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Property C”, strong measure zero sets
and subsets of the plane

by

Janusz Pawlikowski (Wroctaw)

Abstract. Let X be a set of reals. We show that
e X has property C” of Rothberger iff for all closed F' C R x R with vertical sections
Fy (x € X) null, U, ¢ x Fz is null;

e X has strong measure zero iff for all closed F' C R x R with all vertical sections F;
(z € R) null, U, x Fr is null.

1. Introduction. Let Y be a separable metric space. Galvin [G] defined
the following game G*(Y'). In the nth round, n € w, White chooses an open
cover {U}' : k € w} of Y, then Black responds with a,, € w. Black wins
if every y € Y is in some U . Let G*?(Y') be Galvin’s game with “some”
changed to “infinitely many”.

Rectaw [R] showed that White has a winning strategy in G*(Y) iff for
some closed set D C Y x w* with meager vertical sections D, (y € Y),
Uyey Dy = w*. His result easily extends to G*(Y) and F, sets. In [P],
I showed that the following are equivalent:

e White has no winning strategy in G*(Y);
e White has no winning strategy in G*?(Y);
e Y has property C” of Rothberger.

Thus, Y € C" iff (J,cy Dy # w® for all closed (equivalently, all Fy)
D C Y xw® with meager sections D,, y € Y. It is not hard to see that w* can
be replaced here by any Polish space without isolated points (Lemma 4.2).
We show that if T carries a nonzero nonatomic o-finite Borel measure, then
Y € C" iff U ey Fy is null for all closed ¥ CY x T with null F, y € Y.
We also give a similar characterization of property C (i.e., strong measure

zero sets).
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Throughout the paper T is the Cantor set 2* (see Note (1) in Section 6
for how to pass to arbitrary T'); M and N are the ideals of meager and
null (i.e. outer measure zero) subsets of T; £ is the ideal of subsets of T'
coverable by null F, sets. For X CY and FF CY x T, let F[X]| = J,cx Fz-
Let F € MY mean that F CY xT and for ally € Y, F, € M. We similarly

use N'Y and €Y.
Let X C Y, with Y a separable metric space. We say that X has property

e G if F[X]#T forall F, F € MY;

e Gy if F[X] # T for all closed F € MY;

e By if F[X] € N for all F, (equivalently, closed) F € N'Y;

e Cy (resp. Hy, My) if, given open covers {U]'! : k € w} of Y, n € w,
there are a, € w such that each x € X is in some U]’ (resp. in some
Uk<a, Ufs in all but finitely many (J, ., Uy).

e Cy if, given ¢, > 0, n € w, there are balls B,, of radius < g, with
X c U, Bn.

Instead of Y € Cf we usually write Y € C”. Similarly, Y € G means
Y € Gy, etc.

We refer to [M] and [FM] for more information about C, C”, M and H.
Here just note that for X C Y, X € C iff X € Cy, and that “some” in the
definition of C§. and My can be changed to “infinitely many” (split w into
infinitely many infinite sets).

We prove:

1.1. THEOREM. (1) C" =G =G =E.
(2) CY = G$ = Gy = Ey for finite-dimensional Y € M.
(3) Cy = G§ = Gy = Ey for finite-dimensional Y € H.

Part (3) follows from part (2) since H C M and Y € H = C{ = Cy,
the last being an easy generalization of a result of Fremlin and Miller [FM,
Thm. 8] that H N C = H N C". For o-compact Y, Cy = G = Gy is an
unpublished result of Galvin (see [AR]).

I do not know whether finite-dimensionality is essential. Dropping it
I have to replace the last “=” in (2) and (3) by “C”.

QUESTION. Suppose X C [0,1]* and for all closed F' C [0, 1]“ x [0, 1]
with all vertical sections null, F[X] is null. Does X have strong measure
zero?

Theorem 1.1 is a special case of the following theorem, which specifies
the role of M.

1.2. THEOREM. (1) G C Gy C CY. C Ey.
2)XelC, & ZeMy=XecGY.
(3) (X € Ez, Z finite-dimensional & Z € My) = X € GY,.
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Consider two more properties. Let X C Y, with Y a separable metric
space. We say that X has property

e G if for all closed F € MY, F[X] € M;
e E if for all closed F € NV, F[X] € €.

We prove:

1.3. THEOREM. HNC" = GT = E*.

It is known ([GMS], [P1]) that
XeCreD+X#TforalDe M & D+ X € N for all closed D € V.
From this and Theorem 1.3, if Y C T" has property H then

YeCeD+YeMforal De M D+Y e forall Def.
(Use HNC=HNC" and D+Y = F[Y] for F = J cp{z} x (D +x).)

Theorem 1.3 is a special case of the following theorem, which specifies
the role of H.

1.4. THEOREM. (1) G, C Hy.

(2) X€eHz & Z€Gy = X € GY.

(3) B C Hy for finite-dimensional Y .

(4) X€Hy & Z € By = X € Ef.

We turn to a Borel version of our theorems. Define 5’; and Hy like Cy

and Hy but replacing open sets by Borel ones. Clearly, for X C Y, we have
X eCy it X € ", and X € Hy iff X € H. Also, it is not hard to see that

X € C” iff all Borel images of X into T have property C”; likewise for H.
1.5. THEOREM. Let X C Y. Then
X eC" & VBorel Fe MY FIX]| 4T,
X e HNC" <V Borel F e MY F[X] e M.
If 'Y is Polish, then also
X e C" &V Borel F e £ F[X] €N,
X eHNC" &V Borel Fe &Y F[X]c&.

We will see that the sets F' above can be required to have closed vertical
sections. I do not know, however, if the assumption that Y is Polish in the
second part is essential.

QUESTION. Let Y C [0,1]. Suppose F' C Y x [0,1] is (relatively) Borel
and has all sections F,, (y € Y') closed null. Can we cover F' with a Borel
subset of [0,1] x [0, 1] whose vertical sections are all coverable by null F,
sets?
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It follows from Theorem 1.5 that
VBorel F € MY F[X] € M
& XeHandVDe MVBorel f: X —T D+ f[X]£T.
Similarly, if Y is Polish, then
VBorel F € £¥ F[X] €&
& XeHandVDeEVBorel f: X - T D+ flX] eN.
(Use Fremlin-Miller’s result to see that H NC and H N C” are equivalent
for f[X].)
The paper is organized as follows. After fixing some basic notation, we

give a proof of C” = E. Then we introduce a general framework which is
suitable for open as well as for Borel properties.

2. Notation and folklore. Let K and L range over subsets of w, and
i, j, k, [, m, n over members of w. Given sets By, k € K, let

\V/ Be={z:3*ke Kz e B}, [\ Be={x:V*keK e B},
keK keK

where “3°°” stands for “there exist infinitely many” and “vV°°” for “for all

but finitely many”. Let 1x = K x {1}.

Given K, p refers to the product measure in 2% arising from assigning
the weight 1/2 to each point in {0, 1}. Note that if A C 25 with K finite,
then u(A) = |A]- 27151,

Suppose A C 2K L C K, 7 € 2V, Let

A|L ={o|L:0 € A},
[A] = U [0],  where [o] ={t €2¥:0 Ct},
occA
A, ={oec28\l .7 U0 € A}
Let [k,1) ={i: k <i<!}. For a € w¥ let a,, = a(n). Let w*/" be the set of
all increasing functions from w to w.
The following is folklore:

e A € M iff for some a € w*/ and some o,, € 2[%mn+1) p e W,

VlIoa] ST\ A

n

For such a,
3%°n, [ap, ane1) N K =0 = A|(w\ K) is meager (in 2°\5).
Hence, given b € w* there is a subsequence {a,,, } such that

I*°m |a,,, N K| <b, = Al(w\ K) is meager.
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e A € N iff for all (equivalently, for some) ¢ € w® with Y 27 < oo
there exist a € w*,/ and B,, C 2% of measure < 27 n € w, such

that
Ac\/[Bn].
For such a and c, "

Z2'“”0K‘_C" <00 = Al(w\ K) is null (in 2°\%).
n
As a consequence of these facts we have:

2.1. LEMMA. (1) Given b € w* and A € M, there is a € w*,/ such that
I*°n |a, N K| < b, = A|(w\ K) is meager.
(2) Given b € w® and A € N, there is a € w*/ such that
Von la, N K| <b, = Al(w\ K) is null.
The next lemma is extracted from [BS].

2.2. LEMMA. Let A € N. Suppose a € w*,/ and [[, €, > 0, &, s positive.
Then for each T € 29 there is X7 C 2l@n0n+1) of measure < e, such that
for all closed D C A,

D l|lan,any1) € X7 for some n and T € D|ay,.
Proof. Fix a and &,,’s. Cover A with open G C T, u(G) < [[,, €n- Define
2T ={o e2mant) e (Gr0) > u(Gr)Y, T e 29,
Then u(X7) < &, (apply the Fubini theorem to G, C 2[@n:@n+1) x 2lan+1,0))
Also, if D C G is closed, then for some n and 7 € D|a,,
770 € Dlans1 = €nit(Gr—~5) > u(G,)  for all o.
Indeed, if not, define inductively ¢ € T" with
tla, € Dla, and e u(Gya,,,) < (G, )-
Then t € D and ggey ... enpt(Gya,,,) < p(G). Since t € D C G we have

Vo [tlans1] € G, s0 ¥n u(Gyq,.,) = 1, and we get [], &, < u(G). A
contradiction. m

3. A proof of E = C". Before presenting a general framework for our
theorems we sketch a proof of E = C”.

C" C E is easy. Indeed, suppose Y € C”. Let F € N'Y be closed with
the complement | J, U; x O;, U;’s open in Y and O;’s open in T For finite
K with p(U;c Oi) > 1 —=27"let Ug = ;e Us- Then Vn Y = |, Ug.
Since Y € C", Y =\/, Uk for some K,’s. Then

Fylc\/ (v\ U o) e,

€Ky,
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The reverse inclusion is longer. Let Y € E.

First note that Y is zero-dimensional. Indeed, let § be the metric. For
Yo €Y, A={(y,6(y,y0)) : y € Y} is a closed subset of ¥ x [0, c0) with null
vertical sections. As Y € E, A[Y] is null, so it avoids arbitrarily small € > 0.
(Note (1) in Section 6 explains why [0, c0) can replace 2¥ in property E.)

Next we show that Y € M. For each n, let {U}’ : k € w} be an open
cover of Y. By zero-dimensionality we can, without loss of generality, restrict
ourselves to covers whose members are pairwise disjoint. Let # : w X w — w
be 1-1. For y € Y let K, = {k; : n € w}, where k;, = #(n, k) for k such
that y € U;'. Note that each K, is infinite. Define a closed F' € NY by

Fy:[le], yEY

AsY € E, we have F[Y] € V. Use Lemma 2.1 to find a € w*/ such that
FY]|(w C K) is null for all K with Vn |K Na,| <n. ThenY CUJ,, Up.
Otherwise, for some y, Vn ky > a,. So

KyNa, C{ky' :m <n}

has size <n and thus Fy|(w \ K) is null, which is absurd.

We can now start the main argument. Let, for each n, {U}’ : k € w} be
an open cover of Y that consists of pairwise disjoint sets. Let ¢(n) = n+n2"
and let # : |J, wl™¢™) — & be 1-1 such that # (o) > n for o € wlme®),
Let

Vie= (] Uls ifoecw™™) and #(0) =k,
n<i<c(n)
and let V" = () otherwise. (So, k <n =V =10.)
Clearly, for each n, the V;'’s cover Y. As Y € M, find a € w*/ such

that a,4+1 > c(a,) and
v=\/ U v
n ap<k<an4i

(This is possible: see Lemma 4.1.)
Let A,, = [an,ant+1) and let

Jy:U{keAn:erka”}, yey.

Each J, is infinite and has at most one point in each A,,.
Define a closed F € N'Y by

Fy:[ljy], yEY

Let A = F[Y]. AsY € E, we have A € N. Get X7’s from Lemma 2.2
applied to A, a, and g, = 1 — 2= (1),



Property C"' 283

For 7 € 29~ let
K" ={keAy:[1y]][A, €27} and K,= ] K"
TE29n

By independence
27K > 1 — (57> 1 —¢, =271,
So |K7| <nand |K,| < n2%.
CLAaIM. Y C Un,keKn Vi

Proof. Each [1;,] is a closed subset of A. It follows from Lemma 2.2
that

[15,]|A, € X7 for some n and 7 € 2",

As p(X7) < 1, the left hand side cannot be 247 so it must be of the form
[1{x}]|An for a unique k € J, N A,. Then k € K™ C K, and y € V;/". m

Pick now 7, € wl®¢(@)) that meets each o with #(o) in K, (|K,| <
n2% and |[an, c(ay))| = an2%). Then

Uvre U Uhe

kEK, an<i<c(arn)

which in view of the claim ends the proof.

4. Lemmas. Fix a set S and a family S of subsets of S which is closed
under finite intersections and unions and contains () and S. The intended
interpretation is that S is a separable metric space and § is either O(S5),
the family of all open subsets of S, or B(S), the family of all Borel subsets
of S.

Let (indices allowed)

e U and V range over S;
e O range over open subsets of T;
e X Y and Z range over subsets of S.

We say that Y is <n-dimensional if for any Uy, k € K, there are V, C Uy,
such that Y N{J, Vi =Y NY, U and each y € Y is in at most n + 1 V’s.
Clearly, if S = B(.S) then any Y is zero-dimensional, and if S = O(S) then
Y is <n-dimensional iff it is <n-dimensional in the usual sense of dimension
theory.

If F C S x T then we say that

o Fe MY iff Vy € Y F, € M; similarly for ' and &;
e Fis an F set defined by {U; x O; :i e w} iff F =S x T\, U; x Oy;
e Fis an F, set if it is a countable union of F sets.
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If S = O(S), then F and F, subsets of S x T are just closed and F,
subsets of S xT'. If S is a Polish space and S = B(S) then F and F, sets are
just Borel sets with closed and F, vertical sections (by theorems of Kunugui,
Novikov and Saint-Raymond; see [Ke]). Also, every Borel set from MY can
be covered by an F, set from M?Y; similarly for £Y if Y is itself Borel (I
do not know whether this requirement is essential). (See e.g. [D], p. 290,
Remarque (a). Remember that for Borel F C S x T, {s € S: F, € M} is
Borel, but {s € S : Fy € £} may be true coanalytic.)

DEFINITION. Let X C Y. We say that X has property

e Cy (resp. Hy, My) if, whenever Y C (N, U, Uy, then X C U, U7
for some a € w* (resp. X C A, Upco, Uls X CU, Uica, Ud);

e Gy if F[X]# T for all F € FN MY

¢ GG if FIX]# T forall F € F, N MY;

o By if F[X] € N forall Fe FNNY;

e Sy if, whenever Y C \/, Uy and a € w* /7, then X C \/, _, Uy for
some K such that V°n |K N a,qq1] <29,

Clearly, C{. U Hy C My. Also, in the definitions of My and C{ we can
replace “(J,,” by “V,,” (split w into infinitely many infinite sets).
As to Sy note the following. For a € w*/ and f € (w\ 1)¥ let
D(a, f) ={K :¥V°n |KNapt1| < f(n)-29"}.

Let ®(a) be @(a, f) for f = 1. Then Vf,a ¢(a) C P(a, f) and Vf, b Ja P(a, f)
C &(b). (For b € w?/, choose ¢ € w*/ so that a,, = b, — f(n) (for n € w)
increase and f(n+1)+ f(n)-29 < 2ben If V°n |K Nap41] < f(n)-2%, then
ven |K Nbe,,,)| < f(n+1)+ f(n)- 2% < 2bn.) So, X € Sy iff for some
[, whenever Y C \/, Uy, and a € w®/, then 3K € &(a, f) X C ;g Uk
The following lemma is implicit in [FM].
4.1. LEMMA. (1) Suppose X € My and Y C (O, U, Uj}. Then X C

Vo Us<a,,, Ug" for some a € v/
(2) Suppose X € Cy and Y C \/, U, Up. Then X C\/, U} for some
a € w”.

Proof. (1) For increasing o € w?", n > 0, let
.= N N U u
1<2n—1m<o(i) k<o(i+1)

Clearly, for each n, the V,’s with |o| = 2n cover Y. As X € My, we can
find finite X,, € w?" such that

Xg\/ U V..

n ocel,
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We end the proof of (1) by taking a € w“," such that X, C (a,)*". Indeed,
given z € X and N € w, choose n > (ay +n — N)/2 such that x € V, for
some o € X,,. Note that some interval [a,, ¢m41) with m € [N, n) contains
at least two o (i)’s; otherwise |o| < ay+n—N < 2n. Thenz € U, ., U™

(2) For finite K and ¢ € w, let U, = ek UZx)- Then, for each n,
the U,’s with |o| = n cover Y. As X € C{ find o,, of length n such that
X CV,,Us,,. Inductively choose m,, € dom(o,) \ {mo,...,m,—1} and take
a € w¥ such that a,,, = o,(my,). Then X C\/ UM . =

DEFINITION. Let X C Y. Using sets from § as Galvin used open sets
define a game G5 (X) (resp. G37 (X)) as follows. In the nth round White
covers Y with {U}’ : k € w}, then Black picks a,, € w. Black wins if X C
U, Uz, (xesp. X C V,, U2 ).

4.2. LEMMA. The following are equivalent:

(a) White has no winning strategy in G37 (X).
(b) X € G

Stmilarly if o is dropped.

Proof. (Cf. [R], Thm. 1.) (a)=(b). Suppose F = J, Fi, F; € Fn M.
We seek a point outside F[X].

Find nonempty rectangles U, x O,, 0 € w<¥, so that

(1) Us x Oq is disjoint from (J; |, £ and diam(O,) < 2-lel;

(2) Y g Un Uo"\n;

(3) OU’\n g OO’;

Then some [, O, s € W, is disjoint from F[X]. Indeed, let White play
according to U,’s. He begins with {U,, : n € w}, against Black’s choice of
n he plays {U,m) : m € w}, etc. This is not a winning strategy, so X C
V,, Usjn for some s € w. Let t € (), Og)p,- Then for each n, J,,<.,, Usjm X {t}
is disjoint from F,. Hence \/, Uy, x {t} is disjoint from J,, Fy.

(b)=-(a). Suppose White has a winning strategy. Thus there exist U,,
o € w<¥, suchthat forallo, Y =J, Up~n,andfornos e w¥, X C\/ Usin-
Choose nonempty O,, o € w<¥, so that Oy = T and for all o, the O,~,’s
are pairwise disjoint subsets of O, with diameters < 2~1°I and union dense
in O,.

Let F' be the complement of (,, G, G = Ulclzm U, x O,. Each G,,
has dense vertical sections for y € Y. (Fix y. Given O, find O, C O, |o| > m,
next find n with y € U,~,. Then Op—~,, C (G,)y,NO.) Thus F € F,NMY.
Also, F[X] =T. Indeed, if t € T'\ F[X], then z € X yields

VYmdo |lo|>m&zelU, &t e O,,
so X CV, Ugyp fors=(J{o:t€O0s}. m

i<|o
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4.3. PROPOSITION.
Gy C Gy CCy C Ey NSy N My.
If 'Y is finite-dimensional then also
Ey C Sy N My.
Proof.

e Gy C Gy. Clear.

e Gy C Cf. Use Lemma 4.2. If X ¢ C{ then White wins by playing
covers that witness this.

e C{ C Ey. (Cf. [M1], Thm. 2.1.) Let X € C¥ and let F € FNNY be
defined by {U; x O; : i € w}. For finite K such that pu({J;c Os) > 1—-27"
let U = Niex Ui- Then Vn Y C J Ug. As X € CY, X C \/, Ui for
some K,,’s. Then

FIx]c\/ (T\ U Oi> eN.
n €K,

e Oy C Sy. Let Y C \/, Uy and a € w¥ /. Define U}’ to be Uy, if

k € [an,ant1) and 0 otherwise. Use Lemma 4.1(2).

Now assume that Y is < N-dimensional.

e By C My. (Cf. [M1], Thms. 1.2 and 2.2.) Let Y C (N, U, U}’. Let
#:wxw —wbel-1.Fors € Slet K, =, K7, where K = {#(n,k) : s €
Up}. Without loss of generality, Vn Vy € Y |K]'| < N. Define F € FNNY
by

Vse S F, = U‘Ks]'

Suppose X € Ey. Then F[X] € N. By Lemma 2.1, find a € w*/ such that
for all K with Vn |[KNa,| < nN, F[X]|(w\K) is null. Fix z € X. It suffices
to prove

Cramn. In K Na, # 0.
Proof. Otherwise
Vn K;Na, C U K"

m<n
(m>n& KNa,, =0= K"Na, =0). Since |K"| < N, |K;Na,| <nN.
It follows that F,|(w \ K,) is null, which is absurd. m
e By C Sy. (Cf. [BS], Thm. 2.1.) Suppose X € Ey, Y C \/, U, and
a € w’/ ForseSlet Js={k:s €U} Let A, = [an,ans1). Without
loss of generality, Vy € Y |4, N J,| < N. Define F € F, NNY by

Vse S Fo=Jlsna)-

n
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As X € Ey, F[X] € N. Let X7’s be obtained by Lemma 2.2 applied to F[X],
aand e, =1— (1 —2"N)+D/N Tet {K7 :i < I} be a maximal family of
pairwise disjoint subsets of A,, of size < N such that Vi [1 K;]\An C X7. Let
K™ = J,.; K. By independence
1—2M>1—pu(E)>1—¢, =(1—2"N)r+/N

sol <n/N and |[KT| <IN <n.

Let

K,= |J K.
TE2%n

Then |K,| < n2%.

Let K =, K». Clearly, K,, = KN A,,.

CrLAIM. Vo € X 3°n K, NJ, # 0.

Proof Fix z € X, m € w. As D = [1,\,,.] is a closed subset of F[X],
by Lemma 2.2 find n and 7 € D|a,, such that D,|A, C X7. Clearly, n > m
(otherwise D, |A,, = 24» but u(X7) < 1). It follows that

D:|Ap =[1,,]|An, so [15,]|4, CX7.
By the choice of K7’s, some K] meets J,, so K,, meets J,. m
Proposition 4.3 is proved. =
4.4. PROPOSITION. X € Sz & Z € My = X € GY,.

Proof. (Cf. [P], Lemma 2.) Suppose ¥ C (1 <o U; Us~i. We want
s € w® with X C\/ Ugp.
Let X =], n". For 0 € ¥ and n let
Uo’r'b = ﬂ U UT’\J\i'
TENSN 0<i<|o|
Clearly, for each n, Y C |J_, U}. Also, for 0,7 € X,
n<m=Umrttlcun. .
Let ¢(n) = 2" and let # : |J,, (™ — w be one-to-one and such that
#((71,... ,Uc(n)) >n+ ’01’ + ...+ ‘O—c(n)‘-
Let
Ve = U AUl gptleeien -l

if & = #(01,...,00m)) and V' = (0 otherwise. (So k < n = V' = 0.)
Clearly, for each n, Y C J, V). Since Z € My, by Lemma 4.1, find a € w*/

such that
zc\/ U v

n an<k<aniti
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As X € Sz, there exist K,, C [an,ant1) of size < c(a,) such that

xc\/ U w
n kekK,

Now diagonalize. Pick o7 so that

#(Uiv"wgé(an)), i=1,...,c(ap),
and enumerate (possibly with repetitions) K,, in such a way that j > i =

o] > |o].
Let
Tn = O'%AO'SA - z((zg
Then

U vrcue
kEK,
Note that |0} + ...+ o' "1 < |} + ...+ |oi_,| yields

an+lot |+ +lol ]
ylrta e yen,
Ji n

As also Vm ay, + |Tim| < a1, it follows that
U Vk'fb g U;_ln g U‘I\_T0|+---+|Tn71|.
keK,

Finally, since 707 ... "1 € X,

+... n—
U‘TOI +|T ll g U UTO’\..."T7L,1"T,,, 7°

Tn

0<i< ||
Thus
n
U Vk; g U UTOA..‘ATR71AT7L7;?
keK, 0<i<|Tp|

hence X C\/, Uy, for s=7"7m17 ... =
4.5. COROLLARY. G = G =C" =SNM C E. For finite-dimensional
sets, C" and E are equivalent.

Proof. By Proposition 4.4, SN M C G?. By Proposition 4.3, G C G C
C" C ENnSN M, and for finite-dimensional sets, E C SN M. =

DEFINITION. Let X CY. We say that X has property

o B if FIX] €& forall Fe FNEY;

o Gy if F[X] € M for all F € FN MY.
4.6. PROPOSITION. (1) Gy, C Hy.

(2) EY: C Hy for finite-dimensional Y .
(3)X€Hz&Z€GY:>X€G)t.
(4) X € Hz & Z € By = X € EY.
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Proof. For (1) and (2) let Y C (), U, U}. Define K, and K} as
in Proposition 4.3 in the proof of Fy C My . Without loss of generality,
Vs € S Vn min(K?) < min(K?!). (Let the (n + 1)th cover refine the nth
cover, and define # so that Vk 3 #(n + 1,k) > #(n,1) and U C UP.)

For (1) define F € FN MY by

VseS(t¢gFseIndkselU; & {l<k:t(l) =1} <n).
Then
VyeY (te Fy & Vn [{l <min(K}) : t(l) = 1} > n).

Let X € GY, so that F[X] € M. Let a € w*,/ be obtained from Lemma 2.1
applied to F[X] and b,, = n. Fix € X. It is enough to prove

CraM. V*°n K Na, # 0.

Proof. Suppose otherwise, i.e., 3%°n a, < min(K}). Define K =
{min(K7}) : n € w}. Then 3°n |[K Nay,| < n, so F;|(w\ K) is meager.
Note, however, that [1x] C F,. A contradiction. m

For (2) note first that, without loss of generality, Vn,y |K}| < N, for
some N. Define F € FNEY by

Vse S Fs = [1]{5].

Let X € Ey, so that F[X] € £ C M. Let a € w” be obtained from
Lemma 2.1 applied to F[X] and b,, = nN. Fix € X. It suffices to prove

CramM. V*°n K Na, # 0.

Proof. If K} Na, =0, then K,Na, € ,,,, KJ',s0 |[K.Nap| <nN. Tt
follows that if 3°°n K?Na,, = (), then 3°n |K,Na,| < nN. Thus F,|(w\ K,)
is meager, which is absurd. =

(3) (Cf. [T], Thm. 5.3(iii).) Let X € Hz and Z € Gy. Let F € Fn MY
be defined by {U; x O; : i € w}. Use Lemma 4.2 to find a dense set {r, :
n€w}t CT\ F[Z]. Let U be U; if r,, € O; and ) otherwise. Then for each
n, the U"’s cover Z. Since X € Hyz, find a € w* with X C A U, U/
Define O™ = ({O; : r, € Oy, i < ap}. Then r,, € O™ and Vo € X V*™n
O™ N F, = 0. It follows that \/,, O™ is a dense G set disjoint from F[X].

(4)Let X € Hz, Z € Ey.Let F € FNNY be defined by {U;x0; : i € w}.
As F[Z] € N, find an increasing sequence of compact sets C"™ C T\ F[Z]
such that u(7"\ U, C") = 0. For n and finite K C w let U be ;o x Us
if C™ C U,cx Oi and () otherwise. Then for each n, the Uy’s cover Z (C™
are compact!). Since X € Hz, find finite K, with X C A\ Ugex, Uk Let
O™ = Nkex, Uiex Oi- Then C™ C O™ and Vo € X V>°n O" N F, = 0. Tt
follows that A, (T"\ O™) is a null F, cover of F[X]. m
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4.7. COROLLARY. G = C" N H. Further, G* C E™; for finite-dimen-
sional sets, Gt and E* are equivalent.

Proof. Clearly, Gt C G. By Proposition 4.6, GT C H and HNG C G™.
Also, by Corollary 4.5, G = C”. Thus, Gt = HNC". Next, as C"” C E, we
have Gt C HN E. But HNE C E* by Proposition 4.6. So, G C ET. If
Y € ET is finite-dimensional, then Y € H N E by Proposition 4.6. As for
finite-dimensional sets, F and C" are equivalent, we get Y € HNC", hence
YcGT. u

The following lemma is straightforward.

4.8. LEMMA. If § is a o-field then for any property P considered in this
section, X € Py iff X CY and X € P.

5. Proofs of Theorems. Let Y be a separable metric space. Set S =Y
and S = O(S). Theorem 1.2 follows from Propositions 4.3 and 4.4; and The-
orem 1.4 from Proposition 4.6. For Theorems 1.1 and 1.3, use Corollaries 4.5
and 4.7. (Y € E implies that Y is zero-dimensional; see Section 3.)

For the Borel versions, let Y C S, § Polish, and S = B(S). Then all
subsets of Y are zero-dimensional. In view of Lemma 4.8, the results follow
from Corollaries 4.5 and 4.7 and the fact that Borel sets from MY can be
covered by F, sets from MY, and if Y = S then the same applies to £Y .

6. Notes. (1) T can be any Polish space with no isolated points and a
nonzero and nonatomic (i.e., vanishing on points) o-finite Borel measure p.
We get the same classes of sets. For Gy and G¢, this follows from the proof
of Lemma 4.2.

For Fy and E;, given such a space T, there exist a null F, set F* C T,
a countable Q C [0, 1], and a homeomorphism f : T\ F' — [0,1] \ @ such
that a subset of 7'\ F' is p-null iff its image is A-null, A being the Lebesgue
measure. (Change p so that null sets are the same and (7)) = 1. Remove all
open null sets. Next remove a countable dense subset C, and for each ¢ € C
and n remove a sphere which is null, has center ¢ and radius < 27". This
can be done because the spheres with a fixed center are pairwise disjoint.
We have removed a null F,, set, and the remaining part 7’ can be identified
with the irrationals of [0, 1]. Define f : [0,1] — [0,1] by f(z) = u([0,2)NT").
Then f is a homeomorphism and for all A C 7", u*(A) = X*(f[4)]).)

For G; just note that T' contains a dense Gy copy of w*.

(2) Let T be as above.

If £ C M (i.e., if open sets have positive measure), then in the definition
of By, “F[X] € £ can be replaced by “F[X] € MNN".

In G§ (similarly in Gy ) instead of F[X]| # T we can require that for all
nonmeager B C T with the Baire property, B \ F[X] contains a perfect set.
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Indeed, let X € GY.. Let O C T be nonempty and let D;, i € w, be
nowhere-dense subsets of 7. Suppose F' = J, F;, F; € F N MY . Choose
nonempty rectangles U, X Oy -, 0 € w<¥, 7 € 2<% || = |7|, so that

Osr CO\ | J Di and diam(O,,) < 277;

i<|o|

U, x O - is disjoint from each F; for i < |o|;
Y g U UU’“n;
n

OO'ATL,TAO U OaAn,TAl g OO’,T;
Oo”\n;r"O N Oa"nﬂ"\l =0.

Let Os = U, Oo,r. Each [, Oy, s € w*, is a perfect subset of O\J; D;.
To see that some [, Oy, is disjoint from F[X] suppose that White plays
according to U,’s. This is not a winning strategy, so X C \/, Uy, for some
s € w. Now y € (1, Oy yields Vo € X 3%°n (z,y) € Uy, X Oy, hence
Ve e X Vi (x,y) € F;.

(3) We call A C w® diagonalized (resp. dominated) if for some z € w* for
all a € A, 3°n a(n) = x(n) (resp. ¥V°n a(n) < z(n)). We call f: Y — w*
S-measurable if for all n, m there is V € S such that y € V < f(y)(n) = m.
Clearly, if Y is zero-dimensional, then X is in Hy (resp. CY) iff for all
S-measurable f: Y — w®, f[X] is dominated (resp. diagonalized).

For § = O(S) (resp. S = B(S)), S-measurable means continuous (resp.
Borel). From this, X is in C” (resp. H) iff all Borel images of X into w®
are diagonalized (resp. dominated) iff all Borel images of X into a given
Polish space T have property C” (resp. H). Similarly for zero-dimensional
separable metric spaces, properties C”” and H, and continuous images.

(4) Consistently, S ¢ M (even S(B(T")) € M(O(T))). Shelah ([Sh],
Prop. 2.9) has an w* bounding forcing which makes the ground model reals
an S(B(T)) set.

(5) The argument of Proposition 4.4 shows that if W is a model of ZFC,
T € w* is an unbounded real over W, and the union of closed null sets coded
in W{z] is null, then there is a Cohen real over W. Do we really need the
intermediate unbounded real?

(6) Clearly, Ey, E5: and G are o-ideals. So are Cy., Sy, Hy and My
For Cf and My just split w into infinitely many infinite sets. (Let w =
(U; K, with the K;’s infinite pairwise disjoint. Let Y C (", U, Up. If X; €
Cy, i € w, there exists a € w* such that Vi X; C U, cx, Uy, - Then |J; Xi C

U, Ua..-)
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For Hy, suppose X; € Hy,i € w,and Y C (), U, U/. Find a* € w* with
Xi €A, Uk<a% Uy Let ap, = max;<p ay,. Then {J; X; C A, U, Ur-

For Sy, let Y C \/, Uy and a € w¥,/. Suppose X; € Sy, i € w, and
let K; € ®(a) witness this. Set K = {J,, U;<,, Ki N [@n,ant1). Then X C
Vierx Ur and V0 [K N [ay, ang1)| < (n+1)2%.

I do not know whether Gy and G§ are o-ideals. (Yes, if Y € My, as
then Gy = G = Cy. Note that if Y = J,, X,, and Vn, X,, € Gy, then
Vn X, € My, hence Y € My .)

(7) Assume that S is a separable metric space, sets from S have the
Baire property, X C Y, and all sets meager in X have one of the properties
CY, Ey, Sy, My. Then X has the respective property. (By o-additivity, we
can replace meager by nowhere-dense.)

We give a proof for Sy. Let Y C \/, Uy and let a € w*/. Consider

=\ U @nx)x {t € [lan ans1) : ta = k}

n an§<an+l

For each t € [[,[an,an+1), the horizontal section G* determined by ¢ is
covered by \/,, Uz, . All vertical sections of G are dense G; sets. Also, G, as
a subset of X x [[, [an,an+1), has the Baire property. By the Kuratowski-
Ulam theorem, find t € [, [ay, an41) such that Z = X \ G* is meager in X.
Then Z € Sy, s0 Z C \/,cx Uy for some K € @(a). Let L = K U rng(t).
Then X C \/,cp Ur and V°n |L N apq1| < 0+ 297,

I do not know whether the above is true for Gy or G§. (It is if X =Y
if all nowhere-dense subsets of X have property Gx, then X € C”.)

(8) If v is a o-finite measure on S, sets from S are measurable, X C Y,
and all null subsets of X have property Hy, then X € Hy.

Indeed, without loss of generality, v*(X) < oo (v is o-finite and Hy is
o-additive). Let Y C N, U, U}}. For each n pick k,, with

u*(X\ U U,?) <o,
E<kn

Let Z = X\ A\, Ur<p, Uit~ Then Z is null, so Z € Hy, hence Z C
A Uk<s, U, for some 1,’s. Tt follows that X C A, Up<max(h, 1,y Uk

(9) Sierpiriski and Lusin sets destroy various extensions of the above. If Y
is a Lusin set, then Y & Hy, but meager subsets of Y are in G;} ﬁE;ﬁ C Hy.
If Y is a Sierpiiiski set, then G§ = Gy = C§. = Ey (Y is zero-dimensional,
Y € Hy and Hy C My). Also, Y ¢ Ey (look at the identity function on
Y'), while null subsets of Y are in Fy.
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