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Property C ′′, strong measure zero sets
and subsets of the plane

by

Janusz P a w l i k o w s k i (Wrocław)

Abstract. Let X be a set of reals. We show that

• X has property C′′ of Rothberger iff for all closed F ⊆ R×R with vertical sections
Fx (x ∈ X) null,

⋃
x∈X Fx is null;

• X has strong measure zero iff for all closed F ⊆ R×R with all vertical sections Fx
(x ∈ R) null,

⋃
x∈X Fx is null.

1. Introduction. Let Y be a separable metric space. Galvin [G] defined
the following game G∗(Y ). In the nth round, n ∈ ω, White chooses an open
cover {Unk : k ∈ ω} of Y , then Black responds with an ∈ ω. Black wins
if every y ∈ Y is in some Unan . Let G∗σ(Y ) be Galvin’s game with “some”
changed to “infinitely many”.

Recław [R] showed that White has a winning strategy in G∗(Y ) iff for
some closed set D ⊆ Y × ωω with meager vertical sections Dy (y ∈ Y ),⋃
y∈Y Dy = ωω. His result easily extends to G∗σ(Y ) and Fσ sets. In [P],

I showed that the following are equivalent:

• White has no winning strategy in G∗(Y );
• White has no winning strategy in G∗σ(Y );
• Y has property C ′′ of Rothberger.

Thus, Y ∈ C ′′ iff
⋃
y∈Y Dy 6= ωω for all closed (equivalently, all Fσ)

D ⊆ Y ×ωω with meager sections Dy, y ∈ Y . It is not hard to see that ωω can
be replaced here by any Polish space without isolated points (Lemma 4.2).
We show that if T carries a nonzero nonatomic σ-finite Borel measure, then
Y ∈ C ′′ iff

⋃
y∈Y Fy is null for all closed F ⊆ Y × T with null Fy, y ∈ Y .

We also give a similar characterization of property C (i.e., strong measure
zero sets).
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Throughout the paper T is the Cantor set 2ω (see Note (1) in Section 6
for how to pass to arbitrary T ); M and N are the ideals of meager and
null (i.e. outer measure zero) subsets of T ; E is the ideal of subsets of T
coverable by null Fσ sets. For X ⊆ Y and F ⊆ Y ×T , let F [X] =

⋃
x∈X Fx.

Let F ∈MY mean that F ⊆ Y ×T and for all y ∈ Y, Fy ∈M. We similarly
use N Y and EY .

Let X ⊆ Y , with Y a separable metric space. We say that X has property

• GσY if F [X] 6= T for all Fσ F ∈MY ;
• GY if F [X] 6= T for all closed F ∈MY ;
• EY if F [X] ∈ N for all Fσ (equivalently, closed) F ∈ N Y ;
• C ′′Y (resp. HY , MY ) if, given open covers {Unk : k ∈ ω} of Y , n ∈ ω,

there are an ∈ ω such that each x ∈ X is in some Unan (resp. in some⋃
k<an

Unk , in all but finitely many
⋃
k<an

Unk ).
• CY if, given εn > 0, n ∈ ω, there are balls Bn of radius < εn with
X ⊆ ⋃nBn.

Instead of Y ∈ C ′′Y we usually write Y ∈ C ′′. Similarly, Y ∈ G means
Y ∈ GY , etc.

We refer to [M] and [FM] for more information about C, C ′′, M and H.
Here just note that for X ⊆ Y , X ∈ C iff X ∈ CY , and that “some” in the
definition of C ′′Y and MY can be changed to “infinitely many” (split ω into
infinitely many infinite sets).

We prove:

1.1. Theorem. (1) C ′′ = Gσ = G = E.
(2) C ′′Y = GσY = GY = EY for finite-dimensional Y ∈M .
(3) CY = GσY = GY = EY for finite-dimensional Y ∈ H.

Part (3) follows from part (2) since H ⊆ M and Y ∈ H ⇒ C ′′Y = CY ,
the last being an easy generalization of a result of Fremlin and Miller [FM,
Thm. 8] that H ∩ C = H ∩ C ′′. For σ-compact Y , CY = GσY = GY is an
unpublished result of Galvin (see [AR]).

I do not know whether finite-dimensionality is essential. Dropping it
I have to replace the last “=” in (2) and (3) by “⊆”.

Question. Suppose X ⊆ [0, 1]ω and for all closed F ⊆ [0, 1]ω × [0, 1]
with all vertical sections null, F [X] is null. Does X have strong measure
zero?

Theorem 1.1 is a special case of the following theorem, which specifies
the role of M .

1.2. Theorem. (1) GσY ⊆ GY ⊆ C ′′Y ⊆ EY .
(2) X ∈ C ′′Z & Z ∈MY ⇒ X ∈ GσY .
(3) (X ∈ EZ , Z finite-dimensional & Z ∈MY )⇒ X ∈ GσY .
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Consider two more properties. Let X ⊆ Y , with Y a separable metric
space. We say that X has property

• G+
Y if for all closed F ∈MY , F [X] ∈M;

• E+
Y if for all closed F ∈ N Y , F [X] ∈ E .

We prove:

1.3. Theorem. H ∩ C ′′ = G+ = E+.

It is known ([GMS], [P1]) that

X ∈ CT ⇔ D +X 6= T for all D ∈M⇔ D +X ∈ N for all closed D ∈ N .
From this and Theorem 1.3, if Y ⊆ T has property H then

Y ∈ C ⇔ D + Y ∈M for all D ∈M⇔ D + Y ∈ E for all D ∈ E .
(Use H ∩ C = H ∩ C ′′ and D + Y = F [Y ] for F =

⋃
x∈T {x} × (D + x).)

Theorem 1.3 is a special case of the following theorem, which specifies
the role of H.

1.4. Theorem. (1) G+
Y ⊆ HY .

(2) X ∈ HZ & Z ∈ GY ⇒ X ∈ G+
Y .

(3) E+
Y ⊆ HY for finite-dimensional Y .

(4) X ∈ HZ & Z ∈ EY ⇒ X ∈ E+
Y .

We turn to a Borel version of our theorems. Define C̃ ′′Y and H̃Y like C ′′Y
and HY but replacing open sets by Borel ones. Clearly, for X ⊆ Y , we have
X ∈ C̃ ′′Y iff X ∈ C̃ ′′, and X ∈ H̃Y iff X ∈ H̃. Also, it is not hard to see that
X ∈ C̃ ′′ iff all Borel images of X into T have property C ′′; likewise for H̃.

1.5. Theorem. Let X ⊆ Y . Then

X ∈ C̃ ′′′ ⇔ ∀Borel F ∈MY F [X] 6= T,

X ∈ H̃ ∩ C̃ ′′′ ⇔ ∀Borel F ∈MY F [X] ∈M.

If Y is Polish, then also

X ∈ C̃ ′′′ ⇔ ∀Borel F ∈ EY F [X] ∈ N ,
X ∈ H̃ ∩ C̃ ′′′ ⇔ ∀Borel F ∈ EY F [X] ∈ E .

We will see that the sets F above can be required to have closed vertical
sections. I do not know, however, if the assumption that Y is Polish in the
second part is essential.

Question. Let Y ⊆ [0, 1]. Suppose F ⊆ Y × [0, 1] is (relatively) Borel
and has all sections Fy (y ∈ Y ) closed null. Can we cover F with a Borel
subset of [0, 1] × [0, 1] whose vertical sections are all coverable by null Fσ
sets?
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It follows from Theorem 1.5 that

∀Borel F ∈MY F [X] ∈M
⇔ X ∈ H̃ and ∀D ∈M ∀Borel f : X → T D + f [X] 6= T.

Similarly, if Y is Polish, then

∀Borel F ∈ EY F [X] ∈ E
⇔ X ∈ H̃ and ∀D ∈ E ∀Borel f : X → T D + f [X] ∈ N .

(Use Fremlin–Miller’s result to see that H ∩ C and H ∩ C ′′ are equivalent
for f [X].)

The paper is organized as follows. After fixing some basic notation, we
give a proof of C ′′ = E. Then we introduce a general framework which is
suitable for open as well as for Borel properties.

2. Notation and folklore. Let K and L range over subsets of ω, and
i, j, k, l, m, n over members of ω. Given sets Bk, k ∈ K, let
∨

k∈K
Bk = {x : ∃∞k ∈ K x ∈ Bk},

∧

k∈K
Bk = {x : ∀∞k ∈ K x ∈ Bk},

where “∃∞” stands for “there exist infinitely many” and “∀∞” for “for all
but finitely many”. Let 1K = K × {1}.

Given K, µ refers to the product measure in 2K arising from assigning
the weight 1/2 to each point in {0, 1}. Note that if A ⊆ 2K with K finite,
then µ(A) = |A| · 2−|K|.

Suppose A ⊆ 2K , L ⊆ K, τ ∈ 2L. Let

A|L = {σ|L : σ ∈ A},
[A] =

⋃

σ∈A
[σ], where [σ] = {t ∈ 2ω : σ ⊆ t},

Aτ = {σ ∈ 2K\L : τ ∪ σ ∈ A}.
Let [k, l) = {i : k ≤ i < l}. For a ∈ ωω let an = a(n). Let ωω↗ be the set of
all increasing functions from ω to ω.

The following is folklore:

• A ∈M iff for some a ∈ ωω↗ and some σn ∈ 2[an,an+1), n ∈ ω,
∨
n

[σn] ⊆ T \A.

For such a,

∃∞n [an, an+1) ∩K = ∅ ⇒ A|(ω \K) is meager (in 2ω\K).

Hence, given b ∈ ωω there is a subsequence {anm} such that

∃∞m |anm ∩K| ≤ bn ⇒ A|(ω \K) is meager.
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• A ∈ N iff for all (equivalently, for some) c ∈ ωω with
∑
n 2−cn < ∞

there exist a ∈ ωω↗ and Bn ⊆ 2an of measure ≤ 2−cn , n ∈ ω, such
that

A ⊆
∨
n

[Bn].

For such a and c,∑
n

2|an∩K|−cn <∞⇒ A|(ω \K) is null (in 2ω\K).

As a consequence of these facts we have:

2.1. Lemma. (1) Given b ∈ ωω and A ∈M, there is a ∈ ωω↗ such that

∃∞n |an ∩K| ≤ bn ⇒ A|(ω \K) is meager.

(2) Given b ∈ ωω and A ∈ N , there is a ∈ ωω↗ such that

∀∞n |an ∩K| ≤ bn ⇒ A|(ω \K) is null.

The next lemma is extracted from [BS].

2.2. Lemma. Let A ∈ N . Suppose a ∈ ωω↗ and
∏
n εn > 0, εn’s positive.

Then for each τ ∈ 2an there is Στ ⊆ 2[an,an+1) of measure < εn such that
for all closed D ⊆ A,

Dτ |[an, an+1) ⊆ Στ for some n and τ ∈ D|an.
P r o o f. Fix a and εn’s. Cover A with open G ⊆ T , µ(G) <

∏
n εn. Define

Στ = {σ ∈ 2[an,an+1) : εnµ(Gτ_σ) > µ(Gτ )}, τ ∈ 2an .

Then µ(Στ ) < εn (apply the Fubini theorem to Gτ ⊆ 2[an,an+1)×2[an+1,ω)).
Also, if D ⊆ G is closed, then for some n and τ ∈ D|an,

τ_σ ∈ D|an+1 ⇒ εnµ(Gτ_σ) > µ(Gτ ) for all σ.

Indeed, if not, define inductively t ∈ T with

t|an ∈ D|an and εnµ(Gt|an+1) ≤ µ(Gt|an).

Then t ∈ D and ε0ε1 . . . εnµ(Gt|an+1) ≤ µ(G). Since t ∈ D ⊆ G we have
∀∞n [t|an+1] ⊆ G, so ∀∞n µ(Gt|an+1) = 1, and we get

∏
n εn ≤ µ(G). A

contradiction.

3. A proof of E = C ′′. Before presenting a general framework for our
theorems we sketch a proof of E = C ′′.

C ′′ ⊆ E is easy. Indeed, suppose Y ∈ C ′′. Let F ∈ N Y be closed with
the complement

⋃
i Ui × Oi, Ui’s open in Y and Oi’s open in T . For finite

K with µ(
⋃
i∈K Oi) > 1 − 2−n let UnK =

⋂
i∈K Ui. Then ∀n Y =

⋃
K U

n
K .

Since Y ∈ C ′′, Y =
∨
n U

n
Kn

for some Kn’s. Then

F [Y ] ⊆
∨
n

(
U \

⋃

i∈Kn
Oi

)
∈ N .
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The reverse inclusion is longer. Let Y ∈ E.
First note that Y is zero-dimensional. Indeed, let δ be the metric. For

y0 ∈ Y , ∆ = {〈y, δ(y, y0)〉 : y ∈ Y } is a closed subset of Y × [0,∞) with null
vertical sections. As Y ∈ E, ∆[Y ] is null, so it avoids arbitrarily small ε > 0.
(Note (1) in Section 6 explains why [0,∞) can replace 2ω in property E.)

Next we show that Y ∈ M . For each n, let {Unk : k ∈ ω} be an open
cover of Y . By zero-dimensionality we can, without loss of generality, restrict
ourselves to covers whose members are pairwise disjoint. Let # : ω×ω → ω
be 1-1. For y ∈ Y let Ky = {kny : n ∈ ω}, where kny = #(n, k) for k such
that y ∈ Unk . Note that each Ky is infinite. Define a closed F ∈ N Y by

Fy = [1Ky ], y ∈ Y.
As Y ∈ E, we have F [Y ] ∈ N . Use Lemma 2.1 to find a ∈ ωω↗ such that
F [Y ]|(ω ⊆ K) is null for all K with ∀n |K ∩ an| ≤ n. Then Y ⊆ ⋃k<an Unk .
Otherwise, for some y, ∀n kny ≥ an. So

Ky ∩ an ⊆ {kmy : m < n}
has size ≤n and thus Fy|(ω \Ky) is null, which is absurd.

We can now start the main argument. Let, for each n, {Unk : k ∈ ω} be
an open cover of Y that consists of pairwise disjoint sets. Let c(n) = n+n2n

and let # :
⋃
n ω

[n,c(n)) → ω be 1-1 such that #(σ) ≥ n for σ ∈ ω[n,c(n)).
Let

V nk =
⋂

n≤i<c(n)

U iσ(i) if σ ∈ ω[n,c(n)) and #(σ) = k,

and let V nk = ∅ otherwise. (So, k < n⇒ V nk = ∅.)
Clearly, for each n, the V nk ’s cover Y . As Y ∈ M , find a ∈ ωω↗ such

that an+1 ≥ c(an) and

Y =
∨
n

⋃

an≤k<an+1

V ank .

(This is possible: see Lemma 4.1.)
Let An = [an, an+1) and let

Jy =
⋃
n

{k ∈ An : y ∈ V ank }, y ∈ Y.

Each Jy is infinite and has at most one point in each An.
Define a closed F ∈ N Y by

Fy = [1Jy ], y ∈ Y.
Let A = F [Y ]. As Y ∈ E, we have A ∈ N . Get Στ ’s from Lemma 2.2
applied to A, an and εn = 1− 2−(n+1).
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For τ ∈ 2an let

Kτ = {k ∈ An : [1{k}]|An ⊆ Στ} and Kn =
⋃

τ∈2an

Kτ .

By independence

2−|K
τ | ≥ 1− µ(Στ ) > 1− εn = 2−(n+1).

So |Kτ | ≤ n and |Kn| ≤ n2an .

Claim. Y ⊆ ⋃n,k∈Kn V ank .

P r o o f. Each [1Jy ] is a closed subset of A. It follows from Lemma 2.2
that

[1Jy ]|An ⊆ Στ for some n and τ ∈ 2an .

As µ(Στ ) < 1, the left hand side cannot be 2An , so it must be of the form
[1{k}]|An for a unique k ∈ Jy ∩An. Then k ∈ Kτ ⊆ Kn and y ∈ V ank .

Pick now τn ∈ ω[an,c(an)) that meets each σ with #(σ) in Kn (|Kn| ≤
n2an and |[an, c(an))| = an2an). Then

⋃

k∈Kn
V ank ⊆

⋃

an≤i<c(an)

U iτn(i),

which in view of the claim ends the proof.

4. Lemmas. Fix a set S and a family S of subsets of S which is closed
under finite intersections and unions and contains ∅ and S. The intended
interpretation is that S is a separable metric space and S is either O(S),
the family of all open subsets of S, or B(S), the family of all Borel subsets
of S.

Let (indices allowed)

• U and V range over S;
• O range over open subsets of T ;
• X, Y and Z range over subsets of S.

We say that Y is ≤n-dimensional if for any Uk, k ∈ K, there are Vk ⊆ Uk
such that Y ∩⋃k Vk = Y ∩⋃k Uk and each y ∈ Y is in at most n+ 1 Vk’s.
Clearly, if S = B(S) then any Y is zero-dimensional, and if S = O(S) then
Y is ≤n-dimensional iff it is ≤n-dimensional in the usual sense of dimension
theory.

If F ⊆ S × T then we say that

• F ∈MY iff ∀y ∈ Y Fy ∈M; similarly for N and E ;
• F is an F set defined by {Ui ×Oi : i ∈ ω} iff F = S × T \⋃i Ui ×Oi;
• F is an Fσ set if it is a countable union of F sets.
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If S = O(S), then F and Fσ subsets of S × T are just closed and Fσ
subsets of S×T . If S is a Polish space and S = B(S) then F and Fσ sets are
just Borel sets with closed and Fσ vertical sections (by theorems of Kunugui,
Novikov and Saint-Raymond; see [Ke]). Also, every Borel set fromMY can
be covered by an Fσ set from MY ; similarly for EY if Y is itself Borel (I
do not know whether this requirement is essential). (See e.g. [D], p. 290,
Remarque (a). Remember that for Borel F ⊆ S × T , {s ∈ S : Fs ∈ M} is
Borel, but {s ∈ S : Fs ∈ E} may be true coanalytic.)

Definition. Let X ⊆ Y . We say that X has property

• C ′′Y (resp. HY , MY ) if, whenever Y ⊆ ⋂n
⋃
k U

n
k , then X ⊆ ⋃n Unan

for some a ∈ ωω (resp. X ⊆ ∧n
⋃
k<an

Unk , X ⊆ ⋃n
⋃
k<an

Unk );
• GY if F [X] 6= T for all F ∈ F ∩MY ;
• GσY if F [X] 6= T for all F ∈ Fσ ∩MY ;
• EY if F [X] ∈ N for all F ∈ F ∩N Y ;
• SY if, whenever Y ⊆ ∨k Uk and a ∈ ωω↗, then X ⊆ ∨k∈K Uk for

some K such that ∀∞n |K ∩ an+1| ≤ 2an .

Clearly, C ′′Y ∪HY ⊆MY . Also, in the definitions of MY and C ′′Y we can
replace “

⋃
n” by “

∨
n” (split ω into infinitely many infinite sets).

As to SY note the following. For a ∈ ωω↗ and f ∈ (ω \ 1)ω let

Φ(a, f) = {K : ∀∞n |K ∩ an+1| ≤ f(n) · 2an}.
Let Φ(a) be Φ(a, f) for f ≡ 1. Then ∀f, a Φ(a) ⊆ Φ(a, f) and ∀f, b ∃a Φ(a, f)
⊆ Φ(b). (For b ∈ ωω↗, choose c ∈ ωω↗ so that an = bcn − f(n) (for n ∈ ω)
increase and f(n+1)+f(n) ·2an ≤ 2bcn . If ∀∞n |K∩an+1| ≤ f(n) ·2an , then
∀∞n |K ∩ bcn+1)| ≤ f(n + 1) + f(n) · 2an ≤ 2bcn .) So, X ∈ SY iff for some
f , whenever Y ⊆ ∨k Uk and a ∈ ωω↗, then ∃K ∈ Φ(a, f) X ⊆ ∨k∈K Uk.

The following lemma is implicit in [FM].

4.1. Lemma. (1) Suppose X ∈ MY and Y ⊆ ⋂
n

⋃
k U

n
k . Then X ⊆∨

n

⋃
k<an+1

Uank for some a ∈ ωω↗.
(2) Suppose X ∈ C ′′Y and Y ⊆ ∨n

⋃
k U

n
k . Then X ⊆ ∨n Unan for some

a ∈ ωω.

P r o o f. (1) For increasing σ ∈ ω2n, n > 0, let

Vσ =
⋂

i<2n−1

⋂

m≤σ(i)

⋃

k<σ(i+1)

Umk .

Clearly, for each n, the Vσ’s with |σ| = 2n cover Y . As X ∈ MY , we can
find finite Σn ⊆ ω2n such that

X ⊆
∨
n

⋃

σ∈Σn
Vσ.
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We end the proof of (1) by taking a ∈ ωω↗ such that Σn ⊆ (an)2n. Indeed,
given x ∈ X and N ∈ ω, choose n > (aN + n −N)/2 such that x ∈ Vσ for
some σ ∈ Σn. Note that some interval [am, am+1) with m ∈ [N,n) contains
at least two σ(i)’s; otherwise |σ| ≤ aN+n−N < 2n. Then x ∈ ⋃k<am+1

Uamk .

(2) For finite K and σ ∈ ωK , let Uσ =
⋂
k∈K U

n
σ(k). Then, for each n,

the Uσ’s with |σ| = n cover Y . As X ∈ C ′′Y find σn of length n such that
X ⊆ ∨n Uσn . Inductively choose mn ∈ dom(σn) \ {m0, . . . ,mn−1} and take
a ∈ ωω such that amn = σn(mn). Then X ⊆ ∨m Umam .

Definition. Let X ⊆ Y . Using sets from S as Galvin used open sets
define a game G∗Y (X) (resp. G∗σY (X)) as follows. In the nth round White
covers Y with {Unk : k ∈ ω}, then Black picks an ∈ ω. Black wins if X ⊆⋃
n U

n
an (resp. X ⊆ ∨n Unan).

4.2. Lemma. The following are equivalent :

(a) White has no winning strategy in G∗σY (X).
(b) X ∈ GσY .

Similarly if σ is dropped.

P r o o f. (Cf. [R], Thm. 1.) (a)⇒(b). Suppose F =
⋃
i Fi, Fi ∈ F ∩MY .

We seek a point outside F [X].
Find nonempty rectangles Uσ ×Oσ, σ ∈ ω<ω, so that

(1) Uσ ×Oσ is disjoint from
⋃
i<|σ| Fi and diam(Oσ) < 2−|σ|;

(2) Y ⊆ ⋃n Uσ_n;
(3) Oσ_n ⊆ Oσ;

Then some
⋂
nOs|n, s ∈ ωω, is disjoint from F [X]. Indeed, let White play

according to Uσ’s. He begins with {U〈n〉 : n ∈ ω}, against Black’s choice of
n he plays {U〈n,m〉 : m ∈ ω}, etc. This is not a winning strategy, so X ⊆∨
n Us|n for some s ∈ ωω. Let t ∈ ⋂nOs|n. Then for each n,

⋃
m>n Us|m×{t}

is disjoint from Fn. Hence
∨
n Us|n × {t} is disjoint from

⋃
n Fn.

(b)⇒(a). Suppose White has a winning strategy. Thus there exist Uσ,
σ ∈ ω<ω, such that for all σ, Y =

⋃
n Uσ_n, and for no s ∈ ωω,X ⊆ ∨n Us|n.

Choose nonempty Oσ, σ ∈ ω<ω, so that O∅ = T and for all σ, the Oσ_n’s
are pairwise disjoint subsets of Oσ with diameters < 2−|σ| and union dense
in Oσ.

Let F be the complement of
⋂
mGm, Gm =

⋃
|σ|≥m Uσ ×Oσ. Each Gm

has dense vertical sections for y ∈ Y . (Fix y. Given O, find Oσ ⊆ O, |σ| ≥ m,
next find n with y ∈ Uσ_n. Then Oσ_n ⊆ (Gm)y ∩O.) Thus F ∈ Fσ ∩MY .
Also, F [X] = T . Indeed, if t ∈ T \ F [X], then x ∈ X yields

∀m ∃σ |σ| ≥ m & x ∈ Uσ & t ∈ Oσ,
so X ⊆ ∨n Us|n for s =

⋃{σ : t ∈ Oσ}.
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4.3. Proposition.

GσY ⊆ GY ⊆ C ′′Y ⊆ EY ∩ SY ∩MY .

If Y is finite-dimensional then also

EY ⊆ SY ∩MY .

P r o o f.

• GσY ⊆ GY . Clear.
• GY ⊆ C ′′Y . Use Lemma 4.2. If X 6∈ C ′′Y then White wins by playing

covers that witness this.
• C ′′Y ⊆ EY . (Cf. [M1], Thm. 2.1.) Let X ∈ C ′′Y and let F ∈ F ∩ N Y be

defined by {Ui ×Oi : i ∈ ω}. For finite K such that µ(
⋃
i∈K Oi) > 1− 2−n

let UnK =
⋂
i∈K Ui. Then ∀n Y ⊆ ⋃K UnK . As X ∈ C ′′Y , X ⊆ ∨n UnKn for

some Kn’s. Then

F [X] ⊆
∨
n

(
T \

⋃

i∈Kn
Oi

)
∈ N .

• C ′′Y ⊆ SY . Let Y ⊆ ∨
k Uk and a ∈ ωω↗. Define Unk to be Uk if

k ∈ [an, an+1) and ∅ otherwise. Use Lemma 4.1(2).

Now assume that Y is <N -dimensional.

• EY ⊆ MY . (Cf. [M1], Thms. 1.2 and 2.2.) Let Y ⊆ ⋂n
⋃
k U

n
k . Let

# : ω×ω → ω be 1-1. For s ∈ S let Ks =
⋃
nK

n
s , where Kn

s = {#(n, k) : s ∈
Unk }. Without loss of generality, ∀n ∀y ∈ Y |Kn

y | ≤ N . Define F ∈ F ∩N Y

by

∀s ∈ S Fs = [1Ks ].

Suppose X ∈ EY . Then F [X] ∈ N . By Lemma 2.1, find a ∈ ωω↗ such that
for all K with ∀n |K ∩an| ≤ nN , F [X]|(ω \K) is null. Fix x ∈ X. It suffices
to prove

Claim. ∃n Kn
x ∩ an 6= ∅.

P r o o f. Otherwise

∀n Kx ∩ an ⊆
⋃
m<n

Km
x

(m ≥ n & Km
x ∩am = ∅ ⇒ Km

x ∩an = ∅). Since |Km
x | ≤ N , |Kx∩an| ≤ nN .

It follows that Fx|(ω \Kx) is null, which is absurd.

• EY ⊆ SY . (Cf. [BS], Thm. 2.1.) Suppose X ∈ EY , Y ⊆ ∨k Uk and
a ∈ ωω↗. For s ∈ S let Js = {k : s ∈ Uk}. Let An = [an, an+1). Without
loss of generality, ∀y ∈ Y |An ∩ Jy| ≤ N . Define F ∈ Fσ ∩N Y by

∀s ∈ S Fs =
⋃
n

[1Js\an ].
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AsX ∈ EY , F [X] ∈ N . LetΣτ ’s be obtained by Lemma 2.2 applied to F [X],
a and εn = 1− (1− 2−N )(n+1)/N . Let {Kτ

i : i < l} be a maximal family of
pairwise disjoint subsets of An of size ≤ N such that ∀i [1Kτ

i
]|An ⊆ Στ . Let

Kτ =
⋃
i<lK

τ
i . By independence

(1− 2−N )l ≥ 1− µ(Στ ) > 1− εn = (1− 2−N )(n+1)/N ,

so l ≤ n/N and |Kτ | ≤ lN ≤ n.
Let

Kn =
⋃

τ∈2an

Kτ .

Then |Kn| ≤ n2an .
Let K =

⋃
nKn. Clearly, Kn = K ∩An.

Claim. ∀x ∈ X ∃∞n Kn ∩ Jx 6= ∅.
P r o o f. Fix x ∈ X, m ∈ ω. As D = [1Jx\am ] is a closed subset of F [X],

by Lemma 2.2 find n and τ ∈ D|an such that Dτ |An ⊆ Στ . Clearly, n ≥ m
(otherwise Dτ |An = 2An , but µ(Στ ) < 1). It follows that

Dτ |An = [1Jx ]|An, so [1Jx ]|An ⊆ Στ .

By the choice of Kτ
i ’s, some Kτ

i meets Jx, so Kn meets Jx.

Proposition 4.3 is proved.

4.4. Proposition. X ∈ SZ & Z ∈MY ⇒ X ∈ GσY .

P r o o f. (Cf. [P], Lemma 2.) Suppose Y ⊆ ⋂σ∈ω<ω
⋃
i Uσ_i. We want

s ∈ ωω with X ⊆ ∨n Us|n.
Let Σ =

⋃
n>0 n

n. For σ ∈ Σ and n let

Unσ =
⋂

τ∈n≤n

⋃

0<i≤|σ|
Uτ_σ|i.

Clearly, for each n, Y ⊆ ⋃σ Unσ . Also, for σ, τ ∈ Σ,

n ≤ m⇒ Um+|τ |
σ ⊆ Unτ_σ.

Let c(n) = 2n and let # :
⋃
nΣ

c(n) → ω be one-to-one and such that

#(σ1, . . . , σc(n)) ≥ n+ |σ1|+ . . .+ |σc(n)|.
Let

V nk = Unσ1
∩ Un+|σ1|

σ2
∩ . . . ∩ Un+|σ1|+...+|σc(n)−1|

σc(n)

if k = #(σ1, . . . , σc(n)) and V nk = ∅ otherwise. (So k < n ⇒ V nk = ∅.)
Clearly, for each n, Y ⊆ ⋃k V nk . Since Z ∈MY , by Lemma 4.1, find a ∈ ωω↗
such that

Z ⊆
∨
n

⋃

an≤k<an+1

V ank .
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As X ∈ SZ , there exist Kn ⊆ [an, an+1) of size ≤ c(an) such that

X ⊆
∨
n

⋃

k∈Kn
V nk .

Now diagonalize. Pick σji so that

#(σi1, . . . , σ
i
c(an)), i = 1, . . . , c(an),

and enumerate (possibly with repetitions) Kn in such a way that j ≥ i ⇒
|σji | ≥ |σii |.

Let
τn = σ1

1
_σ2

2
_ . . ._σ

c(an)
c(an) .

Then ⋃

k∈Kn
V nk ⊆ Uanτn .

Note that |σ1
1 |+ . . .+ |σi−1

i−1 | ≤ |σi1|+ . . .+ |σii−1| yields

U
an+|σi1|+...+|σii−1|
σi
i

⊆ Uanτn .
As also ∀m am + |τm| ≤ am+1, it follows that

⋃

k∈Kn
V nk ⊆ Uanτn ⊆ U |τ0|+...+|τn−1|

τn .

Finally, since τ0_ . . ._τn−1 ∈ Σ,

U |τ0|+...+|τn−1|
τn ⊆

⋃

0<i≤|τn|
Uτ0_..._τn−1

_τn|i.

Thus ⋃

k∈Kn
V nk ⊆

⋃

0<i≤|τn|
Uτ0_..._τn−1

_τn|i,

hence X ⊆ ∨n Us|n for s = τ0
_τ1

_ . . .

4.5. Corollary. Gσ = G = C ′′ = S ∩M ⊆ E. For finite-dimensional
sets, C ′′ and E are equivalent.

P r o o f. By Proposition 4.4, S∩M ⊆ Gσ. By Proposition 4.3, Gσ ⊆ G ⊆
C ′′ ⊆ E ∩ S ∩M , and for finite-dimensional sets, E ⊆ S ∩M .

Definition. Let X ⊆ Y . We say that X has property

• E+
Y if F [X] ∈ E for all F ∈ F ∩ EY ;

• G+
Y if F [X] ∈M for all F ∈ F ∩MY .

4.6. Proposition. (1) G+
Y ⊆ HY .

(2) E+
Y ⊆ HY for finite-dimensional Y .

(3) X ∈ HZ & Z ∈ GY ⇒ X ∈ G+
Y .

(4) X ∈ HZ & Z ∈ EY ⇒ X ∈ E+
Y .
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P r o o f. For (1) and (2) let Y ⊆ ⋂
n

⋃
k U

n
k . Define Ks and Kn

s as
in Proposition 4.3 in the proof of EY ⊆ MY . Without loss of generality,
∀s ∈ S ∀n min(Kn

s ) ≤ min(Kn+1
s ). (Let the (n + 1)th cover refine the nth

cover, and define # so that ∀k ∃l #(n+ 1, k) ≥ #(n, l) and Un+1
k ⊆ Unl .)

For (1) define F ∈ F ∩MY by

∀s ∈ S (t 6∈ Fs ⇔ ∃n ∃k s ∈ Unk & |{l < k : t(l) = 1}| < n).

Then

∀y ∈ Y (t ∈ Fy ⇔ ∀n |{l < min(Kn
y ) : t(l) = 1}| ≥ n).

Let X ∈ G+
Y , so that F [X] ∈M. Let a ∈ ωω↗ be obtained from Lemma 2.1

applied to F [X] and bn = n. Fix x ∈ X. It is enough to prove

Claim. ∀∞n Kn
x ∩ an 6= ∅.

P r o o f. Suppose otherwise, i.e., ∃∞n an ≤ min(Kn
x ). Define K =

{min(Kn
x ) : n ∈ ω}. Then ∃∞n |K ∩ an| ≤ n, so Fx|(ω \ K) is meager.

Note, however, that [1K ] ⊆ Fx. A contradiction.

For (2) note first that, without loss of generality, ∀n, y |Kn
y | ≤ N , for

some N . Define F ∈ F ∩ EY by

∀s ∈ S Fs = [1Ks ].

Let X ∈ E+
Y , so that F [X] ∈ E ⊆ M. Let a ∈ ωω↗ be obtained from

Lemma 2.1 applied to F [X] and bn = nN . Fix x ∈ X. It suffices to prove

Claim. ∀∞n Kn
x ∩ an 6= ∅.

P r o o f. If Kn
x ∩an = ∅, then Kx∩an ⊆

⋃
m<nK

m
x , so |Kx∩an| ≤ nN . It

follows that if ∃∞n Kn
x ∩an = ∅, then ∃∞n |Kx∩an| ≤ nN . Thus Fx|(ω\Kx)

is meager, which is absurd.

(3) (Cf. [T], Thm. 5.3(iii).) Let X ∈ HZ and Z ∈ GY . Let F ∈ F ∩MY

be defined by {Ui × Oi : i ∈ ω}. Use Lemma 4.2 to find a dense set {rn :
n ∈ ω} ⊆ T \ F [Z]. Let Uni be Ui if rn ∈ Oi and ∅ otherwise. Then for each
n, the Uni ’s cover Z. Since X ∈ HZ , find a ∈ ωω with X ⊆ ∧n

⋃
i<an

Uni .
Define On =

⋂{Oi : rn ∈ Oi, i < an}. Then rn ∈ On and ∀x ∈ X ∀∞n
On ∩ Fx = ∅. It follows that

∨
nO

n is a dense Gδ set disjoint from F [X].
(4) LetX ∈ HZ , Z ∈ EY . Let F ∈ F∩N Y be defined by {Ui×Oi : i ∈ ω}.

As F [Z] ∈ N , find an increasing sequence of compact sets Cn ⊆ T \ F [Z]
such that µ(T \ ⋃n Cn) = 0. For n and finite K ⊆ ω let UnK be

⋂
i∈K Ui

if Cn ⊆ ⋃i∈K Oi and ∅ otherwise. Then for each n, the UnK ’s cover Z (Cn

are compact!). Since X ∈ HZ , find finite Kn with X ⊆ ∧n
⋃
K∈Kn U

n
K . Let

On =
⋂
K∈Kn

⋃
i∈K Oi. Then Cn ⊆ On and ∀x ∈ X ∀∞n On ∩ Fx = ∅. It

follows that
∧
n(T \On) is a null Fσ cover of F [X].
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4.7. Corollary. G+ = C ′′ ∩H. Further , G+ ⊆ E+; for finite-dimen-
sional sets, G+ and E+ are equivalent.

P r o o f. Clearly, G+ ⊆ G. By Proposition 4.6, G+ ⊆ H and H∩G ⊆ G+.
Also, by Corollary 4.5, G = C ′′. Thus, G+ = H ∩C ′′. Next, as C ′′ ⊆ E, we
have G+ ⊆ H ∩ E. But H ∩ E ⊆ E+ by Proposition 4.6. So, G+ ⊆ E+. If
Y ∈ E+ is finite-dimensional, then Y ∈ H ∩ E by Proposition 4.6. As for
finite-dimensional sets, E and C ′′ are equivalent, we get Y ∈ H ∩C ′′, hence
Y ∈ G+.

The following lemma is straightforward.

4.8. Lemma. If S is a σ-field then for any property P considered in this
section, X ∈ PY iff X ⊆ Y and X ∈ P .

5. Proofs of Theorems. Let Y be a separable metric space. Set S = Y
and S = O(S). Theorem 1.2 follows from Propositions 4.3 and 4.4; and The-
orem 1.4 from Proposition 4.6. For Theorems 1.1 and 1.3, use Corollaries 4.5
and 4.7. (Y ∈ E implies that Y is zero-dimensional; see Section 3.)

For the Borel versions, let Y ⊆ S, S Polish, and S = B(S). Then all
subsets of Y are zero-dimensional. In view of Lemma 4.8, the results follow
from Corollaries 4.5 and 4.7 and the fact that Borel sets from MY can be
covered by Fσ sets from MY , and if Y = S then the same applies to EY .

6. Notes. (1) T can be any Polish space with no isolated points and a
nonzero and nonatomic (i.e., vanishing on points) σ-finite Borel measure µ.
We get the same classes of sets. For GY and GσY this follows from the proof
of Lemma 4.2.

For EY and E+
Y , given such a space T , there exist a null Fσ set F ⊆ T ,

a countable Q ⊆ [0, 1], and a homeomorphism f : T \ F → [0, 1] \ Q such
that a subset of T \ F is µ-null iff its image is λ-null, λ being the Lebesgue
measure. (Change µ so that null sets are the same and µ(T ) = 1. Remove all
open null sets. Next remove a countable dense subset C, and for each c ∈ C
and n remove a sphere which is null, has center c and radius ≤ 2−n. This
can be done because the spheres with a fixed center are pairwise disjoint.
We have removed a null Fσ set, and the remaining part T ′ can be identified
with the irrationals of [0, 1]. Define f : [0, 1]→ [0, 1] by f(x) = µ([0, x)∩T ′).
Then f is a homeomorphism and for all A ⊆ T ′, µ∗(A) = λ∗(f [A]).)

For G+
Y just note that T contains a dense Gδ copy of ωω.

(2) Let T be as above.
If E ⊆M (i.e., if open sets have positive measure), then in the definition

of E+
Y , “F [X] ∈ E” can be replaced by “F [X] ∈M∩N”.

In GσY (similarly in GY ) instead of F [X] 6= T we can require that for all
nonmeager B ⊆ T with the Baire property, B \F [X] contains a perfect set.
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Indeed, let X ∈ GσY . Let O ⊆ T be nonempty and let Di, i ∈ ω, be
nowhere-dense subsets of T . Suppose F =

⋃
i Fi, Fi ∈ F ∩ MY . Choose

nonempty rectangles Uσ ×Oσ,τ , σ ∈ ω<ω, τ ∈ 2<ω, |σ| = |τ |, so that

Oσ,τ ⊆ O \
⋃

i<|σ|
Di and diam(Oσ,τ ) ≤ 2−|σ|;

Uσ ×Oσ,τ is disjoint from each Fi for i < |σ|;
Y ⊆

⋃
n

Uσ_n;

Oσ_n,τ_0 ∪Oσ_n,τ_1 ⊆ Oσ,τ ;

Oσ_n,τ_0 ∩Oσ_n,τ_1 = ∅.
Let Oσ =

⋃
τ Oσ,τ . Each

⋂
nOs|n, s ∈ ωω, is a perfect subset of O\⋃iDi.

To see that some
⋂
nOs|n is disjoint from F [X] suppose that White plays

according to Uσ’s. This is not a winning strategy, so X ⊆ ∨n Us|n for some
s ∈ ωω. Now y ∈ ⋂nOs|n yields ∀x ∈ X ∃∞n 〈x, y〉 ∈ Us|n × Os|n, hence
∀x ∈ X ∀i 〈x, y〉 6∈ Fi.

(3) We call A ⊆ ωω diagonalized (resp. dominated) if for some x ∈ ωω for
all a ∈ A, ∃∞n a(n) = x(n) (resp. ∀∞n a(n) < x(n)). We call f : Y → ωω

S-measurable if for all n, m there is V ∈ S such that y ∈ V ⇔ f(y)(n) = m.
Clearly, if Y is zero-dimensional, then X is in HY (resp. C ′′Y ) iff for all
S-measurable f : Y → ωω, f [X] is dominated (resp. diagonalized).

For S = O(S) (resp. S = B(S)), S-measurable means continuous (resp.
Borel). From this, X is in C̃ ′′ (resp. H̃) iff all Borel images of X into ωω

are diagonalized (resp. dominated) iff all Borel images of X into a given
Polish space T have property C ′′ (resp. H). Similarly for zero-dimensional
separable metric spaces, properties C ′′ and H, and continuous images.

(4) Consistently, S 6⊆ M (even S(B(T )) 6⊆ M(O(T ))). Shelah ([Sh],
Prop. 2.9) has an ωω bounding forcing which makes the ground model reals
an S(B(T )) set.

(5) The argument of Proposition 4.4 shows that if W is a model of ZFC,
x ∈ ωω is an unbounded real over W , and the union of closed null sets coded
in W [x] is null, then there is a Cohen real over W . Do we really need the
intermediate unbounded real?

(6) Clearly, EY , E+
Y and G+

Y are σ-ideals. So are C ′′Y , SY , HY and MY .
For C ′′Y and MY just split ω into infinitely many infinite sets. (Let ω =⋃

iKi, with the Ki’s infinite pairwise disjoint. Let Y ⊆ ⋂n
⋃
k U

n
k . If Xi ∈

C ′′Y , i ∈ ω, there exists a ∈ ωω such that ∀i Xi ⊆
⋃
n∈Ki U

n
an . Then

⋃
iXi ⊆⋃

n U
n
an .)
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For HY , suppose Xi ∈ HY , i ∈ ω, and Y ⊆ ⋂n
⋃
k U

n
k . Find ai ∈ ωω with

Xi ⊆
∧
n

⋃
k<ain

Unk . Let an = maxi≤n ain. Then
⋃
iXi ⊆

∧
n

⋃
k<an

Unk .

For SY , let Y ⊆ ∨k Uk and a ∈ ωω↗. Suppose Xi ∈ SY , i ∈ ω, and
let Ki ∈ Φ(a) witness this. Set K =

⋃
n

⋃
i≤nKi ∩ [an, an+1). Then X ⊆∨

k∈K Uk and ∀n |K ∩ [an, an+1)| ≤ (n+ 1)2an .
I do not know whether GY and GσY are σ-ideals. (Yes, if Y ∈ MY , as

then GY = GσY = C ′′Y . Note that if Y =
⋃
nXn and ∀n, Xn ∈ GY , then

∀n Xn ∈MY , hence Y ∈MY .)

(7) Assume that S is a separable metric space, sets from S have the
Baire property, X ⊆ Y , and all sets meager in X have one of the properties
C ′′Y , EY , SY , MY . Then X has the respective property. (By σ-additivity, we
can replace meager by nowhere-dense.)

We give a proof for SY . Let Y ⊆ ∨k Uk and let a ∈ ωω↗. Consider

G =
∨
n

⋃

an≤<an+1

(Uk ∩X)×
{
t ∈
∏
n

[an, an+1) : tn = k
}
.

For each t ∈ ∏n[an, an+1), the horizontal section Gt determined by t is
covered by

∨
n Utn . All vertical sections of G are dense Gδ sets. Also, G, as

a subset of X ×∏n[an, an+1), has the Baire property. By the Kuratowski–
Ulam theorem, find t ∈∏n[an, an+1) such that Z = X \Gt is meager in X.
Then Z ∈ SY , so Z ⊆ ∨k∈K Uk for some K ∈ Φ(a). Let L = K ∪ rng(t).
Then X ⊆ ∨k∈L Uk and ∀∞n |L ∩ an+1| ≤ n+ 2an .

I do not know whether the above is true for GY or GσY . (It is if X = Y :
if all nowhere-dense subsets of X have property GX , then X ∈ C ′′.)

(8) If ν is a σ-finite measure on S, sets from S are measurable, X ⊆ Y ,
and all null subsets of X have property HY , then X ∈ HY .

Indeed, without loss of generality, ν∗(X) < ∞ (ν is σ-finite and HY is
σ-additive). Let Y ⊆ ⋂n

⋃
k U

n
k . For each n pick kn with

ν∗
(
X \

⋃

k≤kn
Unk

)
< 2−n.

Let Z = X \ ∧n
⋃
k≤kn U

n
k . Then Z is null, so Z ∈ HY , hence Z ⊆∧

n

⋃
k≤ln U

n
k , for some ln’s. It follows that X ⊆ ∧n

⋃
k≤max(kn,ln) U

n
k .

(9) Sierpiński and Lusin sets destroy various extensions of the above. If Y
is a Lusin set, then Y 6∈ HY , but meager subsets of Y are in G+

Y ∩E+
Y ⊆ HY .

If Y is a Sierpiński set, then GσY = GY = C ′′Y = EY (Y is zero-dimensional,
Y ∈ HY and HY ⊆ MY ). Also, Y 6∈ EY (look at the identity function on
Y ), while null subsets of Y are in EY .
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