and density .
(2) Let 0 < p be a regular cardinal. There exist linear orders ', " of
cardinality A+ such that for any uniform ultrafilter D on o the linear orders
(Z)° /D and (Z")° | D have isomorphic subsets of cardinality \*, but ' +71"
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is p-entangled. Hence there is a Boolean algebra B which is AT -narrow but
B?/D is not AT -narrow for any uniform ultrafilter D on o. -
(3) There are a set R C *\ with |R| = At and functions ¢, d such that,
letting TT = (A AU R, <) (< is being initial segment), we have:
(a) c is a function from >\ to
(b) R = {na : a < AT} (with no repetition), <gp = {(Na,n3) :
a < (}; define
R ={(na, i< p):a; < AT, (o 17 < AT is increasing},
(c) for every T € TL“)}\, ¢ < py,and h € S(AXAXN), dz s a function
from {y € R* : £ < gy} to \ such that
[dzn(9) =dz n(2) &7, Z € TEM are distinct]
= sup{a : 1, appears in y} # sup{a : 0, appears in zZ}
and for some t € Ty—w N TL“)}\
(@) ti = yi Nz, lev(t;) = lev(t«) for i >d*,

(B) (Ve < p)(3i < p)(c(ts) =e),
(7) for p ordinals i < p divisible by C, either
(i) there are {o < & < A such that

(Ve < Q)¢ 8o < yire(lev(t)) < (&1 < zige(lev(?))) and
h=((c(tite), Yire(lev(t)) = ¢ - &o,
Zive(lev(t)) —C- &) e <), or
(ii) a symmetrical requirement interchanging y and Z.

Proof. (1) We apply 2.5(3): let R, ¢, d be as there (of course we are in
the universe V¥ all the time). We define the order <7 on Z = R by

and ©* < p we have:

y <z z if and only if either ¢(y A z) =0 and y(a) < z(«a)
or ¢(y A z) # 0 and y(a) > z(a),

where @ = lev(yAz). Clearly <7 is a linear order of density A, and |Z| = \T.
To show that it is p-entangled suppose that y& € R (for « < AT and
€ < g(x) < p) are pairwise distinct and u C e(*). Let y& = ng(a,) (for
a < At and € < (x)). We may assume that the truth value of “B(a,e;1) <
B(a,e2)” does not depend on o < A\T. For simplicity, we may assume that
for each o < AT, & < & < (*) implies y& < y%. Finally, without loss
of generality we may assume that if @« < o/ < A" and g, < &(x) then
ye <p y% (e Bla,e) < B(a/,e")). For e < e(x), i < pand a < AT

let 27 (1 = y?'“+i'5(*) and z% = (2% : i < p). Clearly each z% is in
R*. Now for @ < AT choose &(a) < X such that z*¢(a) (for i < p) are

pairwise distinct. Without loss of generality we may assume that () = &
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for « < A*. There are \* = X possibilities for (z¥[€ : i < u), so we may
assume that for all o < AT,

are . . _ . — = (1]
(ZM 1€t <p)=(z;ri<p)=z €T

Let b= ((0,1%,1—1%) 1 e < g(x)) € * ") (Ax Ax \), where [* is 0 if ¢ € u and
1 otherwise. For some distinct a1, < AT we have dz 5 (2*) = dz p(2°?).
By the properties of dz j, possibly interchanging oy, 9, we find 7 < p,
ordinals §y < & < A and € TQ—E“ I such that

(Ve < (N A 2200 e = bic(orse):

(Ve <e(*))(e(*) - o < Z?;(*)_,_E(ﬂ) <e(x) & < Z?i(*)+5(ﬂ),
B = (el o) 278 10 (B) = £5) - 0s 2021 (B) — () - €1) s & < £(3),
where 8 =lev(t). Then oy - pu+i-e(*) # as - p+i-e(x) (for i < p) and

(Ve < 6(*))(3/?1'”“'5(*) <z y?Q'”H'E(*) iff e € u)
(by the definition of <7 and the choice of h), so using 1.2(7) we are done.
(2) As in (1) above, we work in V¥ and we use 2.5(3). Suppose o < p.

For a set A C X we define the order <4 on R by

y <a z if and only if either ¢(y A z) € A and y(a) < z(«a)

or c(yAz) & Aand z(a) < y(a),

where a = lev(y A z). [Note that the order <z from part (1) above is just
<{0y:] Clearly <4 is a linear order. As in the proof of 2.5(1) one can show

that it is p-entangled. As 0<% < A we may choose sets 4; C A for i < o
such that:

(i) for each @ < A theset {i <o :a € A; = a € A,} has cardinality
<o,
(ii) if v C o and |[v| < o, h : vU{o} — {0,1} then there is a € A such
that
(VievU{o})(a € A; & h(i) =1).

Fori < olet T, = (R,<a,). Pt T =3, T, T" =T, T =T + 1" =
Y i<y Zi- So it is notationally clearer to let Z; = ({i} x R, <;) with (,11) <;
(Zvy_Z) iff Y1 <Ai Y2, and Z = ((0 + 1) X R7<*) with (/i17y1) <* (/i27y2) iff
11 < i9 O (’Ll =19 &yl <Ai1 yg).

Cramm 2.5.1. If yo,y1 € R and yg <a, y1 then the set {i < o :yo <a, Y1}
s co-bounded.

Proof. Let t =y Ay and yo <a, y1. The set
u={i<o:c(t)e A;=c(t) € A,}
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satisfies u C o & |o\u| < 0. If ¢(t) € A, then yo(lev(t)) < y1(lev(t)). Hence
Yo <a, Y1 for i € u. If ¢(t) ¢ A, then yo(lev(t)) > y1(lev(t)) and y1 <a, vo
for ¢ € Uu. mo51

Let 7 : 7" — [];.,Z' be such that for y € Z,, m(y)(i) is the element of
Z; that corresponds to y; recall that all orders Z; are defined on R. Now, if
D is a uniform ultrafilter on o then /D : Z"” — (Z')? /D is an embedding.
Thus both (Z')? /D and (Z")? /D contain a copy of Z". Now we will finish
by the following claim.

CrAamm 2.5.2. The linear order T =71' +T1" is p-entangled.

Proof. Suppose that e(x) < o and (j&,y2) € T for a < AT, & < g(x)
are pairwise distinct and u C (). As 27 < A, without loss of generality
J& = Je. Let {28 : ¢ < (o} be an enumeration of Y, := {y& : ¢ < g(x)}
and let {i¢ : & < £*} enumerate v := {j. : € < ¢(*)}. We may assume
that the sequences (z‘g : ( < (o) are <g-increasing and pairwise disjoint
(for « < A1) as each z may appear in at most £(*) of them. Moreover, we
may assume that {(Cae,(,§) @ (Je, ye) = (ig, 2¢')} does not depend on «, so
(o = ¢* and by enlarging and renaming instead of ((j&,y%) : € < e(x)) we
have ((i¢, 2¢) : ¢ < %, £ < &%) and so u C ¢* x . Now, for each ¢ < (*
we choose ¢[(] < A such that

(V& < €9)[ell] € Aig & (£,€) € 4]
and we proceed as in earlier cases (considering h = {(c[(],0,1) : ( < (*) €
¢ ()\ X A X )\)) (4) 252

(3) The definition of the forcing notion P is somewhat similar to that of
the approximations in 2.3(2).

DEFINITION 2.5.3. A condition in P is a tuple p = (t,5,w,<,D,d,é,c)
(we may write tP, wP, etc.) such that:

(A) w C AT is a set of cardinality < X and ¢ is a limit ordinal < A; let
w!® be the family of all increasing sequences § C w of length p,

(B) t is a non-empty subset of °Z X of cardinality < ), closed under initial
segments,

(C) < is such that (t Uw, <) is a normal tree, <P[t is <, and for a € w,
we=UJ{vet:v<Pa}letn’\ and a # 3 = bE # b,

(D) c is a function from ¢ to A,

(E) D is a set of < \ pairs (Z,h) such that z € t/*] and h € Ue<p SN x
A X A),

(F) d = (dzp : (¥,h) € D), where each dzj is a partial function from
wl* to 67 with domain of cardinality < A,

(*) Alternatively, let R be the disjoint union of R; (i < o) and use Z} = Z; [({i} x R;).
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(G) e = (ez,n : (Z,h) € D), where each ez is a partial function from
tE—C”] x 0P to {0,2} such that for (z,h) € D:
(i) dom(ez,n) 2 {(g,7) : for some %y, z; € dom(dz ) we have T <
Y < Z and vy = dzn(21))},
(ii) if y € t;[{”, T <,y <; z and ez »(Z, 3) is defined then ez » (7, 5)
is defined and ez » (7, ) < ez.n(Z, 5),
(iii) if z € dom(dz ) and T < § < Z then ez 5 (y,dz 1(2)) =0,
and letting h = ((a?,al,a?) : e < () we have
(iv) if (g, ) € dom(ez p), lev(y) = 0P and ez (Y, o) = 0 then
(Ve < p)(3*i < p)(c(u;) =€)
and for p ordinals ¢ < p divisible by (, for some & < A,
(Ve < O)(e(yire) = al),
(v)ifz <y <yl a <lev(7®)+1 =lev(y!) < 6% and ez 5 (', ) =
0, then for p ordinals ¢ < p divisible by (, for some & < A,
(Ve < O(elypye) = a2 & - €+ af =y (lev(3?))),
(H) if ez n (7, ) = ez n(Z, ) =0, 7[y < Z] and —[Z <; 7] then clauses
(a), (B), (7) of 2.5(4c¢) hold.

P is equipped with the natural partial order: p < ¢ if and only if t? C ¢4,
OP <64, wP Cw?, P C ¢4, DP C DY, and
(Z,h) € D? = d’;’h C d%h & e’;’h C e%h.
For a condition p € P and an ordinal o < AT we define ¢ = pla by:
059 =6P 11 =1P wi=wPNa, <¢=<P[td, DI = DP, ¢l =P,
o if (z,h) € D then d? |, =, [(w?) ¥ and e? , = ¢? , [((t) x 59).
OBSERVATION 2.5.4. If p € P and o < AV is either a successor or of

cofinality X then pla € AP is the unique maximal condition such that pla <
p and wP'* =wP Na. m

CrLAM 2.5.5 (Density Observation). Assume p € P.
(1) Suppose n € *>X. Then there is q € P such that
p<gq, nthv ,wp:,wq’ Dp:an d? =dP.
(2) For each 3 € AT\ wP there is ¢ € P such that p < q and 8 € w?.
(3) If & € (tP,<P)M ¢ < pand h € (A x X\ x \) then there is ¢ € P
such that p < q and DY = DP U {(z,h)}.

(4) If (z,h) € D? and < § € (wP)M then there is ¢ € AP with p < q
such that w? = wP and y € dom(dz ).
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Proof. (1) We may assume that [t N 9°\| = p, as otherwise it is even
easier. So let (g : 8 < p) enumerate t? N %"\, Put 69 = max{6? +w, lg(n) +
w} and fix o € %"\ such that <1 g. Next, by induction on € (67, §9] define
sequences I/g for 8 < p and functions ¢, such that:

(@) ey i {rvg:B<pu}— A vy €A

(b) 0P <y <m S(Sq:>Vg<]l/go <]Vg1.

(c) Suppose that (,h) € DP, h = ((a?,al,a?) :e < () € S(A X A x ),
T<g={vey:i<p CPNYN (J,a) € dom(e} ;) and e , (¥, a) = 0.
Then

(a) for p ordinals i < p divisible by ¢, for some & < A,

(B) for each v € (6%,7) we have
(V€ < @3 < )(ey (V) = )
and for p ordinals ¢ < p divisible by ( there is £ < A such that
. 1
(V5 < Oy (Wiy ) = 0f & vy = ¢+ a)),
(v) (V¢ < p)(Fi < p)(csa (I/ggi)) = ¢) and for p ordinals i < p
divisible by ,
(Vj < C)(Cé‘l(’/ggiﬂ) = a?)'
The construction is easy and can be done as in 2.3.6. Next we put
tT =1 U{oly:v <0t U{yg: B < p, o <y <07,
w! = wP, DI=DP, = .
The function ¢? is defined as any extension of ¢ U {c, : 0* <y < §7} (note
that the possibly undefined values are in some initial segments of p). For

a € w? let b be ng for 8 such that ¥, = v3. This determines the tree
ordering <9 of t7U w? (remember 2.5.3(C)). To define el , we let:

®€inCn

o dom(ef ;) =dom(e} ,)U{(7,¢) : = <I/g(i) L) >y = (Vg i< ),
v € (37,01, (7,0) € dom(el,)},

o if 7 <y <y, (¥,1) € dom(e} ,) and lev(y') = 6P then el , (7,1) =
eg,h(?3/7 L)

Now one easily checks that the condition g defined above is as required.

(2) Choose v € %\ such that v[1 & tP. Let
01 =07, t1=tPU{v|y:vy<d’}, w!=wPU{s}.
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Define <7 by letting b, = b4 for v € w? and bj = {v]e : ¢ < §7}. Finally,
put D7 = DP,d} , =d, and el , =el,.

(3) Let t9 =17, w? = wP, ¢ = cP, d}, ,, = di, ,, if (z',h') € DP, d}, is
empty if (z,h) ¢ DP, and similarly for e, ;..

(4) Let h = {(a?,al,a?) : £ < (). Declare that 67 = 6” + w and fix an
enumeration (vg : 3 < p) of tP N°°\. Let i = (Vg() : % < p) be such that
¥ < g (€ wM). Next, as in (1) above build ¢, and vy for v € (67,09 and
B < p satisfying demands (a)—(c) there plus:

(c) (6) for each v € (67, 99),
(¥ < )3 < p)(e, (V) = )
and for p ordinals ¢ < p divisible by ¢ there is £ < A such that
(VJ < C)(C’y(yg(i_;.j)) = OZ? & V’gy(—:ij)(ﬁy) = C : 5 + ajl')a

(e) (V€ < p)(F*1 < p)(csa (ngi)) = ¢) and for p ordinals i < p
divisible by ,

(V5 < O)(ess (54y = 0).

Next we put dom(d? ,) = dom(d, ;) U{y}, d, 2 d ., di () = 0P + 2,
i, = di, ,, for (z',0') € DP\ {(z,h)}, and D? = DP. The functions c?
and ef, ,, (for (z',h') € D7) are defined as in (1), but dealing with (z, h)
we take into account the new obligation: d , (¥) = o7 + 2 (and we put the
value 2 whenever possible). There is no problem with it as we demanded

clauses (c¢)(d,¢). Now one easily checks that g is as required. ms 5.5

CLAIM 2.5.6. The forcing notion P is (< \)-complete, i.e. if p = (p’ :
i < i*) CP is increasing and i* < X then p has an upper bound in P.

Proof. It is easy: the first candidate for the upper bound is the natural
union of the p*’s. What may fail is that the tree Uicix tP" does not have the
last level. But this is not a problem as we may use the procedure of 2.5.5(1)
to add it. =

CLAIM 2.5.7 (The Amalgamation Property). If « < A1 is either a suc-
cessor ordinal or of cofinality \, p,q € P, plae < q and w? C « then there is
r € P such thatp <r,q<r and w" = wP Uw.

Proof. By 2.5.5(1) we may assume that ¢ < §%. Moreover, we may
assume that |wP \ a| = p (as otherwise everything is easier). Let 6" = §9
and w” = wP? Uw?. By induction on v € [0, §9] choose sequences (g~ : 3 €
wP \ ) and functions ¢, such that:
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() vg,y € YA are <-increasing with +,

(B) v,6r = by and vg 5041 & 19 [note that (v s : 3 € wP \ @) is with no
repetition],

(7) ey : {vge : B ewP \ , £ € [0P,7)} — A are continuously increasing
with v and ¢sr4q is P restricted to {vg s : § € wP \ a},

and for each (z,h) € DP, h = ((a2,a},a?) : € < (), 2 € dom(d} ;) \
dom(d%h) and ¢* < p such that z; > « for i > i* we have:

(0) for each ~ € [0P,07), for p ordinals i € [i*, ) divisible by ¢, for some
£<A,

(V& < C)(C’H-l(l/zz‘ﬂﬁ) = Ozg & Vzi+e,7+1(7) = C : 5 + a;)v
(¢) for p ordinals ¢ € [i*, ) divisible by ¢,
(Ve < O)(esup1 (Vs b0) = 02),

Qifz<y<zlev(y) =0, 5 <y, lev(y/) =" +1, (¢,ds ,(2)) €
dom(e? ;) and e , (3, d} ;,(2)) = 0 then for u ordinals i € [i*, u) divisible
by ¢ there are §y < & < A such that

(Ve <& < yiye(07) < C- &1 < wige(dP)),
(V& < C)(Cp(yzi+e,5p) = Oég, y;—l—s(dp) =(¢-&o+ O‘;v yi—i—s(dp) =(¢-&+ Oég),

(¢) for each v € (67, 69], for every € < p there are p ordinals ¢ < p such
that ¢y 11(vs, ) = €.

[Our intention here is that b = vgsa and ¢ 2 csa.] We have actually
1 demands, each of which can be satisfied by p pairwise disjoint cases of
size ( < p. So we may carry out the procedure analogous to that from the
end of the proof of 2.3.7. Note that in handling instances of clause ({) we
use demand 2.5.3(G)(v) for ¢ (applicable as d? , (z) < 07) and for clause (d)
we use 2.5.3(G)(iv). After the construction is carried out we easily define a
condition 7 as required. mo 5.7

CLAIM 2.5.8. The forcing notion P satisfies the A*-cc.

Proof. Suppose that (p, : @ < AT) is an antichain in P. By passing
to a subsequence we may assume that otp(wPe) is constant and that the
order isomorphism of wP=, wP# carries the condition p, to pg (so tP~ = tPs,
DPe = DPs etc.). Moreover, we may assume that the family {wPe : o < AT}
forms a A-system with kernel w* (remember A = 2# = ™). Now we may
find an ordinal a* < AT of cofinality A\ and ag < «a; < AT such that
wPeo C o, wP1 Na* = w* and w* is an initial segment of both wP> and
wp,, - Note that then p,, [a* > pa,. So applying 2.5.7 we conclude that the
conditions py,,Pa, have a common upper bound, a contradiction. mo 5.8
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To finish the proof note that if G C P is a generic filter over V, then in
V|[G] we may define the tree T" by

T=MNU{Na:a<A"}
where for o < AT we define 7, € *X by

na = J{re¥X:@ea)(vemn)}

(and ¢, d are defined similarly). By 2.5.5 and 2.5.6 (no new p-sequences of
ordinals are added) we easily conclude that these objects are as needed.

m25

We may want to improve 2.3(2) so that it looks more like 2.5(4); we can
do it at some price.

PROPOSITION 2.6. Let J* be a linear order, J* =) - \+ Za, with each
Zo a A-dense linear order of cardinality A (as in the proof of 2.3(1)). Then
J =wxJ* is a \T-like linear order such that every j € J which is neither
a successor nor the first element (under <) satisfies

cf({i:i<gjh,<g)=A
and each member of J has an immediate successor. m

DEFINITION 2.7. For a A*-like linear order J, a J-Aronszajn tree is
T = (T, <p,lev) such that:

(a) T is a set of cardinality AT,

(b) (T, <r) is a partial order which is a tree, i.e. for every y € T' the set
{z : x <7 y} is linearly ordered by <r,

(c) lev is a function from T to J, and T := {y € T : lev(y) = j},

(d) for every y € T, lev is a one-to-one order preserving function from
{z:x <py}onto{jeJ:j<slev(y)}, soyljis naturally defined,

(e) fory € T'and j € J with lev(y) <7 j thereis zsuchthaty <p z €T
and lev(z) = j,

(f) {y : lev(y) = j} has cardinality A,

(g) normality: if y # 2z, both in T}, and j is neither a successor nor the
first element of (7,<7) then {z: x <r y} #{z: 2z <p z},

(h) for y # z € T there is j € J such that y[j = z[j and

(Vi)(j <g i=yli# z[1)
[we write z Ay for y[j = z[7j].

THEOREM 2.8. Assume that A\ = pt = 2# and <, (the second follows
e.g. if p > 3,; see [Sh 460, 3.5(1)]) and J is as constructed in 2.6. Then
there are a J-Aronszajn tree T and functions f, ¢, d such that:

(a) f, ¢ are functions from T to X\, and if i is the successor of j in J
and y € T; then f is one-to-one from {z € T} : zi =y} onto A,
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(b) for every z € T (= UjejTj[”]) and h: { = A X AX X with { < p
we have dz p, TEM — A such that if dz ;,(Z) = dz 5 (y) then for somet € Tj[:“]
we have:

(@) ti = yi Az,

(8) lev(t) < lev(y) and lev(t) < lev(z),

(v) (Ve < p)(3"i < p)(c(ti) = ),

(0) for p ordinals i < p divisible by ¢ we have

h(€) = ((e(ta), f(yil(a +7 1)), f(zil(a +7 1)),
where o = lev(t).

Proof. Like 2.3. m

3. Constructions related to pcf theory

LEMMA 3.1. (1) Suppose that:

(A) (\; 11 < 9) is a strictly increasing sequence of reqular cardinals,
0] < Xi < A =cf(N) fori < and D is a o-complete filter on
d containing all co-bounded subsets of 0 (follows by clause (D);
hence cf(d) > o),

(B) tef(J[;5 Ai/D) = A, i.e. there is a sequence (fo : a0 < X) C
[L;c5\i such that:

(i) a < B < X implies fo <p fg,
(i) (vf € [Lics 2)Ba < N(f <p fa),

(C) sets A; C 9§ (fori < k) are such that the family {A; i < K} is
o-independent in P(0)/D (i.e. if u,v are disjoint subsets of k
with [uUv| < o then e, Ai \U,je, 45 # 0 mod D),

(D) {fali:a <A} < \; for each i < 0.

Then Ens, (A, k).

(2) The linear orders in part (1) have exact density p := Y, _5\; (see
Definition 1.9) and they are positively p-entangled (see Definition 1.10).
Moreover, if (fo : a < ) is as in [Sh 355, §1] (i.e. it is p-free) then
they have exact density (u™, u™, p).

Remark. By [Sh 355, 3.5], if 6 < A\g and maxpcf({\; : i < a}) < A, =
cf(Aa) (for a < §) and (x) A = cf([], .5 Aa, <p) then we can have (B)+(D);
i.e. we can find f, (for a < \) satistying (i)4(ii) of (B) and (D). If instead
of () we have A € pcf,_ o mpretelAi 27 < 6} (but A & pef({A; 1@ < a}) for
a < A) then we can find a filter D as required in (A) + (B) + (C). So if
p>cf(p) =k and o < g = |a|® < i, then we can find A = ()\; : i < k) as
above and )\ strictly increasing with limit & with D the family of co-bounded
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subsets of «, for some A € (u, u*]. If kK > N, for any regular such A there is
such A (see [Sh:g, VIII, §1}).

Proof of Lemma 3.1. (1) Let Z = {f, : @ < A}. For each { < k we
define a linear order <Z of 7. Tt is <*A<, where for A C § we define <, by
fa < fp if and only if

(Fi < 0)(fali) # f3(i) & foli= fali & [fu(i) < fa(i) i € A]).

Let u, v be disjoint subsets of x with |u Uv| < ¢ and for each ¢ € u U v let
t5, = [y(e,a) be pairwise distinct (for a < X). We should find o < 8 < A as
in 1.1(1). Let

9o(i) == min{ fy(c o) (i) : € € uU v},
io = min{i < §: (fyca)li:e €ulv) are pairwise distinct}.

Since |uUv| < o < cf(d), we have i, < §. Clearly g, € [[._s\i. Without

loss of generality i, = i* for every a < A. Let
B={i<d:(VE<X)(Fa < N)(gai) > &)}
Cram 3.1.1. Be D.

Proof. Assume not, so § \ B # ) mod D. For i € 6 \ B let & < \; and
Bi < X exemplify i € B, i.e. a € [B;, ) = ga(i) < &. Define h € [[, 5 Ai by

mé) ‘_{o itieB.

Now (fa/D : o < A) is cofinal in [[, 5 A;/D (clause (ii) of (B)), so there ex-
ists # < Asuch that h < fg mod D. Without loss of generality sup;cs\ p 3 <
B (remember that § \ B C 6, [0] < A = cf(A) and (Vi € § \ B)(8; < N)).
Since, for each ¢ € uUwv, (g, ) (for a < \) are pairwise distinct and 8 < A,
there exists @ < A such that (Ve € uwUv)(y(e,a) > (). Without loss of
generality 3 < a and hence sup;cq g 8i < . Now by the choice of o we
have (Ve € uUv)(fs < fy(c,a) mod D) and for every i € § \ B, go(i) < &;.
Hence E. := {i <0 : f3(1) < fy(,a)(i)} € D and as D is o-complete and
o > [uUv| we get [\.cuun £e € D. By go's definition and the choice of 3,
it now follows that {i < 0 : h(i) < go(7)} € D and thus

(5\B)N{i < §:h(i) < ga(i)} # 0 mod D.

Choosing 7 in this (non-empty) intersection, one obtains g, (i) < & < §;+1 =
h(i) < ga(7) (the first inequality—see above, the third equality—see choice
of h, the last inequality—see choice of i), a contradiction. So B € D, proving
the claim. 31,1

Remember that [{fo[i:a < A} < A; for each i < 6, and cf(J],_5\i/D)
= A, D contains all co-bounded subsets of . By our hypothesis,

i<d



o-Entangled linear orders 235

A= (VAN )6\ Ac) # 0 mod D,
ecu g€V
soC:={i<0:i" <i}NANB # 0 mod D, and one can choose ¢ € C.
For each £ < A; choose a¢ < A such that g, (i) > §. Then clearly for some
unbounded S C \; we have

61 < fz S 5&51,62 culUv = f’Y(El,agl)(i) < f,y(a%agz)(i).

Without loss of generality the sequence ({fy(c.ac)[i:€ € ulUv) : § € 5) is
constant (by hypothesis (D) of 3.1(1)). The conclusion should be clear now
(look at the definition of <7 and the choice of i in (¢, Ac \ U.¢, 4c).

(2) We will state the requirements and prove them one by one.

CrAM 3.1.2. The linear orders constructed in the first part have exact
density .

Proof. Consider Z = (Z,<4). For each i < § choose a set X; C \ such
that |X;| < A; and {fali : @ < A} = {fali : @ € X;}. Then {f, : a €
Ui<s Xi} is a dense subset of (Z, <4) (and its size is < ).

Suppose now that J C Z, |J| = A and assume that Jy C J is a dense
subset of J with |Jp| < p. The set X = {a < A: f, € J} has cardinality
A, so it is unbounded in A. Let i(x) = min{i < § : A; > |Jp|}. Then

(Vi > (%)) (i :=sup{fa(i) + 1: fo € To} < N\i)
(as ; is a supremum of a set of |Jp| < A; = cf(\;) ordinals < A;). Let
v = 0 for ¢ < i(x). Then (y; : i < 6) € [[,.5A and, as (fo : @ < A) is
cofinal in ([, .5 Ai; <p), for some a(x) < A we have (y; : i < 6) <p fa(s)-
Since (Va € X \ a(*))(fa+) <b fa), we have
Vae X\ a(x){i<d:v < fa(i)} € D).
Consequently, for each o € X \ a(x) we find i,, € (i(x),0) such that f,(in)
> 7. As A =cf(X\) > |d], there is j € (i(x),0) such that the set
X ={aeX :a>al*) &i,=j}

is unbounded in A. Since |{fo[j : a < A} < A; < A = cf(A), for some
unbounded set X"’ C X’ and a sequence v we have (Vo € X")(f,]j = v).
But now note that the convex hull of {f, : « € X"} in (Z,<4) is disjoint
from Jy, a contradiction. ms3.1.o

Cram 3.1.3. (Z, < 4) is positively o-entangled.
Proof. Asin part (1).

CrLAM 3.1.4. If the sequence (fo : o < A) is p-free and the set A C 6
is neither bounded nor co-bounded then the linear order (Z,<4) has exact

density (u*, p*, p).



236 S. Shelah

Proof. Suppose that J C 7 is of size > pu™. By 3.1.2 its density is
< w. For the other inequality suppose that J, is a dense subset of J of
cardinality < p. Let

J' = {fa € J : for each i < ¢§ there are (1, 32 such that fz,, f3, € J and
fﬂl M = fafz = f,@z M&fﬁl <A fa <A fﬂz)}
Plainly |7 \ J'| < u, so |J'| > pt. Since § := |Jy| < p and p is a
limit cardinal, we have ¢ = (6 + |§])* < p. Let X = {a: fo, € J'} and
choose X7 C X of size 0. Now we may find (B, : @« € X;) C D such
that for each j < J the sequence (fo(j) : @« € X & j € B,) is strictly

increasing (or just without repetitions). Then for some i(x) < 0 the set
Xo ={a € X1 :i(x) € B,} has cardinality . But then the set

Xi=H{ae Xy :2(3fs € Jo)([pl(i(x) + 1) = fal(i(x) + 1))}
is of size o (remember |Jy| < 0 = cf(0)), a contradiction with the choice
of jl. M3 1.4

This finishes the proof of the lemma. m3
LEMMA 3.2. Suppose that a is a set of regular cardinals satisfying
la|tT < min(a), X =maxpcf(a) and [0 € a= 0> (maxpcf(dNa))<’].

(1) Assume that k = |a|, kK = k<7 and J is a o-complete ideal on a

extending J<[a] and a. C a are pairwise disjoint not in J for e < k. If
2% > X or just 2% > sup(a) then there is a o-entangled linear order of
power \.

(2) We can replace “k = |a|” by “cf(supa) < k”.

Clearly in (1) and (2), a has no last element and |a| > cf(supa) > o.

(3) If in (1) we omit the a., still there is a positively o-entangled linear
order of power \.

(4) The linear order above has exact density p := supa. If there is a
p-free sequence (fo : o < A) which is <j_,[q-increasing and cofinal (see
[Sh 355, §1]) then the linear order has ezact density (u*,u) (see Defin-
ition 1.9).

Proof. (1) This follows from part (2) as cf(supa) < |a| < k.
(2) Let (fo : @ < A) be <;_, [q-increasing cofinal in [Ja/Jx[a] with

{fal0:a <A} <maxpcf(and) forfeca

(exists by [Sh 355, 3.5]). For each § € a we can find sets Fp ¢ (for ( < k)
such that Fy ¢ C {falf : @ < A}, and for any disjoint subsets X, Y of
{fal® : a < A} of cardinality < o, for some ( < k, Fy N (X UY) =X
(possible as k = k<7 and 2® > |{f4]0 : & < A}|—by [EK] or see [Sh:g,
AP1.10]). Clearly a has no last element (as JP¢ C J and by the existence
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of the a.’s) and cf(sup a) < &, so there is an unbounded b C a of cardinality
< k. As a can be partitioned into k pairwise disjoint sets each not in J (and
Jbd C J), we can find a sequence ((fy,(r): T € a) such that:

e for each T € a we have Oy € a, T > Or, (r < K,
e foreachfcband ( <k, {Y €a:6r=20, (r=_}#0mod J.

Now we define a linear order <q on {f, : @ < A} as follows: f, <et f5 if
and only if for some 1" € a we have

fal(@n?) = fgl(anT), fo(T)# fs(Y) and
fa(T) < fﬂ(T) <~ fa mT € FGT,CT'

Readily <, is a linear order on the set Z = {f, : @ < A}. We are going
to show that it is as required (note that in the definition of f, < f3
we have fo[0r = fzl0r as 6r < T). Suppose that e(x) < o, u C (%),
v=c(x) \ U, t;, = fy(e,a) (for ¢ < e(x), @ < ) and v(g,a)’s are pairwise
distinct. For each o < X take 6, € b such that {f ) [0a : € < (%)}
is with no repetitions (possible as £(x) < o < cf(supa) < Kk and b C a
is unbounded). Since A is regular and A > k, we may assume that for
each a < A, 0, = 0* € b. We have |{f,[0" : @ < A}| < maxpcf(an d*)
and (maxpcf(a N 6*))<? < 6* and hence we may assume that for some
(ge € < £(4)),
(Voo < A)(Ve < e())(fry(e,a) 107 = ge)-

Let X ={g.:e€u},Y ={g: : € € e(x) \ u} and let { < K be such that
Fy« ¢ N (X UY)=X. As in the proof of 3.1 one can show that

{pea: (V€ <p)({a <A:galp) >} =A)} =amod J,
where gq (1) = min{ fy a)(p) : € < e(*)}. Thus we can find T € a such
that 6* = 0y, ( = (r and (V& <T)([{a < X : ga(T) > &} = N). Next, as in
3.1, we can find a < A (for € < 7)) and S € [T]T such that for each £ <7
we have § < ga, (1), (V¢ < &)(a¢ < ag) and

(Ve <e(x)(V¢ < &) (fy(cia0)(T) < gae (1))

and the sequence ((fy(c,ae)[?7 1 € <€) : £ € ) is constant. Choose any
£1,6 €5, & < & and note that for every € < (*) we have

f'y(e,agl) fT = f'y(e,agz) FT, f'y(a,agl)(:r) < f'y(e,agz)(T)y
and fv(g,agl) [0y = g = f7(57a§2) [0r. Thus ag, < ag, satisfy the condition
given by entangledness for ¢ ’s.
(3) Let (fo : @ < A) be as in the proof of part (2). We define a linear
order <pet on {fo : @ < A} as follows: f, <pet fa if and only if for some
T € a we have

fal(@nY) = fgl(an?) and fo(7) < f3(2).
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The rest is even simpler than in the proof of part (2) after defining <
(remember 1.2(6)).

(4) Tt is similar to the proof of 3.1(2), noting that if f' = (f. :a < \) is
< j-increasing cofinal in [Ja for I = 1,2, A = cf()\) and f! is u-free then for
some X € (A}, f21X is p-free. m3o

PROPOSITION 3.3. (1) Assume that:
(a) Ensy (N, k;) fori <9,

(b) A; are regular cardinals fori < 9, (\; : i < 0) is strictly increasing
and § < Ag,

(c) J is a o-complete ideal on § extending J29,

(d) & <TF((ki 21 <68) (=sup{|F|T : F C[l,.56i and f # g €
F=f#59}),

(e) [1;<s5 Ai/J has the true cofinality X as exemplified by {fo : @ < A}
and for each i < &6, N\; > |{fali : a < A} (if for each i,
max pcf({A; : j < i}) < A; then we have such f,’s).

Then Ens, (A, k).
(2) Assume that in part (1) we omit (d) but in addition we have

(f) for each i < 6, ki > [{fali:a <A}

[and we have such fo’s e.g. if k; > maxpcf({)\; : 7 < i})], or at least
liminf ;(k;) = sup,; .5 Ai, or
(f') & can be partitioned (°) into |§| J-positive sets and for each i < &
for J-almost all j < § we have kj > |{fali : a < A} (if k; is
strictly increasing this means “every large enough j”).

Then there is a o-entangled linear order I of cardinality A.
(3) Assume (f') or (f) + (g), where

(g) there is a decreasing sequence (B. : € < o) of elements of J*
with empty intersection.

Then in (2) we can get T = Ty + Iy such that for any uniform ultrafilter D
on o the orders (Z1)° /D and (Z3)? /D have isomorphic subsets of cardinality
A (see 1.8 for a corollary).

(4) The linear orders (in all parts of 3.3) have exact density p :=
sup; s Ai, and if (fo 1 @ < A) is p-free even exact density (u™, p).

(5) In 3.3(1) we can weaken clause (d) to

(d)~ for some F C [l,cs5ki, |F| = K and for every F' C F of
cardinality < o we have {i < § : (g(i) : g € F') is with no
repetition} € J7T.

) 1f kj is non-decreasing then a partition into cf(d) sets suffices.
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(6) In 3.3(2) we can replace (f') by

(®)  there is h : 0 — & such that i > h(i), k; > [{falh(i) : @ < A}| and
for everyi < 6, {j <d:h(j) >i}eJT.
Proof. Similar. (For part (3) look at the proof of 2.3(3).) However, we
will give some details.
(1) As Ens,(\;, %;) (by clause (a)), we can find linear orders <!, of \;
(for a < k;) such that the sequence {(\;, <) : a < k;) is o-entangled. By
clause (d) we can find g¢ € [];,_5#: (for ¢ < k) such that

e<(<k=>{i<d:9:.(1) =gc(1)} € J.
Now for each ¢ < x we define a linear order Z, = (F, <7) with the set of

elements I := {f, : @ < A} as follows: f, <{ fg if and only if for some
i < ¢ we have

Jali) # $a0)s fali=foli and  fal) <) fa(i):
It is easy to check that < is a linear order of F. For the relevant part of
4), T CZLiy |T| =X 50T ={fa:ac X}, X €[N soT’s density is
< Hfali:a€e X and i <} = p:= ), _5Ai. As in the proof of 3.1,

A= {z <5 (af e H)\])()\i = {falD) o€ X&f :fah'}\)} = §mod J
j<i

and for i € A let f exemplify i € A. If 7' C J is dense, |J’| cannot be

< as then it is < \;(,) for some i(*) € A and so for some y < A;(, for no

a < A do we have

fali(x) = [ &7 < fali(*) < Aigo,
thus proving p = dens(J). The part “if {f, : @ < A} is p-free then any
J C I; of cardinality > p has density p (i.e. has exact density (ut,p))”
can be proven similarly.
Finally, “(Z¢ : ( < k) is o-entangled” is proved as in the proof of 3.1.
Assume uUv = e(x) < o, uNv =0, and (. < k for € < g(*) are pairwise
distinct. Now

A:={i<d:(g-(7) : € < g(*)) are pairwise distinct} # @) mod J

(as J is o-complete, (d)=-(d)™). We continue as in the proof of 3.1 (only
with A as here) and using the fact that ((\;, <!) : a < k;) is o-entangled.
(2) First we assume clause (f). As Ens,(\;,x;) and k; > |II;| where
IT; := {fali : & < A}, we can find linear orders <}, of A; (for n € II;) such
that (A, <}) : m € II;) is o-entangled. We define the linear order <* of
F:={fa:a <A} as follows: f, <* fs if and only if for some ¢ < § we have

fa(i) #fﬁ(z)u fafiZfﬁfi, and fa(i) <§”a{i fﬁ(z)
The rest is as in 3.3(1).
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Next we assume clause (f’) instead of (f). So let (A; : ¢ < J) be a
partition of § with every A; in J* and so necessarily

Al:={j €A :r; > |II;]} = A; mod J.
Then we can choose (°) a function h such that
(®)  h:6—206, h(i) <i, k; > |IIy(;)| and for every i < ¢ we have
{i<&:h(j)>i}e".
Let (s, <f7) :n € II,(;)) be a o-entangled sequence of linear orders. Now

we define a linear order on F' := {f, : @ < A}: fo <* fg if and only if for
some ¢ <  we have

fa(i) #fﬁ(Z% fafiZfﬁfi, and fa(i) <j“th(i) fﬁ(z)

(3) Without loss of generality, for each { < o + o the set J¢ :={a < A
fa(0) = &} has cardinality A. Let F' = {fo : @« < A& fo(0) < 0 +0}. We
can find B, € J* (for € < 0), decreasing with € and such that (___ B. = 0,
and in the proof from (f’) replace (®) by

e<o

(®) h:d—0,h(i) <i, kg > || and for every i < J, £ < 0+ 0 we
have
(€ Be:h(j) > i e J*,

and define <* by f, <* fs if and only if for some i < § we have

fali) # f5(@),  fali= fali,
[i =0= fa(0) < f3(0)], [0<i€ By, )= fali) <if, e fa(d)],
0 <@ By, ) = fali) < [(0)].
The rest is as before (we can replace o by other cardinals > o but < \g).
(4) For 3.3(1) see in its proof, other cases similar.

(5) Really included in the proof of 3.3(1).
(6) Really included in the proof of 3.3(2). m3.3

PROPOSITION 3.4. (1) Assume that:

(a) Ensg (N, i, ki) fori <0,

(b) (N 1@ < &) is a strictly increasing sequence of regular cardinals,
219l < Ao,

(c) J is a o-complete ideal on § extending JP9,

(d) K <TF((r; 10 <0)), Sics i S pu <A p=cf(n) and

(Va < p)(jal<* < p),

(®) Actually we can replace the assumption (g) (in 3.3(3)) by the existence of such
an h.
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() F={fa:a<A} ClisNi, fa #75 fp for a # 3, and
[{falito <A < p;
(£) if pi = cf(pj) < pi and A € J* then tf([[;c 4 p5/J) = 1 is
impossible,
(8) (Vo < p)(|af=7 < p).

Then Ens, (A, p, k).
(2) Assume in addition

(h) K > {fali:a < A},

or at least
(b') cf(0) = w and liminf ; k; = sup; 5 \;,

or at least
(b)) there is h : 6 — & such that i > h(i), ki > [{falh(i) : @ < A}

and 6 = limsup, 5 h(i).
Then there is a (u,o)-entangled linear order I of cardinality .
(3) Suppose also that

(i) we can partition 6 into o sets from J* (or clause (g) from 3.3(3)

holds).

Then we can get: for any uniform ultrafilter D on o, Z°/D has two iso-
morphic subsets with disjoint convex hulls of cardinality ).

Proof. Similar proof but for the reader’s convenience we present some
details.

(1) We repeat the proof of 3.3(1) up to proving entangledness. To show
“(Z¢ - ¢ < k) is (u, 0)-entangled” suppose that uUv =¢e(*) < o, uNv =1
and (¢ : € < e(x)) is a sequence of pairwise distinct ordinals < x and
(v(B,e) : B < pye < e(x)) C Ais such that

(Ve <e(*))(VB1 < B2 < A)(v(P1,€) # (B2, €)).-
We want to find 81 < B2 < u such that

(Ve <e(%)(v(B1,€) <c¢c. V(B2,e) & € € u).
CLAIM 3.4.1. Assume that:

(a) (\; 11 < 0) is a strictly increasing sequence of reqular cardinals,

(B) J is a o-complete ideal on § extending JP4

(7) a sequence f = (fo:a <) CI[;csNi is <j-increasing,

(0) Picstti < p=cf(u) <X and (Voo < p)(|a|<7 < ),

(e) either (i) 2191 < o, or (ii) f is p-free,

Q) if wi < py fori < 6 and A € J* then tcf([],cqpi/J) = p is
impossible,



242 S. Shelah

(0) a sequence (y(f,e): B < u, € <e(x) <o) of ordinals < A satisfies

(61751) 7& (ﬁ?vé—?) = ’Y(ﬁlv‘gl) 7& 7(52752)'

Then there are a set X € [u]* and a sequence (he : € < e(x)) C [[,.sMi
such that:

(a) for each e < g(x) the sequence (y(B,¢) : f € X) is strictly increasing,

(b) (V8 € X)(¥ < 2(2)) (Fy(p.0) <s o).

(c) (he(i) 1 i < ) is the <j-eub of (fy(s,e) : B € X),

(d) B* ={i < d: (Ve <e(x))(cf(he(i)) > pi)} = 6 mod J.

Proof. Since (Va < p)(|a|<? < p) and cf(p) = p we know that for
some X € [u]* we have

(Ve < e(x))(the sequence (y(f,¢) : f € X) is strictly increasing).

[Why? For 8 < u, ¢ < e(x) define f(/3,¢) as follows: if there exists § < [
such that vy(d,¢) > v(B,¢) and [y(5,¢),7(d,¢)] N {y(a,e) : & < f} = 0 then
f(B,¢) is this unique 4, otherwise f(3,e) = —1. By Fodor’s lemma, there is
a stationary set S C p such that sup f[S x e(*)] < p. Since |a|*®*) < p for
a < p, on a stationary set X C S the sequence (f(a,¢) : & < e(x)) does not
depend on a. This X is as required.]

By renaming we may assume that X = u. Consequently, for each ¢ <
£(*) the sequence (fyg,-) : B < p) is <;-increasing. Since either y = cf () >
2191 or the sequence is p-free, we may use [Sh 355, §1] to conclude that it
has a <j-eub; call it h.. We may assume that, for each i < §, h.(i) is a
limit ordinal. Since h. <; (\; : i < 0), without loss of generality we have
(Vi < 9)(he(i) < Ni). Also p = tef(J], scf(he(i))/J) and cf(h.(i)) <
he(i) < Aj, so by the assumption (¢) we have

{1 <& :cf(he(i)) < pi or maxpcf({A; : j < i} <cf(he(i))}) =0 mod J.
Since J is o-complete we conclude
B* ={i<d: (Ve <e(x))(cf(he(i) > p;)} = 6 mod J,
finishing the proof of the claim. m3 41

Note that we may assume that for some i® < §, for every 8 < u the
sequence (fy(3,e)[1® : € < e(*)) is with no repetition and does not depend
on 3. Now we may apply 3.4.1 to find X € [u]* and (h. : € < £(x)) as there.
We shall continue as in the proof of 3.1 with some changes, however. We let

Gi = {{fyp.e)(i) e <e(x)): B<p} C H he (i),

e<e(x*)
B ={i€ B :for each ({ : e <&(x)) € [[.c.(he(i)
there are p ordinals § < p such that
(Ve <e(*)(€e < fr(a.0)(1))}-
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We have to show the following.
CrAam 3.4.2. B =0 mod J.

Proof. Otherwise, as B* = § mod J, necessarily B* \ B # () mod J.
For each i € B*\ B choose a sequence (£ : e < g(x)) € [Teccq) he(i) and
an ordinal 3; < p exemplifying i ¢ B. Thus if i € B*\ B and 8 € [, p)
then (3¢ < e(%))(&2 = fy(p,)(D))-

For € < e(*) define a function h® € [], _5he(i) by

he (i) = € +1 ifie B*\B,
0 ified\B*orieB.
Now, for each ¢, for every sufficiently large 3 < p we have h® <j fy(3,)-
Consequently, we find §* < p such that
e<e(x) &P e[B 1) = h <s [ype)
But the ideal J is o-complete, so for each 5 € [5*, u),
Bg:={i <d: (Ve <e())(h*(i) < fy(8,e)(%))} = 0 mod J.

Now we may take 5 € [3*, ) and then choose i € Bg N (B*\ B) and get a
contradiction as in the proof of 3.1.1. m340

Remember that
{(fypolize<e(): B <p}l <Hfali:a <A} <

(not just < \;); see clause (e) of the assumptions of 3.4(1). Hence there is
B% < u such that

(V6 € [B%, ) (¥j < 9)
({8 : (fre)1d 1€ <e(¥) = (fypo)li e <e(x)), BB m} = p).

For each i € B (defined above) we know that (Ve < e(x))(cf(he(i)) > 1),
and hence J]__.(,) he(i) is p;-directed and the set

{{fr(p,0)(0) re <e(%)) : B € [B%, 1)}
is cofinal in [, () he(i). Putting these together, there are vie [P,
(for & < e(+)) such that for every ({. : e < e(*)) € [[.c.) he(?), for some

B € 8%, 1) we have

(Ve < e(*))(fr(p,0) i = Vi & & < fr,0)(D)).

Now take any i € B with ¢ > i® such that the sequence (gc. (i) : € < &(x))
is with no repetition. Again, as []._.(, h(@) is p;-directed we can choose
by induction on « < p; a sequence (B, : a < p;) C p; such that for each
a < g, sup{fy : o < a} < B, and

(Vo' < a)(Ve < e(0))(fy(8..0) () < fy(80.0)(1))-
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Now recall that the sequence <<2: ¢ < k;) exemplifies Ens, (g, 4, K;)-

So we apply this to (g¢. (i) : € < e(x)) and ((fy(g,.e) 1 € < €(¥)) : @ < p),
and we find a; < as < p such that

ccu= f’y(al,s) (Z) <z<€ (1) f’y(ag,a) (Z)v

EEV= f’y(ag,f;‘) (Z) <Zg<€ (i) fw(al,a) (/L)u
so we are done.

(2) The proof is exactly like that of 3.4(1) except for two points. First
we have to define a linear order 7 (rather than Z; for ¢ < k). Assuming
that clause (h) of the assumptions holds, for each i we can find linear orders
<j on Ay (for n € Ty = {fali : a@ < A}) such that (A, <}) :n € Tj) is a
(i, 0)-entangled sequence of linear orders. This does not affect the proof
except at the very end when we use the entangledness. Similarly assuming
(h’) or (h").

(3) Combine the proofs above. m3 4

Remark 3.5. (1) We can also vary o.

(2) The “21°1 < X\g” rather than just “|§] < A¢” is needed just to have
< j-eub (to use the fact that “if p; = cf(p;) < pi...”) soif {fo : e < A} is
(35 Ni)-free, we can weaken “2191 < Xg” to “|d] < Ag”.

(3) Instead of T} ((; : i < §)) we may use any x = |G| with G C [],_; x
such that for every sequence (g. : € < £(x)) of distinct elements of G the set
{i <d:(ge(i) : € < g(x)) is with no repetition}

belongs to J*. But then in 3.4(3) we have to change (i).
PROPOSITION 3.6. (1) Suppose u = u<?. Then the set
{6 < ™ 2 if of(6) > o then Ens, (uto+t 2¢00)) o Ensa(u+5+1,2"+)}
contains a club of ut?.
(2) If in addition 2* > X 14 (or 21" > N ,+a) then the set
{6 <™ ifcf(0) > p (or cf(8) > u™t) then
there is a o-entangled linear order in ,u+5+1}

contains a club of p** and p** itself. (We can weaken the assumptions.)
(3) We can add in part (2) the conditions needed for 1.7. Also in parts
(1), (2) the exact density of the linear orders is u+° provided cf(8) < u*.

Proof. (1) By [Sh 400, §4], for some club C of u™,
(%) a<§eC=pt>cov(ut, ut put,2),

and hence, if cf(§) > o and § € C then (7)< = pu*9.
Let 6 be an accumulation point of C' of cofinality > N; and let A C § be
a closed unbounded set such that [T, ., #*"!/J59 has the true cofinality
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ptot! and otp(A) = cf(6) (exists by [Sh 355, 2.1]). Now for 3 € A we have
max pcf({utet! 1 a € BN A}) < utd < pto+Lif cf () < p by (%) (and
[Sh 355, 5.4]). Hence for some closed unbounded set B C A we have

o € nacc(B) = cov(pTSPANDFL L+t 9y < e,

Hence, if o € nacc(B) then maxpcf({ut@*tD : g € Bna}) < ptoth
Without loss of generality otp(B) = cf(d) and B = A. Now if o < cf(0)
< pt then we may apply 3.1 to {ut*t! : a € nacc(A4)} (for \) and get
Ens, (01, 2°19)) We still have to deal with the case cf(§) > ut. We try
to choose by induction on i ordinals a; € A\ J;_;(; + 1) such that

ptet > maxpef({p™ < i}) <o, cf(a;) = p

For some v the ordinal «; is defined if and only if ¢ < . Necessarily ~
is limit and by (*) + [Sh 371, 1.1] we have cf(y) > uT. Now for each
i < 7, Ensg(,uJ”"i“,Q‘ﬁ) holds by the part we have already proved (as
cf(a;) = pT). So we may apply 3.3(1).

(2) Let C be as in the proof of part (1) and exemplifying its conclusion.
If § = sup(C'N6) < pt* and cf(§) < pt and 2679 > ;9 then we can apply
3.2(1) (and the proof of part (1)). So we are left with the case cf(§) > u™.
Now we can repeat the proof of part (1) for the case cf(§) > p*. Choose
A as there and also «; € A, but demand in addition Ensg(,qu(‘;J“l),2“+)7
a; € ace(C) and cf(oy) = pt, hence Ens, (u @D, 207). In the end apply
3.3(2) to (uH (@t 1§ < 5).

(3) Similar to the proof of 3.3(4), 3.3(5). m36

CONCLUSION 3.7. Assume o > Xg. Then for arbitrarily large cardinals
X\ there are o-entangled linear orders of cardinality \*.

Proof. Let x > o be given. We choose by induction on i < ¢ regular
cardinals \; >y such that Ens, (\;, R +Hj<i A;) holds and A; > Hj<i Aj. The
inductive step is done by 3.6. Now for some o-complete ideal I on ¢ extend-
ing JP4 T i N /I has a true cofinality, say A. By 3.3 there is a o-entangled
linear order of cardinality A, so if A is a successor cardinal we are done (as
A>x). If not, necessarily A is inaccessible and letting p="> i Aj we clearly
have p=p<” <X < p?. Now we use 3.6(2) to find \; € (1, N,+4) such that
there is an entangled linear order in )\;r, so in any case we are done. m3 7

4. Boolean algebras with neither pies nor chains. Let us recall
the following definition.

DEFINITION 4.1. Let B be a Boolean algebra.
(a) We say that a set Y C B is a chain of B if
Ve,yeY)(z#t=z<pyory<puz).
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(b) We say that a set Y C B is a pie of B if
Vz,yeY)(z#y=xLyand y £ z).

(c¢) w(B), the (algebraic) density of B, is

min{|X|: X € B\ {0} and (Vy)(Fx € X)(0<py e B=x<py)}.

LEMMA 4.2. (1) Suppose that:

(a) (A\; 1@ < 6) is a strictly increasing sequence of regular cardinals
and X\ is a reqular cardinal,

(b) J is a o-complete ideal on § extending J29,

(¢) (fa : a < A) is a <j-increasing sequence of functions from
[I;c5Ai, cofinal in ([T, .5 Ni, <),

(d) for every i < 6, |[{fali:a <A} <\,

(e) (A¢c : ¢ < k) C 0 is a sequence of pairwise disjoint sets such that
for every B € J and ( < k there is i € § such that {2i,2i + 1} C
Ac\ B,

(f) 2% > p:=sup,.5 A and K = k<7 (so k < |0] < p) and cf(9) < k.

Then there is a Boolean algebra B of cardinality A such that:

(®)% B has neither a chain of cardinality X nor a pie of cardinality \
(i.e. inc™(B) < X and Length™ (B) < ).
(®)E B has algebraic density m(B) = p (in fact, for a € B\ {0}, 7(Bla)
= p).
This also applies to the o-complete algebra which B generates, provided
(Va < N)(Ja|<7 < A).
(2) Suppose 2 < n* <w and that in part (1) we replace (e) by
(&)™ (@) A¢ C 4§ for ¢ < k are pairwise disjoint,
(B) e is an equivalence relation on & such that each equivalence
class is a finite interval,
(y) for every n < n*, B € J and { < k, for some a < § we
have /e € A¢ \ B and |a/e| > n.

Then there is a Boolean algebra B of cardinality X as in part (1) but with
(®)8 strengthened to

(®)§,n* Zf
(o) aq € B for a < X\ are distinct,

(8) n <mn”,
(v) B is the finite Boolean algebra of subsets of n x (n+ 1), and
forl <n, fi:n —nis a function such that

l<m<n&i<n= fi(i) # fm(i)
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and
zp={(i,7) i<n, j<n+1 j<fi(i)}
then for some ag < ... < ap_1 < A, the quantifier free type which

(Gags - -0, _,) realizes in B is equal to the quantifier free type
which (g, ...,Tn,_1) Tealizes in B*.

Remark. (1) The case § = sup,_; A; is included.

(2) Of course, no order Boolean algebra of cardinality A can satisfy (@)%.

(3) Again, B has density p and if (f, : @ < \) is p-free then B has exact
density p.

Proof of Lemma 4.2. We shall prove only part (1) as the proof of
(2) is similar. Without loss of generality ¢ is additively indecomposable.

We define B as an algebra of subsets of Y = (J, _5 Y2; where Y; = {fq[i
a < A} for i < §. For each i < § we can find subsets Fy; ¢ (for ¢ < k) of
Y5; such that for any disjoint subsets X7, Xo of Y3;, each of cardinality < o,
for some ¢ < Kk we have Fy; ¢ N (X1 U X3) = X (possible as k = k<7 and
2% > Agip1 > |Yasl, by [EK] or see [Sh g, Appendix 1.10]). We can find a
sequence ((j;, ;) : @ < d) such that j; <1i < 9, ¢; < k and for an unbounded
set of j < § for every ( < k for some € < k we have

(20,20 +1:2i < 8&2i,2i+1€ A} C{2i,2i+1<8:(ji, &) = (4,0)}

(we use cf|d] = cf(u) < k). Now for each o < A we define a set Z, C Y by
f € Z, if and only if for some i < §:

(a) f1(20) = fal(24),

(8) F12i+2) # fal(2i +2),

() f1(24i) € Faj,c = f(20) < fo(20) & f(2i + 1) < fo(20 + 1),
(0) f1(24:) & Fajoco = f(20) = fa(2i) & f(2i +1) > fa(2i+ 1).

Let B be the o-complete Boolean algebra of subsets of Y generated by
the family {Z, : « < A}. For f € Y let [f] = {g € Y : g extends f}. For
notational simplicity let o = N.

CrLAIM 4.2.1. If for 1 = 1,2, Z! € B are the same Boolean combinations
of Zots-- v 2ot s SaY A T[Zays -y Zor | (where T is a Boolean term)
and i < 0 is such that (f, [(2i) : m < n) is with no repetition and (Ym < n)

(for, 1(20) = faz,1(20)) then:
() Z'\U,pcnlfar, 120)] = 22\ U,y cplfaz, 1(20)];

(b) for each m < n either

(@) 2N [far, 1(20)] = [faz, [(20)] N Zay, and
Z2 N [faz, 1(20)] = [faz, 1(20)] N Zaa,, o7

(8) 210 [far, 1(20)] = [far, 1(20)] \ Zay, and
Z% 0 [faz, 1(20)] = [faz, 1(20)]\ Zaz
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Proof. Check the definition of Z,,. m4 91

Clearly B is a Boolean algebra of cardinality A. Now the proof of “B
has no chain of cardinality A\” is similar to the proof of 3.1, 3.2 on noting
that for each ¢,

(x) if

(©) I' C Ag; X Agi11 and for arbitrarily large o < Ag;, for arbitrarily
large 0 < Ag;j+1 we have (o, ) € I

then we can find («y, 81), (ae, f2) € I' such that a1 < as & 51 < Bs.

Up to now, the use of the pairs 24, 2+ 1 was not necessary. But in the proof
of “B has no pie of cardinality \”, instead of (%) we use:

(#x)  if (@) of (%) holds then we can find (a1, 1), (a2, 82) € I" such that
a < ag & B > P,

easily finishing the proof. my o

CONCLUSION 4.3. For a class of cardinals A\, there is a Boolean algebra
B of cardinality \T with no chain and no pie of cardinality \*. [We can
say, in fact, that this holds for many A.]

Proof. For any regular &, if 2® > N 14 then (by [Sh 400, §4]) for some
club E of k14,

a C (k7R 14) & |a| < k& sup(a) < N5 & § € E = max pef(a) < Rs.

Next we choose by induction on i < k cardinals \; € RegN[x™, N, 14],
Ai > maxpcf({\; : j <i}). Let u be minimal such that @ > sup,_,. A; and
€ pcf({N\; : ¢ € k}). Then (by [Sh 345a, 1.8], replacing {)\; : i < k} by a
subset of the same cardinality, noting {\; : i € A} € Jo,[{\; : i < K}] when
A € [k]<%) we have p = tef ([T, Ai/J2?). Also, as p € [k, R, +4] is regular,
it is a successor cardinal; now the conclusion follows by 4.2.

Generally, for any s let ag = 0, A’ = k*. By induction on n, choose
i1, (N <0< apyt), u, and regular A1 such that o, 11 = a,, + A"
and (\; 1 a, <@ < auyq1) 18 astrictly increasing sequence of regular cardinals
in [A",R(yny+a] such that \; > maxpcf({\; : a, < j < i}) (possible by
[Sh 400, §2] as above). Let u,, C [ay,, nq1) with |u,| = A™ be such that
[Ticu, Ai/J2Y has a true cofinality which we call A"*!. Lastly, for some
infinite v C w, [[,c, An/J0? has a true cofinality, which we call A. By
renaming v = w, U, = [y, &pt+1). Then § := sup,, ay, A and (A; : 7 < 9)
are as required in 4.2 if we let

J ={u C§: for every large enough n, sup(uNay,) < a,}.
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One point is left: why is A a successor cardinal? For it is in [sup,, ., A,
IL,.<. An] and either

H /\n < [sup )\n]No < 227,, An < N(Zn<w An )+

n<w n<w

or the first attempt succeeds for kK = A", mys

nw

We have actually proved the existence of many such objects. If we waive
some requirements, even more.

PROPOSITION 4.4. For any regular cardinal 6 we can find 6, J, A, \;
(fori < d) as in 4.2 and such that:

(x) A is a successor cardinal,
(y) for each i, for some reqular cardinal y; we have \; = pj and (u;)?
= M,

(z) one of the following occurs:

(i) & is a reqular cardinal < Mg, 6 >0 and J = JP4,

(i) 6 = Js has cofinality 0, and for some N (j < cf(8)) we have

J={a:aCé{j<cf(d):an)N g} e Jg‘%g)}
and fha = ('ua)sup{)\i:i<a}‘ -

LEMMA 4.5. Assume (\; 11 < 8), A, J, 0, (foa : a < A) are as in (a)—(d)

of 4.2(1) and:

(€') for every B € J for some i < § we have 2i ¢ B&2i+ 1 ¢ B,

(f") for every i < § we have Ens,(\;, \;) or at least for some club C
of §,if i < andi=sup{j € C:[inC\ j| > 1} then Ens, (A2,
{fal(2i) : a < A}).

Then the conclusion of 4.2(1) holds. [We can weaken (f') as in 3.3(6).]

Proof. For each i <4 let ((Ag;, <2') : = fo[(2i) for some v < \) be a
o-entangled sequence of linear orders (each of cardinality \o;).

Now repeat the proof of 4.2 with no Fy;’s, but defining Z, we let f € Z,,
if and only if for some i < ¢, letting j = 2i or be as in clause (f') for 2i we
have

FI20) = fal(2i),  fN2i+2) # fal(2i+2),
F(2i) <Fi) fa(20) and  f(2i4+1) <Fap fa(2i+1). mys
DiscussioN. Now instead of using on each set {n™(a) : a < Ajgey)} a
linear order we can use a partial order; we can combine 4.6 below with 4.2(2)

or with any of our proofs involving pcf for the existence of an entangled linear
order.
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LEMMA 4.6. (1) Assume (\; : i < 0), A\, J, 0, (fa : @ < \) are as in
(a)—(d) of 4.2(1) and
(e) for each i < & there is a sequence P = (P. : ¢ < k;) where
ki = [{fali : @ < A}|, each P- is a partial order and P is
(A, 0)-entangled, which means: if ug, uy, ug are disjoint subsets
of k; of cardinality < o and for € € ug Uuy Uug, t5, € P. (for
a < \) are pairwise distinct then for some a < (3,
e €uy = Pt <tj,
E€U1:>P5):t2>t6,
€ €Eup = P. | “t;,,t; are incomparable”.
Then the conclusion of 4.2(1) holds.
(2) Assume as in (1) but:
(e') for some ACH, AgJ and 5\ A& J,
(€)1 like (e) of 4.6(1) for i € A with uy =0,
(€')2 like (&) of 4.6(1) fori € d\ A with ug =u; =0, us =1 (s0 we
can use P, = (A, =)).
Then the conclusion of 4.2(1) holds.
(3) We can weaken “k; = |{fali:a <A} as in 4.5(f").

Proof. Similar to earlier ones. my g

5. More on entangledness

PROPOSITION 5.1. Suppose that (\; : i < i(*)) is a strictly increasing
sequence of reqular cardinals, T; C *>2 is closed under initial segments,
i+ 1 <i(x) = |T;| < X\iy1 and the set

B; = {n €2 for every a < \;, nla € Ty}
has cardinality > p = cf(pu) > X +|T;| (for each i < i(x)). Then ((B;, <ix) :
i <i(%)) is a (u,No)-entangled sequence of linear orders (<ix is the lexico-

graphic order).

Remark 5.2. So if p = cf(u) and 0 = [{\ : A < p < 2* and 2<* < 2N}
then Ens(u, ) (see [Sh 430, 3.4]).

Proof of Proposition 5.1. Clearly |T;| > X\; (as B; # 0). So let
n<w,ig<ip <...<ip_q1 <i(x), andné € B;, for Il <n, ¢ < p be such
that

(<E<p&l<n=n.#n,
and let u C n. We should find ¢ < £ < p such that (VI < n)(nlC <ix né &

i € u). To this end we prove by downward induction on m < n that
(stipulating A, = u)
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(%),  there is a set w C p of cardinality > \; such that if m <1 <n
and ¢ < £ are from w then [T]é <x T]é]if (l€u)

Note that (%), is exemplified by w := p and (x)( says (more than) that the

conclusion holds, so this suffices. Hence assume (x),,41 is exemplified by

w* and we shall find w C w* exemplifying (%), with |w| = A; . Without

loss of generality m € u (otherwise replace each n € T; U {ngl :( € w*} by

(1—-n(a):a<lg(n)). For a <\, and v € T; N “2 let

wy ={(ew :v=n"la, 2(3 €w)(§ <C&nla=v&nd < ni)},
wh, = U{w;ﬁ cvel; N*2}.

As in (B, , <1x) there is no monotonic sequence of length A | clearly |w|

< )\;, . Moreover,

<KveT, 1glv) =a}| xsup{|lwy| : v € T;, N2} <|T;, [ X A,

and hence |Ua<)\7; wi| < A, +|15,, |- But |T;, | < A and A;,, < i, -

Hence we find ((*) € w* \ U,.,, ws. Now, for every a < A;, let §, € w*

Tm *

|wg,

41

ZTIL
*

exemplify ((x) & w;?(*)ra Cwy, so

§a < C(*)a ?72(1 la = 772%*) o and ?72(1 <Ix 772%*)
Then for some v, with a <7, < \; ,, we have

N8ty e =ne s 1l (a) =1, ng (7a) =0.
So for some unbounded set A C A; the sequence (7, : a € A) is strictly
increasing in o and also (£, : a € A) is increasing. Let w:={{, :a € A} C
w*. It exemplifies (*),,, hence we finish. mj 3

PROPOSITION 5.3. (1) Assume that:
(a) A = maxpcf(a;) fore < e(x),
(b) |a:| < k < kK* < min(a,),
(c) 0 €a. =0 is (k*, KkT,2)-inaccessible,
(d) for n < w and distinct eg,€1,...,e, < €(x) we have

Oeg \ U e, g J<>\[a€0]'

=1
Then Ens(\, A, e(x)).
(2) Assume in addition that:
(d) ifu € [e(+)]<7 and € € e(x) \ u then a: \ U;c, 0¢ & J<r[ae],
(e) if 0 € a. then max pcf(J, ac NO) <90,
() (Vo < N)(Ja|<7 < N).
Then Ens, (A, A, e(x)).
Proof. Asin §3. m53
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PROPOSITION 5.4. For any cardinal X satisfying (V& < \)(2"% < 2*) there
is a successor cardinal § € [\, 2*] such that there is an entangled linear order
of cardinality 6.

Proof. We prove slightly more, so let A and x € [\, 2] be any cardinals
(we shall try to find 8+ € [x,2*] for x as below; for the proposition p = A
below).

Let p:= min{p : 2# = 22}, so p < A and p < cf(2*) and k < p =
28 < 2K, First assume 2<# = 2. Then necessarily pu is a limit cardinal. If
cf(2<#) = cf(u) we get a contradiction with the previous sentence. Hence
(29 : 0 < p) is eventually constant so for some 6 < p we have 29 = 2<H; but
2<K = 2/ a contradiction to the choice of 1. Thus we have 2<F < 2# = 2},
Assume Y = A + 2<# or just 2% > y > 2<F. The proof splits into cases:
if cf(2) is a successor, use cases B or C or D, if c¢f(2*) is a limit cardinal
(necessarily > \) use case A.

Case A: xT(#™) <2X By 3.6(2).

Case B:cf(2}) is a successor, y is strong limit (e.g. Xg). Clearly there
is a dense linear order of cardinality cf(2*) and density u, hence there is an
entangled linear order in cf (2*), which is as required ([BoSh 210]).

Case C: cf(2%) is a successor cardinal, u is regular uncountable. Look
at [Sh 410, 4.3] (with p here standing for A there); conditions (i) + (ii) hold.
Now on the one hand, if assumption (iii) of [Sh 410, 4.3] fails, we know that
there is an entangled linear order of cardinality cf(2*) (as in Case B). But
on the other hand, if (iii) holds, the conclusion of [Sh 410, 4.3] gives more
than we asked for. In both cases there is an entangled linear order in cf(2*)
(which is a successor).

Case D: p is singular, not strong limit. By [Sh 430, 3.4] there are
regular cardinals 6; (for i < cf(u)) such that the sequence (0; : i < cf(p)) is
increasing with limit p, p < 2%, (2% : i < cf(u)) is strictly increasing and
for all o such that o = cf(g) < 2% there is a tree T with |T%| = 6; or at
least 217! = 2% and Tj has > ¢ 6;-branches.

If for some 7 either 2% is a successor > x or cf(2%) is a successor > x
we finish as in Case B; if cf(2%¢) is a limit cardinal, we finish as in Case A
(or use 5.5). m54

PROPOSITION 5.5. Assume 2 is singular. Then there is an entangled
linear order of cardinality (2#)%.

Proof. Let A be the first singular cardinal >y such that (3x <X)(pp, ()
> 2#). Now, A is well defined, and moreover A\ < 2 (as 2" is singular so
pp(2#) > (2#)* > 2#) and (by [Sh 355, 2.3], [Sh 371, 1.9])

cf(A) < x € (1, A) \ Reg = DDer(x) et () (X) < A,
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50 pp(A) > 2% and cf(\) > p (otherwise pp(X) < AN < \# < (20)1 = 21),
Lastly, apply 3.2(1). m5 5

PROPOSITION 5.6. If k7 < xo < A and k™ < cf(\) < X\ < 2%, then
either

(a) there is a strictly increasing sequence (A} : i < d) of reqular cardinals
from (xo, A) with 6 = cf(d) € [k, cf(N)]NReg and A} > maxpcf({A\] : j <i})
such that Xt = tef ([T, o5 Af/JP9), or

(b) there is a strictly increasing sequence (X} : i < &) of reqular cardinals
from (x,A) such that \; > maxpcf({\} : j < i}) and Ens()\},\]) and
M =tcf([T;c5 A; /1), with I a proper ideal on & extending JP9. Moreover,
for some p € (x0,\), p < Ay and there is a sequence (b; ; : i <9, j < k™)
such that b; ; € Reg M p\ xo, [bij| < &, each § € U, ;b;; is (xo,5",No)-
inaccessible (i.e. a C RegN @\ xo, |a| < k = maxpcf(a) < ) and

J1<je<kKT=bi;,Nb;j, =0, A\ =maxpcf(b; ),
p=sup(bi;), Jg C Jar:[big].
(This implies Ens(Af, \¥).)

Remark 5.7. (1) Why AT instead of A\* = cf(\*) € (/\,ppjbd (A\)? To
cf(X)

be able to apply [Sh 410, 3.3] in case III of the proof of [Sh 410, 4.1]. So if
(\; 11 < cf(X)) fits in such a theorem we can get A\T.
(2) We could have improved the theorem if we knew that always

cf([NJ=",C) = A+ sup{pp, (n) : cf () < & < p < A},
particularly o-entangledness.

Proof of Proposition 5.6. This is like the proof of [Sh 410, 4.1].
(In Case II when o = ¥, imitate [Sh 410, 4.1].) However, after many
doubts, for the reader’s convenience we present the proof fully, adapting for
our purposes the proof of [Sh 410, 4.1].

By [Sh 355, 2.1] there is an increasing continuous sequence (\; : i <
cf(A)) of singular cardinals with limit A such that tcf(T[;cen) A, < b

cf (X
) = At and \g > xo. The proof will split into cases. Without loss (o>f
generality yo > cf(X).
Case I: lrnaxpcf({)\;r 1 < i}) < Xfor i < cf(N). So for some un-
bounded A C cf(\) we have

(Vi e A)(maxpcf({/\;' 1§ € Anid}) < A).
Consequently, a = {\] : i € A} satisfies the demands of 3.6 and hence (a)
holds true with § = cf(\), A\f = \;.
Thus assume that Case I fails. So there is p such that yo < pu < A,
cf(p) < cf(A) and ppegny(#) > A. Choose a minimal such p. Then, by
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[Sh 410, 3.2], we have:
() [a C Reg \ xo &supa < p& |a| < cf(N)] = maxpcf(a) < A

By [Sh 355, 2.3] in the conclusion of (%) we may replace “< \” by “< p”
and we get

() [a C Reg \ xo &supa < p& |a| < cf(A\)] = max pcf(a) < p.

Let o = cf(p). Then pp(u) = pPcr(n)(1) (and ppocn)(p) > A). Without
loss of generality p < Ag.

Case II: ¢ > k (and not Case I). By [Sh 371, 1.7], if 0 > X and by
[Sh 430, 6.x] if 0 = Ry we find a strictly increasing sequence (u} : ¢ < o) of
regular cardinals, 4 = |J,_, pf and an ideal J on o extending J2¢ (if o > R
then J = JP4) such that

AT =maxpef({u} :i < o}) = tef ( Huf/J)
1<o
If 0 > Ng, since we may replace (uf : ¢ < o) by (uf : i € A) for any
unbounded A C o, we may assume that p; > maxpcf({p] : j < i}). If
o = Ny this holds automatically, so in both cases we can apply 3.6. So we
get (a), as 0 > Kk > N.

Case IILl: 0 < k. So o7 < cf(A). Let
P :={C Ccf(\) : otp(C) = k™3, C is closed in sup(C) and
max pef({\f 11 € C}) < A}

[Why there are such C’s? For any § < cf(\) with cf(§) = x*2 we have a
club C” of As such that tcf([Tpecr 01/J0%) = Af. Now {i < 6 : \; € C'}
will do.]

For each C' € P try to choose, by induction on i < k*, b; = b; ¢ and
Vi = 7i,c such that:

(i) b C Regnp\ Uj<i b \ Xo,
(ii) v € C'\ Uj<z‘(7j +1),
(iif) A%, € pcf(b;),
(.V) |bz| < g,
v) all members of b; are (xo, £, Ng)-inaccessible,
(vi) 7; is minimal under the other requirements.

Let (b;,c,vi,c) be defined if and only if ¢ < ic(x). So success in defining
means ic(*) = kT, failure means ic(*) < k7.

Subcase IITA: For some j < cf(\), for every C € P with min(C) > j
we have ic(x) < k1, so we cannot define b, (4),c, Vie(s),c- Let C,ic(x) be
as above. Let ¢ = U ;o) Yicy 50 76 € C. Now, if v € C'\ 7 then
(by [Sh 355, 1.5B]) as pp, (1) > AT > AT, there is a, € Reg N (xo, 1) with
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la,| < o such that A¥ € pcf(ay). By [Sh 410, 3.2] there is ¢, € RegN (xo0, 1)
of cardinality < k consisting of (x, k™, Ng)-inaccessible cardinals such that
At € pef(ey). Now v and ¢, \ Ui<ic () bi,c cannot serve as v, (x),c and
bio(x),c» SO necessarily )\;r & pef(eqy \ Ui<ic(*) b;.c). Hence without loss of
generality ¢y € U, ;. () bi,c- So

ANFiieC\ 5} C pcf( U bi,C) and ‘ U bi,C‘ < K.
1<t (*) 1<ic(*)
By the proof of [Sh 400, 4.2] (or see [Sh 410, §3]) we get a contradiction
(note that cf(A\) > k™ does not disturb).

Subcase IIIB: For every j < cf(A) there is C' € P such that min(C') > j
and ic(x) = kT, L.e. b; ¢ and 7; ¢ are defined for every i < k. We will show
(®)  for every j(x) < cf(A) there is X € AN pcf({)\j 27 <cf(N)P)\ A

such that:

(o) Ens(XN, \) (exemplified by a linear order which has density char-
acter > xo in every interval),

(B) for some b C N Reg\ xo we have |b| < k* and N = max pcf(b).
Moreover, b can be divided to k% subsets of cardinality < s, no
one in J./[b] and

(V0 € b)(0 > maxpcf(bN o))
(even 6 is (xo, k™, Ng)-inaccessible).

Why does (®) suffice? Suppose that we have proved (®) already. So for
i < cf(X\) we can choose pf with \; < pf = cf(u)) € /\ﬁpcf({)\;r 1j <cf(N)})
as required in (®). Since (Vi)(u; < A), we can assume that the sequence
(ur i < cf(N)) is strictly increasing. By induction on ¢ < cf(A) choose
strictly increasing i(e) < cf(\) such that [t}(o) > max pcf({,u’;(o 1 ¢ <e}).

Let i(¢) be defined if and only if € < e(x). So (%) is limit,

X = maxpe({i e < (). piy > maxpel({i € < <)),
uf(s) is strictly increasing and Ens(uf( o) ,u;‘( E)). Thus applying [Sh 355, 4.12]
we finish, getting clause (b) of 5.6.

Why does (®) hold? Choose C' C (j(x),cf()\)) of order type x*3 such
that (y; = vi,c:1 < k') and (b; = b; ¢ : i < k™) are well defined and

max pef({AT i e C}) < A
(possible by our being in Subcase ITIB, see the definition of P). Let d :=
{Af si < wt} and let (bg[d] : 6 € pcf(d)) be as in [Sh 371, 2.6]. Let 6 be
minimal such that otp(bg[9]) = k. We can find pairwise disjoint sets B, C C'
(for € < k) such that

{Ai/_ e S Ba} g b@[o]u Otp(BE) = K.
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Clearly max pcf({\, : v; € B:}) = 0, since {\, : 7; € B.} C bg[0] but it is
not a subset of any finite union of bg/[c], 8’ < 0. Now letting a* := |, . b;
we find (by [Sh 371, 2.6]) a subset a of a* such that § = maxpcf{a) but
0 & pcf(a* \ a). Now as 6 € pcf({\f : v € B.}) and AT € pef(b,) we have
(by [Sh 345a, 1.12]) 6 € pcf(U,cp, by). Hence by the previous sentence
0 € pef(anlU,ep. by). Let

¢.:=an U b, N =4¢.
JjE€B:
We can apply 3.2 to deduce that there is an entangled linear order of cardi-
nality A" (which is more than required) and, of course,
Ay <A e Anpef({A;:j < cf(N)}).

The assumptions of 3.2 hold as the c. are pairwise disjoint (by (i) above),

0 € pcf({AF, : vi € B:}), pcf( U bj) = pcf(ce),
JEB:
01 € a = maxpcf(anby) < 0y,
as 61 is (xo, T, Ng)-inaccessible and
0=\ > sup{)\; 21 € C} > Njy) > Xo-

So clause («) of (®) holds and clause () was done along the way. Thus we
finish Subcase IIIb and hence Case III. m5 ¢

CONCLUSION 5.8. For X\ as in 5.6 there is a Boolean algebra B of car-
dinality \* satisfying (@)%, (®)8 from 4.1 (and also there is an

SUP; <5 A
entangled linear order in \T).

Proof. If (a) of 5.6 holds, apply 4.2. If (b) of 5.6 holds use 4.5. m5 g

DEFINITION 5.9. (1) pcfi(a) = {X : if b C aand |[b| < K then A €
pcf(a\ b)} (equivalently: A\ € pcf(a) and b € Joy[a] = |by[a] \ b] > k).

(2) JZ5"la] :== {b : b C a and for some ¢ C a we have [¢] < k and
b\ c€ Jegla]}.

PRrROPOSITION 5.10. Assume that p is a singular cardinal which is a fix
point (i.e. p=N,) and p* < p.

(1) For some successor cardinal AT € (u, ppt(n)) there is an entangled
linear T order of cardinality A\t and density € (u*, p.

(2) If p < xo and XSF”H < ppT (1) then we can find an entangled linear
order T with |Z| = \* € (Xg,xa_”H) of density € (u*, p].

(3) In both (1) and (2), we also get a Boolean algebra B satisfying ()%, ,
(®)F of 4.2.
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(4) In both (1) and (2), if J is an interval of T or J € [I]* then
dens(J) = dens(Z). This also applies to 5.10.1-5.10.3.

Proof. Let (u; : 1 < i < cf(u)) be a strictly increasing continuous
sequence with limit u. We can assume that p; > po > p* + cf(p) and
Ng < cf(p;) < max{cf(u),N;}.

(1) We try to choose by induction on ¢ < cf(u) regular cardinals \; such
that

i < A < p, maxpcf({A; 5 <i}) <A\,
and there is an entangled sequence of linear orders each of cardinality \;
of length maxpcf({)\; : j < i}) (i.e., Ens(\;, maxpcf({\; : j < i}))). For
some «, A; is defined if and only if i < «a. Clearly, « is a limit ordinal
< cf(p), and X := maxpcf({\; : j < a}) > p [as otherwise A < p (as
A is regular by [Sh 345a, 1.9, (1.1)]), so there is A, as required among
{OA+ )™ 1y < (A + o)™}, So clearly p < A = cf(A\) < pp™ (1) and
by 3.3(2) there is an entangled linear order of cardinality A and density
<Y icamaxpef({A; 1 j <i}) < p. If Xis a successor cardinal then we are
done. Otherwise, clearly /ﬁ““ < ppT (1), and hence we can apply part (2).

(2) This follows by the claims below; each has the conclusion of 5.10(2)
from assumptions which are not necessarily implied by the assumption of
5.10(2), but always at least one applies.

CrAamv 5.10.1. (1) Assume cf(pu) <k < p* < p <2% p < x and )("”“+4 <
pp,.(1). Then there is AT € [x, X+“+4] in which there is an entangled linear
order T of density < p but > u*.

(2) If in addition (Vo < p)(laf® < p) then we can add “T is cf(u)-
entangled” .

(3) Thereisy < kt* and a set b C Reg N\ pu* of (u*, kT, 2)-inaccessible
cardinals such that |b| < k, b is the disjoint union of b, (for e < k), sup(be)
is the same for all € < k and JP C J_,+~+1[b] and xTO+D € pef(b.).

Proof. (1) Of course we can decrease p as long as pu* < p, cf(u) < k

and X*"H < pp,.(u). By [Sh 355, 2.3], without loss of generality we have
a C (u*, 1) NReg & |a| < & = maxpef(a) < pp™(p).
By induction on ¢ < k, we choose b; and ~y; such that:
(i) bi S RegNp\ U, b5 \ 17,

(i) v; < kT is a successor ordinal,

(iii) x +7’ € pcf(b;),
(iv) 7i is the first successor ordinal for which x™7 & pef(U,; b)),
(v) all members of b; are (ug,x™,2)-inaccessible (i.e. 8 € b; & a C

(10, 0) & |a] < £ = maxpcf(a) < 0),
(vi) b; has cardinality < k.
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Note that this is possible, since if |b] < k then pcf(b) cannot contain the
interval [y,x™" '] N Reg (see [Sh 410, §3]). Let 0 := {x™ : i < &},
and let (bg[d] : @ € pcf(d)) be as in [Sh 371, 2.6]. Note that we know
pef(0) € [x, x™ "] (by [Sh 400, 4.2]). Let 6 € pcf(d) be minimal such that
otp(bg[0]) > K, so necessarily 0 is a successor cardinal. Let (0, : @ < k)
be a partition of by[?] to pairwise disjoint subsets of order type > k. Let
bl, = U{bi : x™ €04} (for &« < k) and a = |J,,,, bl,. Now we can finish
by 3.2(1).

(2) In this case we can in the beginning increase p* (still p* < p)
such that the second sentence of the proof of 5.10.1(1) holds. Necessar-
ily sup(b;) = p for each i < k.

(3) Included in the proof above. m5. 101

CrLAam 5.10.2. If cf(p) < k = cf(k) < p < x, < pp(p) and p is
(*, kT, 2)-inaccessible then:

(1) We can find an increasing sequence (\; : i < cf(u)) of reqular cardi-
nals with limit p such that for each i, Ens(\;, k) and pcf({\; : i < cf(u)})
has a member in (X,X‘H‘H) and \; > max(pcf({\; : j <i})) and \; > k.

(2) In addition, A; € pcfy™(a;) for some sets a; € Reg N A\ U;; Aj
of (u, k™, 2)-inaccessible cardinals of cardinality k. If cf(u) > Nqo then
[Ticer )\i/ch(lﬂ) has true cofinality.

Proof. Choose u* € (k, 1) such that

phe (ptp) &ef(u') < k= pp,(n) < p

(exists, as p is (%, kT, 2)-inaccessible; see [Sh 355, 2.3]). Let b; and ~; (for
i< k) be as in the proof of 5.10.1; so min(b;) > p* and 0 ={x " : i<k} and
(bg[d] : @ € pcf(d)) are as in [Sh 371, 2.6]. Let 6 € pcf(d) be minimal such
that otp(bg[0]) = k. Without loss of generality bg[0] =0, so # =maxpcf(d).
Note that 6 epcf(d) C (X,X+”+4) is a successor cardinal. Let (u; : i<cf(u))
be strictly increasing continuous with limit g with po>p*. Let a =J,_, b;
and let (b,[a] : o € pcf(a)) be as in [Sh 371, 2.6]. For each ¢ < cf(p),
we can find finite e. C pefy(a N pe) and ¢ € an pe, |c.| < K such that
0N pte € Upee, bola] Uce. As cf(u) <r=cf(k), we can find (< such that

(+) (ve < cf(w)) (e € |J o).

1<(¢
So by renaming ¢ = 0 (so ¢. = (). By 5.12(4) below, each o € e. satisfies
Ens(o,x). As in the proof of [Sh 371, 1.5] and [Sh 430, 6.5] one of the
following holds:

(x)1  cf(u) > Ny and for some S C cf(p) unbounded with otp(S) = cf(u),
and o, € ¢, for € € S, we have 0 = tcf([[.cg 02/J3),
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(¥)2  cf(pn) = Vg and for some increasing sequence (o¢ : ¢ < cf(p)) of
regular cardinals from (J,_ of (1) % with limit x4, and an ideal I on w

extending JEJ?(M) we have 6 = tcf(J [ ¢, 0¢/1)-

If (%); holds then (by the choice of py) without loss of generality ¢ € S =
o > maxpcf({o¢ : ( < €}), so we can apply 3.1. If (x)2 holds, necessarily
max pcf({o¢ : ( < e}) is 0.—1 so we can apply 3.1. In both cases we get the
desired conclusion. ms 192

CrLaM 5.10.3. Assume that pu is a singular strong limit cardinal, or at
least that it is (%, k,2)-inaccessible for every r < p, cf(p) < p < x and

+4
X < pp(p).

(1) We can find At € (x,x"“‘“) in which there is an entangled linear
order with density L.

(2) Moreover, we can find a strictly increasing sequence (\; : 1 < cf(p))
with limit g, max pef({A; : j < i}) < A; and AT = max pef({\; : i < cf(p)}).
Letting r; = (3_;.; Aj+1*)" we can also find a set a; C Reg NN\ \U,;; Aj of
(ﬁ;, ﬁ;, 2)-inaccessible cardinals of cardinality ;, such that \; € pcfy(a;)
and j; S i. ‘Also cf(p) > Ro implies A = tef(T[; cce, )\i/JgC(lM)) and (Vi <
cf (1)) (Ji = 1)

Proof. Choose (u; : i < cf(u)) strictly increasing continuous with limit
1. By induction on € < cf (1) we choose 6 € (y,x™ ) and (A& ¢ <cf(p))
as follows: arriving at & we apply the proof of 5.10.2 to . = ut and (7)
Xe = sup({c : ¢ < et U{x}) and get (A\; : ¢ < cf(u)) as there. So
there is a successor 0. € pcf({A¢ : ¢ < cf(u)}) N [XE,X?EH) such that 0, =
max pef({AZ : ¢ < cf(u)}). Hence 0 > Uy 0c and x < 0. < ™ and
without loss of generality ,u;r4 < pivr1. Let x™= bed., b, := {A ¢ <ef(u)}
(for e < cf(p)), @ = maxpef({f: : € < cf(p)}), a:=J{b: : € < cf(p)} and
without loss of generality

Jool{0 s < of(u)}] € {10 ¢ € a} s a C of(n), lal < cf()}.

Note that

pef({0: 1 e < cf(p)}) C pef((XF 1y < p™})

C RegNh x ™10 (x,pp ™ (1),
so each member of pcf({f. : € < cf(u)}) is a successor cardinal. Let (b, [a] :
o € pcf(a)) be as in [Sh 371, 2.6].
First assume cf(u) > Ng. For every limit ¢ < cf(u) let e be a finite
subset of pcf(a N ) such that:

(") We could have asked ye = max{max pcf({0¢ : ¢ < €}),x} and thus later “the
{A¢ s ¢ <cf(p)} are pairwise disjoint” (while omitting “few” A for each ¢).
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() for some (. < e,
(@npu)\ | bola] ©{AF : i < cf(p) and A} < pic. },

ocee
(8) for every ¢ < e and for every o € e,
o€ pcf({)\f ci < cf(p) & pe < )f < fel}).
(Exist by [Sh 430, 6.7, 6.7A—F].)

So for every o € e, by 3.3(2), there is an entangled linear order of
cardinality o (remember Ens(AZ, uf) and the choice of (X7 : ¢ < cf(u)),
kT). Also, by [Sh:g, VIII, §1] (more in [Sh 430, 6.7, 6.7A-F) for some
unbounded set S C cf(u) and o, € e. we have § = tcf([[.cq 0-/J8?). Note
that without loss of generality o, > HC <. 0¢ (when p is strong limit!) or
at least 0. > maxpcf({o¢ : ( < €}), so by 3.3(2) we can get the desired
conclusion.

Now assume cf(p) = Ng. Use [Sh 430, 6.7] to find finite e. C pef(an ue)
for ¢ < w such that

€ <& <w=max(e. U{Np}) <min(ec U{p})
(the {No}, {p} are for empty e,’s), and so otp(e) = w, sup(e) = pu where
e=.e. and aNp. = J{bo[a] : 0 € J,,<.¢en}; hence o € pcf(e). Define
h: pef(a) — w by h(c) = max{n < w : Ens(o, u,) or n = 0}. By 3.4(2) it
suffices to prove, for each n < w, that {o € ¢: h(c) < n} € J.,[e]. This can
be easily checked. m5.10.3

(3), (4) Left to the reader. m5.19

Remark 5.11. (1) Under the assumptions of 5.10.2 we can get

(®) there are a successor cardinal A" € (X,x+“+4) and an increasing
sequence A\ = ()\; : i < d) with limit g such that 6 < kT, A\t =
tef ([T;o5 Ai/J), J an ideal on § extending JP9, \; is (u*, kT, 2)-
inaccessible (where p* = min{u’ : p* is (¢/, k™, 2)-inaccessible}) and
there is an entangled linear order of cardinality A*.

(2) In the proof of 5.10.3 we can have a = U, .4, %> # = sup(a;) for
each i < cf(u), and let a = {AF : &,¢ < cf(p)},
o, ={\ €Ea:ec€q butforno£<6does)\’2€{)\§:j<cf(,u)}}
and apply 3.2(1).
PROPOSITION 5.12. Let (bgla] : 6 € pcf(a)) be as in [Sh 371, 2.6].

(1) If la| > k (and |a| < min(a)) then pct}*(a) has a last element.
(2) Assume that 6 = maxpcf(a), ¢ C 0 Npcf(a), |¢| < min(c) and

b e Jogla] = cnpef(a\b) #0.
Then 6 € pcf(c).
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(3) Ifa =U,;<, i and o < cf(k) and 6 € pcfy(a) then we can find finite
¢; C pefy a; fori < o such that [a;\U,ye,, balai]] <k and 0 € pef(U; ., ¢)-
[And if cf(o) > Ng, a; is increasing with i and S C o = sup S then 6 €
pef(U,cs 51).

(4) Assume x < min(a), and each p € a is (x,k,2)-inaccessible and
Kk > Vo. If 0 € pcty*(a) then Ens(6,2%) holds, exemplified by linear orders
of density > x.

Proof. (1) Among the sets ¢ C a of cardinality < k choose one with
max pcf(a '\ ¢) minimal. So max pcf(a\ ¢) = maxpef}*(a).

(2) By [Sh 345a, 1.16].

(3) Easy, as in [Sh 371, §1].

(4) Without loss of generality § = max pcf(a), a has no last element and

p€a=0¢pct(anp),

so JP4 C JZ;"[a] (see Definition 5.9). We are going to prove the statement
by induction on 6.

If a (= bgla]) can be divided into  sets, no one of which is in J_g[a]+J24,
this should be clear (use e.g. 3.1(1): there are such A; by [EK], see e.g. [Sh g,
Appendix]).

Also, if there are ¢ C 6 N pcef}*(a) (such that [¢| < min(c)) and an ideal
I on ¢ satisfying 6 = tcf([]¢/I), then we can find @ C 6 N pcf(c) such that
(Vo € 9)(maxpcf(dNo) < o), § = maxpcf(d) and then use the induction
hypothesis and 3.4(1). So by part (1) (of 5.12) the remaining case is:

(X) if ¢ CONpcfy(a) and |¢] < min(c) then 6 & pcf(c).
Without loss of generality
(H) o Ca&bepct(a’) = sup(d Npcf(a’)) = sup(d N pety*(a)).

We can try to choose, by induction on 4, 6; € pcf; (a) such that 6 > 6; >
max pcf({0; : j < i}). By localization (see [Sh 371, §3]) we cannot have (6; :
i < |a]™) (as maxpcf({0; : i < |a|t}) € pcf({0; : i < a}) for some a < |a]T,
hence 0, < 0,41 < maxpcf({0; : i < |a|T} < maxpcf({6; :i < a}) =6,, a
contradiction). So for some « < |a|t, 6; is defined if and only if i < a. If
max pcf({6; : i < a}) < 0 we can get a contradiction with (H) (by 5.12(1)).
If the equality holds, we get a contradiction with (X). m5 12

We want to state explicitly the pcf theorems behind 5.10.

PROPOSITION 5.13. Assume p is a singular cardinal which is a fix point
and po < p.
(1) There are X and (A, \') : i < &) such that:

(a) (N 1< 0) is a strictly increasing sequence of reqular cardinals,
d is a limit ordinal < cf(p), A; € RegNp\ o, AY = maxpef({A; :
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J <i}) <Xi; A €Regn (1, ppT (1)) and X = tef(I], 4 i/ JJPY),
(b) A" = (A5 2 4 < (A))™) is strictly increasing, N € Reg N A\ Af,
Ai = tef (I A /J()\*)+) and \j > max pef({A¢ : ¢ < j}).

(2) Assume in addition p < xo and XSF”H < ppT (). Then for some
v < wtt) letting X = xTFL, we can find a strictly increasing sequence
(N\i 11 < 0) of reqular cardinals of length § = cf(0) < cf(p) with \; € RegN
o\ p*, A > maxpef({A; 1 j < i}), A = maxpcf({\; : ¢ < 0}), and letting
Ki = (Z]Q)\ + w*)" we can also find sets a; € Reg N A \ U, Aj \ " of
(ﬁji,ﬁ;, 2)-inaccessible cardinals of cardinality kj, such that \; € pcfy(a;),
Ji <. Also if cf(p) > Ro then A = tcf (T, ccpy Ai/ f(u))

(3) If part (2) does not apply then in (1), X is a successor.

Proof. Let (u; : 1 <i < cf(u)) be increasing continuous with limit s,
w1 > po and without loss of generality if p is (*, cf (), 2)-inaccessible then

' € [po, p) & cf(u') < cf(p) = pp(p) < p,
and hence

a C o, 1) NReg & |a] < cf(u) & sup(a) < p = maxpef(a) < p.

(1) Try to choose, by induction on i < cf(u), A; and a;, A;, A%, Af, j;
such that:

(@) {A 7 U{AL AT € (5, A) N Reg,

(B) 1 > i

() Af, A", \; are as required in (1).
So for some a, (j;, A, A%, \;) is defined if and only if i < «; in fact, « is limit
and pcf({\; : i < a}) € p (as in the proof of 5.10.1). For some unbounded
set A C § we have maxpcf({\; : 4 € A}) > p but it is minimal under this
restriction. Now restricting ourselves to A (and renaming) we finish.

(2) It follows from 5.10.1, 5.10.3.

(3) Should be clear. m5 13

Let us finish this section with stating some results which will be devel-
oped and presented with all details in a continuation of the present paper.

PROPOSITION 5.14. Assume that

(A) (@) TS U s ITic; My

(b) T is closed under initial segments,

(c) Ty :==TN][i;\i #0 forj <9,
(d)forj<5andn€T we have (Fa < \;)(n () €T),
) ITs| =k > p=ct(p) > X5 Ti] > 0,
)
)

(e
(f) forn € T;, I, is a o-complete ideal on \;,
(g) oisa regular cardinal and cf(9) > o,
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(B) J is an ideal on § extending J29,
g; s a function from T; to ks,

fori<§ and o < Ky, I', is a o-complete ideal on \;,

(a)
(b)
(c)
(d) if (npe : € <€, B < p) are pairwise distinct members of Ty,
e* <o, i(x) <6, (VB8 < pu)(ne = ng,eli(x)) for each € < €*, and
(ne + € < €*) are pairwise distinct, then for some A € J, for
every i € § \ A there are v. € T; for e < * such that:

(@) (gi(ve) : € < %) are pairwise distinct,

(B) for every B,_ € I;i(ue) (for e < &%), for some < p we have

(Ve <e")(ve <mp,e) and npc(i) € By,

(C) fori <4, (IZ 1 ¢ < K4) 1S a sequence of linear orders with universe
;i such that if e(x) < o, ((. : € < (%)) is a sequence of distinct members of
K1, (ape : B < B(*),e < e(x)) is a sequence of ordinals < \ such that

(vBe TI Zc.)@8 < 5°)(ve < () (ape & B-)
e<e(x)
and e(x) =uUwv, uNov =10, then for some (1,2 < B(*) we have
c€u=> Iée = “apg e <ag,e,
cev= Iéa E “ap, e > ap, .
Then there is a (u,o)-entangled linear order of cardinality .

Remark 5.15. (1) The proof is derived from the proof of 3.3 (and so
from [Sh 355, 4.10]).

(2) Are the assumptions reasonable? At least they are not so rare, see
[Sh 430, §5].

Proof of Proposition 5.14. The desired linear order Z has the
universe Ty (which has cardinality \) with the order: n <z v if and only if
for the minimal ¢ < § for which n(i) # v(i) we have

Zyriy E “n(i) <wv(i)”.
Details, as said before, will be presented somewhere else, but they should
be clear already. ms5 14

PROPOSITION 5.16. We can replace (B)(d) of 5.14 by

(d1) if (npe 1 € < €*, B < p) are pairwise distinct members of Ts, €* < o,
i(x) < d and
(Ve <e(x))(VB < p)(ne = g, li(+))

and (ne : € < €*) are pairwise distinct, then for some < u,

{i <6 for every B € H I;Z_(% _1iys Jor some v < p we have

e<e*
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(Ve < €)(y.c i = np.c i) and (Ve < e*)(n,..(i) € BE)} — § mod J,

(d2) if ne € Ts (e < e* < o) are distinct, then
{i <6 :{(gi(n:11) : € < &%) is with no repetition} # O mod .J.

PROPOSITION 5.17. Assume that:

(A) A= tcf(JT,c5Ni/J), Ai > 0; := max pef({); : j < i}),

(B) J a o-complete ideal on the limit ordinal §, \; = cf(\;) > 6,

(C) gi,j : 0; — K4 j for j < ji are such that for any w € [0;]<7 for some
J < Ji the restriction g; jlw is one-to-one,

D)a={a; :i <), a; C AC}Y X j¢) are such that for any ¢ and

(<i ¢

J < jc we have {i: (¢, j¢) € a;} # 0 mod J,

(E) EHSU(Arh H(C7j)eai K/CJ)

Then for some T the assumptions of 5.14 hold for u; = A; and k; =
Mic.rea e

PRrROPOSITION 5.18. In 5.17, (C) 4+ (D) + (E) holds if:

(C) Ens, (\;, k),

(D) () K191 > Y ics Ai but fori <0, kIl = Kk (s0 8 is a regular cardinal)

or

(B) kIl > Y ics Ai and there is a regular ultrafilter E on § disjoint
from

JU{AC:otp(A) <}

PROPOSITION 5.19. Suppose (A), (B) as in 5.14 and

(C) there is a sequence (I} : ¢ < ki) of partial orders with universe \;
such that if e(x) < o, ((. : € < (%)) is a sequence of ordinals < k; with no
repetitions, (ag. : f < B(x),e < £(*)) is a sequence of ordinals < A\ such
that

(vBe T 7..)36 < B)(ve < e(+)) (0 & Be)

e<e(x*)
and e(x) =uUwv, uNov =0, then for some (31,2 < B(*) we have
ecu= Iée E “age < ag,e”,
ecv=T | “mape <ap,..

Then there is a Boolean algebra B with |B| = \ and with neither chain nor
pie of cardinality A; moreover, for e < o, B has those properties.

Proof. Combine 5.14 and proof of 4.2. m5 19
Remark 5.20. The parallels of 5.16-5.18 also hold.
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6. Variants of entangledness in ultraproducts. In this section we
develop results of Section 1. The following improves 1.8:

PROPOSITION 6.1. Assume that:

(a) D is an ultrafilter on k and E is an ultrafilter on 6,

(b) gc : kK — 0 for e < e(x) are such that if 61 < g9 < &€(x) then
ge, # ge, mod D, and if ¢ < e(x) and A € E then g-'[A] € D,

(¢) Z is a linear order of the cardinality A > 6.

Then there exists a sequence (f&/D e < e(*), a < \) of pairwise distinct
members of I%/D such that for each o < 3 < A, either

(Ve <e(x))(f&/D < fZ/D) or (Ve <e(x))(fZ/D < f&/D).

In particular, the linear order /D is not entangled (here £(x) = 2 suffices;
in fact, not (A, e(x))-entangled) and the Boolean algebra (BAinter(Z))"/D is
not A-narrow.

Proof. Choose pairwise distinct ag € Z for o« < A and ¢ < 0. Let
f& Kk — T be given by f2(i) = aj ;). Note that if ay # ap then {i <k :
() = f22(i)} = 0. If &y = ap = a but €1 # &5 then

{ien: f20) =[50} ={i € k2 9:() = g, (1)} € D
(as ge, # ge, mod D). Consequently, if (a1,e1) # (a2,e2) then f&1/D #

52/D. Suppose now that o < 8 < A. Let A={( < 6:af < a?}. Assume
that A € E and let ¢ < e(*). Then

{i<w:fo@) < fP@)}y={i<r:al, <a ,}=g-"[A]€D

and hence f&/D < f8/D. Similarly, if A ¢ E then for each ¢ < &(x),
f2/D > f2/D.

Now clearly Z" /D is not entangled, but what about the narrowness of
(BAinter(Z))"/D? Recall that BAipte,(Z7/D) embeds in (BAiper(Z))"/D.
So if the cardinality of BAjer(Z) is regular we can just quote 1.5(a)<(c)
(here o = Ng, see Definition 1.3). Otherwise, just note that for a linear
order J, if a; < by (for | = 0,1) and [a;,b;) € BAjnter(J) are comparable
and {ag, by, a1, b1} is with no repetition then

ap <g ar & =(bo <7 b1);
this can be applied by the statement above. mg 1

Remark 6.2. Proposition 6.1 shows that entangledness can be destroyed
by ultraproducts. Of course, to make this complete we have to say how one
can get D, E, g.’s satisfying (a)—(b) of 6.1. But this is easy:

(1) For example, suppose that F is a uniform ultrafilter on §, D = Ex E
is the product ultrafilter on  x 0 = K, e(x) = 2 and ¢g. : § x § — 0 (for
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e < 2) are given by go(i,7) = i and g1(¢,7) = j. Then E, D, (%) and g.
satisfy the requirements (a)—(b) of 6.1.

(2) More generally, assume that § < x, E is a non-principal ultrafilter
on 0, e(x) < 2% Let g. : kK — 0 for ¢ < £(*) constitute an independent
family of functions. Then the family {g-*[A4] : ¢ < (), A € E} has the
finite intersection property so we can complete it to an ultrafilter D. One
can easily check that D, E and g.’s satisfy (a)—(b) of 6.1.

Remark 6.3. (1) In 6.1 we did not use “< is a linear order”. Thus for
any binary relation R the parallel (with R, —R instead of <, >) holds. In
particular, we can apply this to Boolean algebras.

(2) We can weaken assumption (b) in 6.1 and accordingly the conclusion.
For example, we can replace (b) by

(b)* P C P(e(x)) and for each A € E,
fe<e(x):g-'[A] € D}y e P,
and the conclusion by
{e <e(x): f&/D < fP/D} e P.

(3) A kind of entangledness can be preserved by ultraproducts (see 6.4
below). More entangledness is preserved if we put additional demands on
the ultrafilter (see 6.8).

(4) Let us explain why we introduced “positive entangledness” in 1.10.
The proof of 6.1 excludes not only “full” entangledness but many variants
(for the ultrapower). Now the positive o-entangledness seems to be the
maximal one not excluded. Rightly so by 6.4.

(5) So if we can find a linear order Z which is uT-entangled for some pu
such that ™0 = p (or at least u™° < |Z|) then we can answer Monk’s problem
from the introduction: if D is a non-principal non-separative ultrafilter on
w (see Definition 6.5; they exist by 6.2(1)), then Z%/D is not pu*-entangled
(by 6.1). Thus if B is the interval Boolean algebra of Z then

inc(B) <pu, p <|Z|, but inc(B¥/D) > |T|™

(in fact, inc™(B*/D) = |7¥/D|* = (|Z|*/D)T and inct(B) < p*). In fact,
for any infinite Boolean algebra B and a non-principal ultrafilter D on w
we have inc(B¥/D) > (inc(B))“/D (as for \, inaccessible the linear order
[1,,<.(An, <)/D cannot be pt-like (see [MgSh 433]).

PROPOSITION 6.4. Suppose that k < o < X are regular cardinals such that
(VO < N)(0<7 < \). Assume that D is an ultrafilter on k. If T is a positively
o-entangled linear order of size X then I"/D is positively o-entangled.
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Proof. Suppose f&/D € I%/D (for € < e(x) < 0 and a < \) are such
that

(Vo < B < N)(Ve < e(0))(f&/D # [2/D).
Let u € {0,e(*)}. For a < Alet Ay, = {f&(1) : € < (), i < K}, Aco =
Ups<a A and By = Ay N Acy. Note that [A| < o and [Acq| < A (for
a < A). If § < Xand cf(d) = o then |Bs| < cf(d) and consequently for some
h(6) < 6 we have Bs C A s). By Fodor’s lemma we find f < X and a
stationary set S C A such that

(5€S:>Cf((5):0'&ngA<ﬁo.

For § € Slet Y5 = {(g,4, f3(i)) : € < e(x), i <k, f2(i) € Acp,}. As there
are |A<g,|<? < X possibilities for Y5, we can find a stationary set S; C S
and Y such that for § € S; we have Ys = Y. Let o,8 € S1, a < [ and
£ < g(). If there is = such that (g,4,2) € Y then f(i) = f(i). Thus

E.={i<k:(3x)((g,i,2) €Y)} =0 mod D,

as {i < k: fo(i) = f8(i)} = 0 mod D (for distinct o, 3 € S;). Clearly if
a,B €81, a< B, e<e(x)and i € k\ E. then (i) # f2(i). Hence we
may apply the positive o-entangledness of Z to

{f&(@):a €Sy, e<e(x),i€k\E.} and u' ={(gi):c€u,i€r\E:}
Consequently, we have a < 3, both in S7 and such that

(Ve < c(0)(¥i € 5\ E2)(f2(0) < £2() & ¢ € u).
Since k \ E. € D we get (Ve < e(x))(f/D < fP/D & e € u). mgy

DEFINITION 6.5. An ultrafilter D on & is called separative if for every
&, € "k such that (Vi < k)(a; # ;) there is A € D such that

{a; i€ A}n{B; i€ A} =0.
Remark 6.6. So 6.2(1) says that D x D is not separative.

PROPOSITION 6.7. Suppose that D is a separative ultrafilter on k, n < w
and &' € "k (for 1 <n) are such that

(Vlp < 13 <n)(a'/D # a1 /D).
Then there is A € D such that the sets {al : i € A} (for 1 < n) are pairwise
disjoint.
Proof. For [ < m < n, by 6.5, there is A; ,,, € D such that
{adie A yn{al i€ A} =0.

Now A = (V. en At,m is as required. mg 7
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PROPOSITION 6.8. Assume p = cf(u) and (Vo < p)(|al® < u). Suppose
that T is a (u,x™)-entangled linear order and D is a separative ultrafilter
on k. Then the linear order /D is (u,No)-entangled.

Proof. Let n < w and u C n, and let f.,/D € I%/D for | < n and
a < p be pairwise distinct. By 6.7 we may assume that (for each o < p) the
sets ({fL(i) : i < Kk} : | < n) are pairwise disjoint. Applying the A-lemma
we may assume that {(f!(i) :i < k,l < n) : a < p} forms a A-system of
sequences and that the diagram of the equalities does not depend on «a. Let

A={@0) erxn: (Va<f<u)(fili) = f50))}
(i.e. the heart of the A-system). Note that for each I < n the set {i € & :
(i,1) € A} is not in D (as f!/D’s are pairwise distinct). Consequently, we
may modify the functions f! and we may assume that A = (). Now we have

£ (ig) = fl (i) = ap = a1 & lo = 1.

It is now easy to apply the (u, x*)-entangledness of Z and find a < 8 < p
such that fl/D < fb/D=1¢€u. mgg

PROPOSITION 6.9. (1) If D is a selective ultrafilter on k (i.e. for every
f Kk — K there is A € D such that either flA is constant or f[A is
one-to-one) then D is separative.

(2) If no uniform wultrafilter on w is generated by less than continuum
sets (i.e. u = 2%80) then there exists a separative ultrafilter on w.

Proof. (1) Suppose that a, 3 € "r are such that (Vi < k)(a; # 5i).
We find A € D such that alA and 3]A are either constant or one-to-one.
If at least one of them is constant then, possibly omitting one element from
A, the sets {a; : i € A} and {8; : i € A} are disjoint, so assume that both
sequences are one-to-one. Choose inductively m; € {0,1,2} (for i € A) such
that

i,jEA&Oéi:ﬁj :>mz7$m]
There are m* and B C A, B € D such that (Vi € B)(m; = m*). Then
{a; i€ B}n{B; :i € B} =0.
(2) Straightforward. mg. 9

PROPOSITION 6.10. If D is a uniform not separative ultrafilter on x and
T is a linear order of size A > K then the linear order I%/D is not (\,2)-
entangled.

Proof. As D is not separative we have &, B € *k witnessing it. This
means that @ # § mod D and the family

Haj i€ A} {B; i€ A} : A€ D}
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has the finite intersection property, so can be extended to an ultrafilter
on k. Let e(x) =2, 0 = K, go(i) = oy, g1(i) = B;. Consequently, we may
apply 6.1. HgG 10

ConNcLusIoN 6.11. (1) If 0%/D > 22’ then D is not separative.
(2) If D is a reqular ultrafilter on k and 2% > 3y then D is not separative.

Remark 6.12. If there is no inner model with measurable cardinals then
every D is regular or close enough to this to give the result.

Proof of Conclusions 6.11. (1) For every f € "6 the family
Ef ={AC6: f7'[A] € D} is an ultrafilter on 6. For some go, g1 € "0 we
have Ey4, = E4, but go/D # ¢1/D and hence we are done.

(2) The regularity implies 8f/D = 2% (see [CK]), so by the first part we
are done. mg 11

DEFINITION 6.13. Let k, o be cardinal numbers.

(1) We say that a linear order Z is strongly (u,o)-entangled if: (|Z], u >
o +Rg and) for every () < 1+0,t, € Z (for a < i, ¢ < e(*)) and u C &(*)
such that
a<p&leu&éce(x) \u=1t#t
for some a < 3 < p we have:

(a) e € u =t <7 t3,
(b) e €e(x) \u=tz <z tg.

(2) We say that a linear order Z is strongly positively [positively*] (u, o )-
entangled if for every e(x) < 1+ 0, tS, € Z (for a < p, ¢ < &(x)) and
u € {0,e(x)}, for some a < 3 < p [for some o # 3 < p] we have

(a) e €u =t <715,
(b) e € e(¥) \u= 15 <7t

Remark 6.14. For “positively*” it is enough to use u = £(x), so only

clause (a) applies. [Why? as we can interchange «, 3.]

PROPOSITION 6.15. (1) If 0 = Xy and p = cf(u) > o then in Definition
6.13(1) we can weaken a < < p to a # B (< p). [Why? As in 1.2(6).]

(2) For a linear order, “strongly (u,o)-entangled” implies both “(u,o)-
entangled” and “strongly positively (u,o)-entangled” and the last implies
“positively (u,o)-entangled”. Lastly, “strongly positively (u,o)-entangled”
implies “strongly positively* (u,o)-entangled” .

(3) In Definition 6.13 the properties are preserved when increasing p
and/or decreasing o and/or decreasing T.

(4) If p = cf () and (Ve < o) (V0 < p)(0'¥! < ) then:
(a) Z is (i, 0)-entangled if and only if T is strongly (u,o)-entangled,
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(b) Z is positively (u,o)-entangled if and only if T is strongly posi-
tively (u, o)-entangled.
(5) If u = cf(pn) and (Ve < 0)(2¥l < p) then in Definition 6.13(1), (2)
we can assume

(Vor < ) (V¢ < € < () (£ £ 15).

(6) (u,<) and (u,>) are not strongly (u,2)-entangled (even if T is
strongly (u,2)-entangled then there is no partial function f from I to T
such that x <z f(x), |dom(f)| = u and f preserves <z).

(7) If (Ve < o)(|Z|'¥! < p) then T is strongly (u, o)-entangled.

(8) Assume o is a limit cardinal and T is a linear order. Then:

(a) Z is strongly (u,o)-entangled if and only if for every o1 < o the
order T is strongly (u,o1)-entangled.
(b) Similarly for other notions of 1.1, 1.10, 6.13. mg 15

PROPOSITION 6.16. Assume that T is a (i, 2)-entangled linear order and
0 = cf(0) < u. Then for some A C T with |A| < p we have

r<zy&{zr,y} Z A=|(z,y)z| > 0.

Proof. Let EY be the following binary relation on Z: = E% y if and
only if

x=y or [z<zy&|(z,y)z|<0] or [y<zrz&|(y,z)z|<¥b].
Obviously:

(a) EY is an equivalence relation,

(b) each equivalence class has cardinality < 6,

(c) if an equivalence class has cardinality 6 then there is a monotonic
sequence of length 6 in it, so necessarily 87 < p.

It is enough to show that the set A = {x : |z/E%| > 1} has cardinality
less than u. Suppose that |A| > u. Then there are at least u equivalence
classes (as each class is of size < 6 < p or of size < 6+ < ). Consequently,
we can find t0,t! € 7 for a < p such that t0 < t1, t9 E% t. and there
is no repetition in {t%/E% : a < p}. For e(x) = 2 and u = {0} we get a
contradiction with Definition 6.13. mg 16

Remark. Clearly, 6 = cf(#) is redundant.

PROPOSITION 6.17. If T is strongly (u,o)-entangled, Xy < 0 < o and
w < |Z| then:

(a) 2° < p,

(b) the cardinal x = |{z/E% : x/E% not a singleton}| satisfies x° < p
(where EY is from the proof of 6.16).
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Proof. Take 2} <7 z§ <z 2 <z z}. For f € 92 let t?f“ = xlf(e) (for

e < 0). If 2% > u then we may consider u = {2¢ : ¢ < 0} and find (by the
strong (u, o)-entangledness) functions f # g such that for all € < 0,

2¢e 2e 2e+1 2e+1
15 <pt2, T gt

But if € < 6 is such that f(e) # g(g) then we get a:?c(e) <z xg(e). Hence

f(e) =0, g(¢) = 1 and consequently 3:}(5) <7 x;(E). But the last contradicts

tff“ >7 t25%1 Hence 2¢ < i as required in (a).

For (b), let (x?/EY : i < x) be with no repetition, z} € zY/E% and
1) <z z}. Let {fo : a < x%} list all functions f : § — x (so for each a < 3
there is € < @ such that f,(g) # fa(e)). Let t2*! (for « < A, € < 6 and
[ <2)be a:lfa(a) and u = {2c: e < 0} C O (s0 e(x) =0). If u < x? then we
get a < 8 < p by Definition 6.13(1) and we get a contradiction, so p > x?
as required. mg 17

Remark. See more in Shafir-Shelah [SaSh 553].

PROPOSITION 6.18. If 7 is a linear order of density < 0 and |I| > 6 €
[No, o) then BAT, . (T) is not 2% -narrow.

inter

Proof. Choose J C T with |J| = 6 such that for every ¢ € J for some
T € BA .. (Z) we have TN T = {t} (t =({[t,s) : t <z s € J}). Hence for

every J' C J for some 7 € BA{ . (Z) we have TN J = J’. The conclusion
now follows. Mg 18

PROPOSITION 6.19. In Definition 6.13(1), if cf(u) = u (or less) we can
without loss of generality demand

(Vo < p)(V¢ < & < e(x)(t§ # 13
and for some linear order <* on &(x),
C<E G E<e(x) =ty <zth

Proof. Clearly the new version of the definition implies the old one.
So now assume the old definition and we shall prove the new one. Let
e(x) < 140 and t§, (for o < 1, ¢ < e(%)). By 6.17(a) we have pu > 2/5®)| so
we can replace ((t5, : ¢ < e(*)) : a < p) by ({t5, : ( < e(x)) : a € A) for a
suitable A € [u]*, and we are done. mg 19

PROPOSITION 6.20. (1) Assume o > Rg and cf(pu) = p. Then in Defini-
tion 6.13(1), if we allow first to discard < yp members of T we can add

(c) for ¢, & < e(x), if t§ <z t§ then {tS,t5} <z {t5.t5}
(i.e. we get an equivalent definition).

(2) Even without the “if we allow first to discard < p members of I”
part (1) still holds true. It also holds for (u,o)-entangledness.
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Proof. (1) The new definition is apparently stronger so we have to
prove that it follows from the old one. We can assume p > Ng. By 6.16,
without loss of generality,

x <zy=|(z,y)z] > 20e(+)].
Let e(¥) < o and t$, € T be given. By 6.19 we may assume that
(Vo < (V¢ <& <e(n)lta # b5 & (8, <ta = <€)
So for a < p and ¢ <* ¢ we can choose 545! € T (I = 1,2) such that for
each a < p,
tg <z 83’5’1 <z 83’5’2 <z tg
and there are no repetitions in {t$,s$%! : ¢ < e(x), ¢ <* € and | € {1,2}}.
So for some a < 3 we have

(eu = t5 <7 5,
Cee(x) \u= 1t >1t5,
C<r e S sSE < G0,
¢ <* ¢ = 33’5’2 > 8%’6’2.

Now (c) follows immediately.
(2) Use 6.16+6.17(b). The (u, o)-entangledness is straightforward. mg oo

PROPOSITION 6.21. Assume Rg < 0 < o, x = dens(Z) and: T is strongly
(u, 0)-entangled or BAL,..(T) is p-narrow. Then x° < p.

inter

Proof. First note the following fact:

CLAIM 6.21.1. Assume that (Z. : € < 0) is a sequence of pairwise disjoint
convex subsets of T, x. = dens(Z.) > g and x = [[..gxe. Then x <
and BA ... (Z) is not x-narrow.

inter

Proof. By induction on ¢ < x., choose a; < b from Z. such that
[ag, bF]z is disjoint from {a$,b5 : j < i}. Let {fo : @ < x} list [[. 4 xe

177

(with no repetitions), let e(x) = 0, and let t2*! be a%, o 1 =10,0%
if ] =1. For u = {22 : ¢ < 0} we get a contradiction with “Z is strongly

(x, 0)-entangled”. The proof for the Boolean version is similar. mg 21 1

By an argument similar to that of 6.21.1 one can show that x(= dens(Z))
< g1 So the interesting case is when x? > 6. As 2% < i (see 6.15) we may
assume that x > 27, Let x; = min{\ : \? > x}, so cf(x1) < 6, and let
X1 = 2eco(s) Xf,g, 0(x) = cf(x1) < 0 and x§. < x1. For each £ < 6(x) we
define a binary relation E* on Z:

x EZ y if and only if either z =y or x <y, dens(Z[(z,y)) < x1,c or
y <z, dens(Z[(y,x)) < X1.e-

It is an equivalence relation, each equivalence class has density < XIE, and



o-Entangled linear orders 273

the number of E-equivalence classes is > x. So by the Erdés-Rado the-
orem we can find a monotonic sequence (5 : i < ) such that i # j =

Without loss of generality, for all € the monotonicity is the same, so we
can assume ¢ < j = x; <z z;. Discarding a long initial segment from each
(x€ 14 < 0T) we may assume that for each ,( < 6(x) either

(Vi< 0F)(3j < 0F)(af <z 25 &af <7 25)

or
U[xf,x?]z and U[a:f,xg]z are disjoint.
i<j i<j
Now it is easy to satisfy the assumptions of 6.21.1. mg.o1
CONCLUSION 6.22. Assume that p = cf(p) > o =cf(o) >Ry and Z is a
linear order of cardinality > . Then in Definition 6.13(1) we can demand
() of 1.2(3).
Proof. By 6.21 (and see the proof of 1.2(3)). mg.22

PROPOSITION 6.23. Assume p = cf(u) > o = cf(o) > Ng and 7 is a
linear order with |Z| > p. Then the following conditions are equivalent:

(a) T is strongly (u, o)-entangled,
(b) BAY ., (Z) is p-narrow.

inter
Proof. (a)=(b). By 6.22 the situation is similar enough to the one in
1.5 to carry out the proof as there.
(b)=(a). By 6.21 we can apply the parallel of 1.2(3), so the situation is
similar enough to the one in 1.5 to carry out the proof as there. mg. o3

PROPOSITION 6.24. Assume o = 07 > Vg and u > o.

(1) If T is not strongly [or strongly positively] [or strongly positively*]
(i, 0)-entangled for i < 6 then I is not strongly [or strongly positively] [or
strongly positively*] (u,o)-entangled for p =], g pi-

(2) If p is singular and T is strongly (u,o)-entangled then for some
w < p, I is strongly (p',o)-entangled (so this holds for every large enough
p < p).

(3) The parallel of (2) holds for “strongly (u,o)-entangled”, “strongly
positively (u, o)-entangled” and “strongly positively* (u,o)-entangled” .

Proof. (1) First we deal with “strongly (u,o)-entangled”. We know
|Z| > 0. Suppose that (t4° : o < p;, ¢ < gi(*)) and u; form a coun-
terexample for p;. As we can extend the sequences and u;, we can assume
lu;| = |ei(x) \ u;| = 6. So by renaming ¢;(x) = 6, u; = {2¢ : ( < 0}. Let
J € I, pi for 8< p be pairwise distinct. Choose e(*)= 6-6, t%ﬂrc = ti‘;g(i)
fori<6,(<6and < pu,and u={2¢:{ < 0-0}. Now check.
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For the cases “strongly positively*” (u;,o)-entangled, first, without loss
of generality, €;(*) = 6; then as u; has two values, for some u* we have

H{ui:i<0, u; =u"} = .

Thus without loss of generality u; = u and let u = |J,_o{i} x u*. Next
proceed as above.

(2) Assume not. Let p = >, p; with & < p; < p, k = cf(u) and
i < j = p; < pj. So for each i < x we can find a sequence (t5¢ : ¢ <
gi(*), a < i), u; exemplifying the failure of “Z is (u], o)-entangled”. Thus
for each i and for every a <y, there are no repetitions in {t5¢ : ¢ < &;(%)}
and |Z| > pu. Now let (%) =0 + 6 and u = {2 : ( <0+ 0}. For { < 6 and
B € puf\ U{u;r 0 < j < i} weputt = tgc, th“C — 2. Without loss of
generality for every a < u there are no repetitions in {t$, : ¢ < 6+ 0}. Now
check.

(3) Let w, p; (for i < k), t5¢ (for i < K, ¢ < &;(¥) and @ < u}) and u;
be as in the proof of (2) (for the appropriate notion). Again we can assume
g;(*) = 0 and u; = u*, but the choice of ; does not transfer. But by 6.24(1)
we have pf < u and hence without loss of generality (> < ,uj)e < g = ud,
so for some v; C g;(x),

Cev=[ =t oa=0) and [(ece)\v =t =15

and t4¢ = ti¢ < tgg = tgg. We can omit g;(x) \ v; etc., so (t5¢ : ¢ <
gi(*), a< ,u;r> is with no repetition and proceed as there. mg o4

Remark 6.25. In 6.24(2) we cannot replace “strongly entangled” by
“entangled”; see [SaSh 553].

CONCLUSION 6.26. If |Z| > u > o = 07 > Rq then T is (u,0)-entangled
if and only if T is strongly (u,o)-entangled. w

CONCLUSION 6.27. If 4 > o = 0% > Ny and T is a strongly (u,o)-
entangled linear order then for some regular p* we have p* < p, (Voo < p*)
(la|® < u*) and T is (strongly) (u*,o)-entangled. Consequently, in 6.23
reqularity is not needed. m
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