Property C'', strong measure zero sets and subsets of the plane

by

Janusz Pawlikowski (Wrocław)

Abstract. Let X be a set of reals. We show that

- X has property C'' of Rothberger iff for all closed $F \subseteq \mathbb{R} \times \mathbb{R}$ with vertical sections F_x $(x \in X)$ null, $\bigcup_{x \in X} F_x$ is null;
- X has strong measure zero iff for all closed $F \subseteq \mathbb{R} \times \mathbb{R}$ with all vertical sections F_x $(x \in \mathbb{R})$ null, $\bigcup_{x \in X} F_x$ is null.
- **1. Introduction.** Let Y be a separable metric space. Galvin [G] defined the following game $G^*(Y)$. In the nth round, $n \in \omega$, White chooses an open cover $\{U_k^n : k \in \omega\}$ of Y, then Black responds with $a_n \in \omega$. Black wins if every $y \in Y$ is in some $U_{a_n}^n$. Let $G^{*\sigma}(Y)$ be Galvin's game with "some" changed to "infinitely many".

Reclaw [R] showed that White has a winning strategy in $G^*(Y)$ iff for some closed set $D \subseteq Y \times \omega^{\omega}$ with meager vertical sections D_y $(y \in Y)$, $\bigcup_{y \in Y} D_y = \omega^{\omega}$. His result easily extends to $G^{*\sigma}(Y)$ and \mathbf{F}_{σ} sets. In [P], I showed that the following are equivalent:

- White has no winning strategy in $G^*(Y)$;
- White has no winning strategy in $G^{*\sigma}(Y)$;
- Y has property C'' of Rothberger.

Thus, $Y \in C''$ iff $\bigcup_{y \in Y} D_y \neq \omega^{\omega}$ for all closed (equivalently, all \mathbf{F}_{σ}) $D \subseteq Y \times \omega^{\omega}$ with meager sections $D_y, y \in Y$. It is not hard to see that ω^{ω} can be replaced here by any Polish space without isolated points (Lemma 4.2). We show that if T carries a nonzero nonatomic σ -finite Borel measure, then $Y \in C''$ iff $\bigcup_{y \in Y} F_y$ is null for all closed $F \subseteq Y \times T$ with null $F_y, y \in Y$. We also give a similar characterization of property C (i.e., strong measure zero sets).

1991 Mathematics Subject Classification: 04A15, 03E15. Partially supported by KBN grant 2 P03A 011 09.

Throughout the paper T is the Cantor set 2^{ω} (see Note (1) in Section 6 for how to pass to arbitrary T); \mathcal{M} and \mathcal{N} are the ideals of meager and null (i.e. outer measure zero) subsets of T; \mathcal{E} is the ideal of subsets of Tcoverable by null \mathbf{F}_{σ} sets. For $X \subseteq Y$ and $F \subseteq Y \times T$, let $F[X] = \bigcup_{x \in X} F_x$. Let $F \in \mathcal{M}^Y$ mean that $F \subseteq Y \times T$ and for all $y \in Y, F_y \in \mathcal{M}$. We similarly use \mathcal{N}^Y and \mathcal{E}^Y .

Let $X \subseteq Y$, with Y a separable metric space. We say that X has property

- G_Y^{σ} if $F[X] \neq T$ for all \mathbf{F}_{σ} $F \in \mathcal{M}^Y$;
- G_Y if $F[X] \neq T$ for all closed $F \in \mathcal{M}^Y$;
- E_Y if $F[X] \in \mathcal{N}$ for all \mathbf{F}_{σ} (equivalently, closed) $F \in \mathcal{N}^Y$;
- C_Y'' (resp. H_Y, M_Y) if, given open covers $\{U_k^n : k \in \omega\}$ of $Y, n \in \omega$, there are $a_n \in \omega$ such that each $x \in X$ is in some $U_{a_n}^n$ (resp. in some $\bigcup_{k < a_n} U_k^n$, in all but finitely many $\bigcup_{k < a_n} U_k^n$).
- C_Y if, given $\varepsilon_n > 0$, $n \in \omega$, there are balls B_n of radius $< \varepsilon_n$ with $X \subseteq \bigcup_n B_n$.

Instead of $Y \in C_Y''$ we usually write $Y \in C''$. Similarly, $Y \in G$ means $Y \in G_Y$, etc.

We refer to [M] and [FM] for more information about C, C'', M and H. Here just note that for $X \subseteq Y$, $X \in C$ iff $X \in C_Y$, and that "some" in the definition of C_Y'' and M_Y can be changed to "infinitely many" (split ω into infinitely many infinite sets).

We prove:

- 1.1. Theorem. (1) $C'' = G^{\sigma} = G = E$.
- (2) $C_Y'' = G_Y^{\sigma} = G_Y = E_Y$ for finite-dimensional $Y \in M$. (3) $C_Y = G_Y^{\sigma} = G_Y = E_Y$ for finite-dimensional $Y \in H$.

Part (3) follows from part (2) since $H \subseteq M$ and $Y \in H \Rightarrow C_Y'' = C_Y$, the last being an easy generalization of a result of Fremlin and Miller [FM, Thm. 8] that $H \cap C = H \cap C''$. For σ -compact $Y, C_Y = G_Y^{\sigma} = G_Y$ is an unpublished result of Galvin (see [AR]).

I do not know whether finite-dimensionality is essential. Dropping it I have to replace the last "=" in (2) and (3) by " \subseteq ".

QUESTION. Suppose $X \subseteq [0,1]^{\omega}$ and for all closed $F \subseteq [0,1]^{\omega} \times [0,1]$ with all vertical sections null, F[X] is null. Does X have strong measure zero?

Theorem 1.1 is a special case of the following theorem, which specifies the role of M.

- 1.2. Theorem. (1) $G_Y^{\sigma} \subseteq G_Y \subseteq C_Y'' \subseteq E_Y$.
- $(2) X \in C_Z'' \& Z \in M_Y \Rightarrow X \in G_Y^{\sigma}.$
- (3) $(X \in E_Z, Z \text{ finite-dimensional } \& Z \in M_Y) \Rightarrow X \in G_Y^{\sigma}.$

Consider two more properties. Let $X \subseteq Y$, with Y a separable metric space. We say that X has property

- G_Y^+ if for all closed $F \in \mathcal{M}^Y$, $F[X] \in \mathcal{M}$; E_Y^+ if for all closed $F \in \mathcal{N}^Y$, $F[X] \in \mathcal{E}$.

We prove:

1.3. Theorem. $H \cap C'' = G^+ = E^+$.

It is known ([GMS], [P1]) that

 $X \in C_T \Leftrightarrow D + X \neq T$ for all $D \in \mathcal{M} \Leftrightarrow D + X \in \mathcal{N}$ for all closed $D \in \mathcal{N}$.

From this and Theorem 1.3, if $Y \subseteq T$ has property H then

$$Y \in C \Leftrightarrow D + Y \in \mathcal{M} \text{ for all } D \in \mathcal{M} \Leftrightarrow D + Y \in \mathcal{E} \text{ for all } D \in \mathcal{E}.$$

(Use
$$H \cap C = H \cap C''$$
 and $D + Y = F[Y]$ for $F = \bigcup_{x \in T} \{x\} \times (D + x)$.)

Theorem 1.3 is a special case of the following theorem, which specifies the role of H.

- 1.4. Theorem. (1) $G_Y^+ \subseteq H_Y$.
- $(2) X \in H_Z \& Z \in G_Y \Rightarrow X \in G_Y^+.$
- (3) $E_Y^+ \subseteq H_Y$ for finite-dimensional Y.
- $(4) X \in H_Z \& Z \in E_Y \Rightarrow X \in E_Y^+.$

We turn to a Borel version of our theorems. Define \widetilde{C}''_Y and \widetilde{H}_Y like C''_Y and H_Y but replacing open sets by Borel ones. Clearly, for $X \subseteq Y$, we have $X \in \widetilde{C}_Y''$ iff $X \in \widetilde{C}''$, and $X \in \widetilde{H}_Y$ iff $X \in \widetilde{H}$. Also, it is not hard to see that $X \in C''$ iff all Borel images of X into T have property C''; likewise for H.

1.5. Theorem. Let $X \subseteq Y$. Then

$$X \in \widetilde{C}''' \Leftrightarrow \forall Borel \ F \in \mathcal{M}^Y \ F[X] \neq T,$$
$$X \in \widetilde{H} \cap \widetilde{C}''' \Leftrightarrow \forall Borel \ F \in \mathcal{M}^Y \ F[X] \in \mathcal{M}.$$

If Y is Polish, then also

$$X \in \widetilde{C}''' \Leftrightarrow \forall Borel \ F \in \mathcal{E}^{Y} \ F[X] \in \mathcal{N},$$

$$X \in \widetilde{H} \cap \widetilde{C}''' \Leftrightarrow \forall Borel \ F \in \mathcal{E}^{Y} \ F[X] \in \mathcal{E}.$$

We will see that the sets F above can be required to have closed vertical sections. I do not know, however, if the assumption that Y is Polish in the second part is essential.

QUESTION. Let $Y \subseteq [0,1]$. Suppose $F \subseteq Y \times [0,1]$ is (relatively) Borel and has all sections F_y $(y \in Y)$ closed null. Can we cover F with a Borel subset of $[0,1] \times [0,1]$ whose vertical sections are all coverable by null \mathbf{F}_{σ} sets?

It follows from Theorem 1.5 that

$$\forall \operatorname{Borel} F \in \mathcal{M}^Y \ F[X] \in \mathcal{M}$$

$$\Leftrightarrow X \in \widetilde{H} \text{ and } \forall D \in \mathcal{M} \ \forall \text{Borel } f: X \to T \ D + f[X] \neq T.$$

Similarly, if Y is Polish, then

$$\forall \operatorname{Borel} F \in \mathcal{E}^Y \ F[X] \in \mathcal{E}$$

$$\Leftrightarrow X \in \widetilde{H} \text{ and } \forall D \in \mathcal{E} \ \forall \text{Borel } f: X \to T \ D + f[X] \in \mathcal{N}.$$

(Use Fremlin–Miller's result to see that $H \cap C$ and $H \cap C''$ are equivalent for f[X].)

The paper is organized as follows. After fixing some basic notation, we give a proof of C'' = E. Then we introduce a general framework which is suitable for open as well as for Borel properties.

2. Notation and folklore. Let K and L range over subsets of ω , and i, j, k, l, m, n over members of ω . Given sets $B_k, k \in K$, let

$$\bigvee_{k \in K} B_k = \{x : \exists^{\infty} k \in K \ x \in B_k\}, \quad \bigwedge_{k \in K} B_k = \{x : \forall^{\infty} k \in K \ x \in B_k\},$$

where " \exists^{∞} " stands for "there exist infinitely many" and " \forall^{∞} " for "for all but finitely many". Let $1_K = K \times \{1\}$.

Given K, μ refers to the product measure in 2^K arising from assigning the weight 1/2 to each point in $\{0,1\}$. Note that if $A \subseteq 2^K$ with K finite, then $\mu(A) = |A| \cdot 2^{-|K|}$.

Suppose $A \subseteq 2^K$, $L \subseteq K$, $\tau \in 2^L$. Let

$$\begin{split} A|L &= \{\sigma|L: \sigma \in A\}, \\ [A] &= \bigcup_{\sigma \in A} [\sigma], \quad \text{where } [\sigma] = \{t \in 2^\omega: \sigma \subseteq t\}, \\ A_\tau &= \{\sigma \in 2^{K \setminus L}: \tau \cup \sigma \in A\}. \end{split}$$

Let $[k, l) = \{i : k \le i < l\}$. For $a \in \omega^{\omega}$ let $a_n = a(n)$. Let ω^{ω} be the set of all increasing functions from ω to ω .

The following is folklore:

• $A \in \mathcal{M}$ iff for some $a \in \omega^{\omega} \nearrow$ and some $\sigma_n \in 2^{[a_n, a_{n+1})}, n \in \omega$,

$$\bigvee_{n} [\sigma_n] \subseteq T \setminus A.$$

For such a,

$$\exists^{\infty} n \ [a_n, a_{n+1}) \cap K = \emptyset \Rightarrow A | (\omega \setminus K) \text{ is meager (in } 2^{\omega \setminus K}).$$

Hence, given $b \in \omega^{\omega}$ there is a subsequence $\{a_{n_m}\}$ such that

$$\exists^{\infty} m \ |a_{n_m} \cap K| \leq b_n \Rightarrow A | (\omega \setminus K) \text{ is meager.}$$

• $A \in \mathcal{N}$ iff for all (equivalently, for some) $c \in \omega^{\omega}$ with $\sum_{n} 2^{-c_n} < \infty$ there exist $a \in \omega^{\omega} \nearrow$ and $B_n \subseteq 2^{a_n}$ of measure $\leq 2^{-c_n}$, $n \in \omega$, such that

$$A\subseteq\bigvee_n[B_n].$$

For such a and c,

$$\sum_{n} 2^{|a_n \cap K| - c_n} < \infty \Rightarrow A|(\omega \setminus K) \text{ is null (in } 2^{\omega \setminus K}).$$

As a consequence of these facts we have:

- 2.1. LEMMA. (1) Given $b \in \omega^{\omega}$ and $A \in \mathcal{M}$, there is $a \in \omega^{\omega} /$ such that $\exists^{\infty} n \mid a_n \cap K \mid \leq b_n \Rightarrow A \mid (\omega \setminus K)$ is meager.
- (2) Given $b \in \omega^{\omega}$ and $A \in \mathcal{N}$, there is $a \in \omega^{\omega} / \text{such that}$

$$\forall^{\infty} n \mid a_n \cap K \mid \leq b_n \Rightarrow A \mid (\omega \setminus K) \text{ is null.}$$

The next lemma is extracted from [BS].

2.2. LEMMA. Let $A \in \mathcal{N}$. Suppose $a \in \omega^{\omega} \nearrow$ and $\prod_n \varepsilon_n > 0$, ε_n 's positive. Then for each $\tau \in 2^{a_n}$ there is $\Sigma^{\tau} \subseteq 2^{[a_n, a_{n+1})}$ of measure $< \varepsilon_n$ such that for all closed $D \subseteq A$,

$$D_{\tau}|[a_n, a_{n+1}) \subseteq \Sigma^{\tau}$$
 for some n and $\tau \in D|a_n$.

Proof. Fix a and ε_n 's. Cover A with open $G \subseteq T$, $\mu(G) < \prod_n \varepsilon_n$. Define

$$\Sigma^{\tau} = \{ \sigma \in 2^{[a_n, a_{n+1})} : \varepsilon_n \mu(G_{\tau \cap \sigma}) > \mu(G_{\tau}) \}, \quad \tau \in 2^{a_n}.$$

Then $\mu(\Sigma^{\tau}) < \varepsilon_n$ (apply the Fubini theorem to $G_{\tau} \subseteq 2^{[a_n, a_{n+1})} \times 2^{[a_{n+1}, \omega)}$). Also, if $D \subseteq G$ is closed, then for some n and $\tau \in D|a_n$,

$$\tau \cap \sigma \in D|a_{n+1} \Rightarrow \varepsilon_n \mu(G_{\tau \cap \sigma}) > \mu(G_{\tau})$$
 for all σ .

Indeed, if not, define inductively $t \in T$ with

$$t|a_n \in D|a_n$$
 and $\varepsilon_n \mu(G_{t|a_{n+1}}) \leq \mu(G_{t|a_n}).$

Then $t \in D$ and $\varepsilon_0 \varepsilon_1 \dots \varepsilon_n \mu(G_{t|a_{n+1}}) \leq \mu(G)$. Since $t \in D \subseteq G$ we have $\forall^{\infty} n \ [t|a_{n+1}] \subseteq G$, so $\forall^{\infty} n \ \mu(G_{t|a_{n+1}}) = 1$, and we get $\prod_n \varepsilon_n \leq \mu(G)$. A contradiction.

3. A proof of E = C''**.** Before presenting a general framework for our theorems we sketch a proof of E = C''.

 $C'' \subseteq E$ is easy. Indeed, suppose $Y \in C''$. Let $F \in \mathcal{N}^Y$ be closed with the complement $\bigcup_i U_i \times O_i$, U_i 's open in Y and O_i 's open in T. For finite K with $\mu(\bigcup_{i \in K} O_i) > 1 - 2^{-n}$ let $U_K^n = \bigcap_{i \in K} U_i$. Then $\forall n \ Y = \bigcup_K U_K^n$. Since $Y \in C''$, $Y = \bigvee_n U_{K_n}^n$ for some K_n 's. Then

$$F[Y] \subseteq \bigvee_{n} \left(U \setminus \bigcup_{i \in K_n} O_i \right) \in \mathcal{N}.$$

The reverse inclusion is longer. Let $Y \in E$.

First note that Y is zero-dimensional. Indeed, let δ be the metric. For $y_0 \in Y$, $\Delta = \{\langle y, \delta(y, y_0) \rangle : y \in Y\}$ is a closed subset of $Y \times [0, \infty)$ with null vertical sections. As $Y \in E$, $\Delta[Y]$ is null, so it avoids arbitrarily small $\varepsilon > 0$. (Note (1) in Section 6 explains why $[0, \infty)$ can replace 2^{ω} in property E.)

Next we show that $Y \in M$. For each n, let $\{U_k^n : k \in \omega\}$ be an open cover of Y. By zero-dimensionality we can, without loss of generality, restrict ourselves to covers whose members are pairwise disjoint. Let $\#: \omega \times \omega \to \omega$ be 1-1. For $y \in Y$ let $K_y = \{k_y^n : n \in \omega\}$, where $k_y^n = \#(n,k)$ for k such that $y \in U_k^n$. Note that each K_y is infinite. Define a closed $F \in \mathcal{N}^Y$ by

$$F_y = [1_{K_y}], \quad y \in Y.$$

As $Y \in E$, we have $F[Y] \in \mathcal{N}$. Use Lemma 2.1 to find $a \in \omega^{\omega} /$ such that $F[Y]|(\omega \subseteq K)$ is null for all K with $\forall n \mid K \cap a_n \mid \leq n$. Then $Y \subseteq \bigcup_{k < a_n} U_k^n$. Otherwise, for some $y, \forall n \ k_y^n \geq a_n$. So

$$K_y \cap a_n \subseteq \{k_y^m : m < n\}$$

has size $\leq n$ and thus $F_y|(\omega \setminus K_y)$ is null, which is absurd.

We can now start the main argument. Let, for each n, $\{U_k^n : k \in \omega\}$ be an open cover of Y that consists of pairwise disjoint sets. Let $c(n) = n + n2^n$ and let $\# : \bigcup_n \omega^{[n,c(n))} \to \omega$ be 1-1 such that $\#(\sigma) \geq n$ for $\sigma \in \omega^{[n,c(n))}$. Let

$$V_k^n = \bigcap_{n \le i < c(n)} U_{\sigma(i)}^i$$
 if $\sigma \in \omega^{[n,c(n))}$ and $\#(\sigma) = k$,

and let $V_k^n = \emptyset$ otherwise. (So, $k < n \Rightarrow V_k^n = \emptyset$.)

Clearly, for each n, the V_k^n 's cover Y. As $Y \in M$, find $a \in \omega^{\omega} \nearrow$ such that $a_{n+1} \geq c(a_n)$ and

$$Y = \bigvee_{n} \bigcup_{a_n \le k < a_{n+1}} V_k^{a_n}.$$

(This is possible: see Lemma 4.1.)

Let $A_n = [a_n, a_{n+1})$ and let

$$J_y = \bigcup_n \{ k \in A_n : y \in V_k^{a_n} \}, \quad y \in Y.$$

Each J_y is infinite and has at most one point in each A_n .

Define a closed $F \in \mathcal{N}^Y$ by

$$F_y = [1_{J_y}], \quad y \in Y.$$

Let A = F[Y]. As $Y \in E$, we have $A \in \mathcal{N}$. Get Σ^{τ} 's from Lemma 2.2 applied to A, a_n and $\varepsilon_n = 1 - 2^{-(n+1)}$.

For $\tau \in 2^{a_n}$ let

$$K^{\tau} = \{k \in A_n : [1_{\{k\}}] | A_n \subseteq \Sigma^{\tau}\} \quad \text{and} \quad K_n = \bigcup_{\tau \in 2^{a_n}} K^{\tau}.$$

By independence

$$2^{-|K^{\tau}|} \ge 1 - \mu(\Sigma^{\tau}) > 1 - \varepsilon_n = 2^{-(n+1)}.$$

So $|K^{\tau}| \leq n$ and $|K_n| \leq n2^{a_n}$.

CLAIM. $Y \subseteq \bigcup_{n,k \in K_n} V_k^{a_n}$.

 ${\rm P\,r\,o\,o\,f.}$ Each $[1_{J_y}]$ is a closed subset of A. It follows from Lemma 2.2 that

$$[1_{J_y}]|A_n \subseteq \Sigma^{\tau}$$
 for some n and $\tau \in 2^{a_n}$.

As $\mu(\Sigma^{\tau}) < 1$, the left hand side cannot be 2^{A_n} , so it must be of the form $[1_{\{k\}}]|A_n$ for a unique $k \in J_y \cap A_n$. Then $k \in K^{\tau} \subseteq K_n$ and $y \in V_k^{a_n}$.

Pick now $\tau_n \in \omega^{[a_n,c(a_n))}$ that meets each σ with $\#(\sigma)$ in K_n ($|K_n| \leq n2^{a_n}$ and $|[a_n,c(a_n))| = a_n2^a_n$). Then

$$\bigcup_{k \in K_n} V_k^{a_n} \subseteq \bigcup_{a_n \le i < c(a_n)} U_{\tau_n(i)}^i,$$

which in view of the claim ends the proof.

4. Lemmas. Fix a set S and a family S of subsets of S which is closed under finite intersections and unions and contains \emptyset and S. The intended interpretation is that S is a separable metric space and S is either O(S), the family of all open subsets of S, or O(S), the family of all Borel subsets of S.

Let (indices allowed)

- U and V range over S;
- O range over open subsets of T;
- X, Y and Z range over subsets of S.

We say that Y is $\leq n$ -dimensional if for any U_k , $k \in K$, there are $V_k \subseteq U_k$ such that $Y \cap \bigcup_k V_k = Y \cap \bigcup_k U_k$ and each $y \in Y$ is in at most n+1 V_k 's. Clearly, if $S = \mathbf{B}(S)$ then any Y is zero-dimensional, and if $S = \mathbf{O}(S)$ then Y is $\leq n$ -dimensional iff it is $\leq n$ -dimensional in the usual sense of dimension theory.

If $F \subseteq S \times T$ then we say that

- $F \in \mathcal{M}^Y$ iff $\forall y \in Y \ F_y \in \mathcal{M}$; similarly for \mathcal{N} and \mathcal{E} ;
- F is an \mathcal{F} set defined by $\{U_i \times O_i : i \in \omega\}$ iff $F = S \times T \setminus \bigcup_i U_i \times O_i$;
- F is an \mathcal{F}_{σ} set if it is a countable union of \mathcal{F} sets.

If $S = \mathbf{O}(S)$, then \mathcal{F} and \mathcal{F}_{σ} subsets of $S \times T$ are just closed and \mathbf{F}_{σ} subsets of $S \times T$. If S is a Polish space and $S = \mathbf{B}(S)$ then \mathcal{F} and \mathcal{F}_{σ} sets are just Borel sets with closed and \mathbf{F}_{σ} vertical sections (by theorems of Kunugui, Novikov and Saint-Raymond; see [Ke]). Also, every Borel set from \mathcal{M}^Y can be covered by an \mathcal{F}_{σ} set from \mathcal{M}^Y ; similarly for \mathcal{E}^Y if Y is itself Borel (I do not know whether this requirement is essential). (See e.g. [D], p. 290, Remarque (a). Remember that for Borel $F \subseteq S \times T$, $\{s \in S : F_s \in \mathcal{M}\}$ is Borel, but $\{s \in S : F_s \in \mathcal{E}\}$ may be true coanalytic.)

DEFINITION. Let $X \subseteq Y$. We say that X has property

- C_Y'' (resp. H_Y , M_Y) if, whenever $Y \subseteq \bigcap_n \bigcup_k U_k^n$, then $X \subseteq \bigcup_n U_{a_n}^n$ for some $a \in \omega^{\omega}$ (resp. $X \subseteq \bigwedge_n \bigcup_{k < a_n} U_k^n$, $X \subseteq \bigcup_n \bigcup_{k < a_n} U_k^n$);
- G_Y if $F[X] \neq T$ for all $F \in \mathcal{F} \cap \mathcal{M}^Y$;
- G_Y^{σ} if $F[X] \neq T$ for all $F \in \mathcal{F}_{\sigma} \cap \mathcal{M}^Y$;
- E_Y if $F[X] \in \mathcal{N}$ for all $F \in \mathcal{F} \cap \mathcal{N}^Y$;
- S_Y if, whenever $Y \subseteq \bigvee_k U_k$ and $a \in \omega^{\omega} \nearrow$, then $X \subseteq \bigvee_{k \in K} U_k$ for some K such that $\forall^{\infty} n \mid K \cap a_{n+1} \mid \leq 2^{a_n}$.

Clearly, $C_Y'' \cup H_Y \subseteq M_Y$. Also, in the definitions of M_Y and C_Y'' we can replace " \bigcup_n " by " \bigvee_n " (split ω into infinitely many infinite sets).

As to S_Y note the following. For $a \in \omega^{\omega} /$ and $f \in (\omega \setminus 1)^{\omega}$ let

$$\Phi(a, f) = \{ K : \forall^{\infty} n \ | K \cap a_{n+1} | \le f(n) \cdot 2^{a_n} \}.$$

Let $\Phi(a)$ be $\Phi(a, f)$ for $f \equiv 1$. Then $\forall f, a \ \Phi(a) \subseteq \Phi(a, f)$ and $\forall f, b \ \exists a \ \Phi(a, f) \subseteq \Phi(b)$. (For $b \in \omega^{\omega}$), choose $c \in \omega^{\omega}$) so that $a_n = b_{c_n} - f(n)$ (for $n \in \omega$) increase and $f(n+1) + f(n) \cdot 2^{a_n} \le 2^{b_{c_n}}$. If $\forall^{\infty} n \ |K \cap a_{n+1}| \le f(n) \cdot 2^{a_n}$, then $\forall^{\infty} n \ |K \cap b_{c_{n+1}}| \le f(n+1) + f(n) \cdot 2^{a_n} \le 2^{b_{c_n}}$.) So, $X \in S_Y$ iff for some f, whenever $Y \subseteq \bigvee_k U_k$ and $a \in \omega^{\omega}$, then $\exists K \in \Phi(a, f) \ X \subseteq \bigvee_{k \in K} U_k$.

The following lemma is implicit in [FM].

- 4.1. LEMMA. (1) Suppose $X \in M_Y$ and $Y \subseteq \bigcap_n \bigcup_k U_k^n$. Then $X \subseteq \bigvee_n \bigcup_{k < a_{n+1}} U_k^{a_n}$ for some $a \in \omega^\omega \nearrow$.
- (2) Suppose $X \in C_Y''$ and $Y \subseteq \bigvee_n \bigcup_k U_k^n$. Then $X \subseteq \bigvee_n U_{a_n}^n$ for some $a \in \omega^{\omega}$.

Proof. (1) For increasing $\sigma \in \omega^{2n}$, n > 0, let

$$V_{\sigma} = \bigcap_{i < 2n-1} \bigcap_{m \le \sigma(i)} \bigcup_{k < \sigma(i+1)} U_k^m.$$

Clearly, for each n, the V_{σ} 's with $|\sigma| = 2n$ cover Y. As $X \in M_Y$, we can find finite $\Sigma_n \subseteq \omega^{2n}$ such that

$$X \subseteq \bigvee_{n} \bigcup_{\sigma \in \Sigma_n} V_{\sigma}.$$

We end the proof of (1) by taking $a \in \omega^{\omega} /$ such that $\Sigma_n \subseteq (a_n)^{2n}$. Indeed, given $x \in X$ and $N \in \omega$, choose $n > (a_N + n - N)/2$ such that $x \in V_{\sigma}$ for some $\sigma \in \Sigma_n$. Note that some interval $[a_m, a_{m+1})$ with $m \in [N, n)$ contains at least two $\sigma(i)$'s; otherwise $|\sigma| \leq a_N + n - N < 2n$. Then $x \in \bigcup_{k < a_{m+1}} U_k^{a_m}$.

(2) For finite K and $\sigma \in \omega^K$, let $U_{\sigma} = \bigcap_{k \in K} U_{\sigma(k)}^n$. Then, for each n, the U_{σ} 's with $|\sigma| = n$ cover Y. As $X \in C_Y''$ find σ_n of length n such that $X \subseteq \bigvee_n U_{\sigma_n}$. Inductively choose $m_n \in \text{dom}(\sigma_n) \setminus \{m_0, \dots, m_{n-1}\}$ and take $a \in \omega^{\omega}$ such that $a_{m_n} = \sigma_n(m_n)$. Then $X \subseteq \bigvee_m U_{a_m}^m$.

DEFINITION. Let $X \subseteq Y$. Using sets from S as Galvin used open sets define a game $G_Y^*(X)$ (resp. $G_Y^{*\sigma}(X)$) as follows. In the *n*th round White covers Y with $\{U_k^n : k \in \omega\}$, then Black picks $a_n \in \omega$. Black wins if $X \subseteq \bigcup_n U_{a_n}^n$ (resp. $X \subseteq \bigvee_n U_{a_n}^n$).

- 4.2. Lemma. The following are equivalent:
- (a) White has no winning strategy in $G_V^{*\sigma}(X)$.
- (b) $X \in G_Y^{\sigma}$.

Similarly if σ is dropped.

Proof. (Cf. [R], Thm. 1.) (a) \Rightarrow (b). Suppose $F = \bigcup_i F_i$, $F_i \in \mathcal{F} \cap \mathcal{M}^Y$. We seek a point outside F[X].

Find nonempty rectangles $U_{\sigma} \times O_{\sigma}$, $\sigma \in \omega^{<\omega}$, so that

- (1) $U_{\sigma} \times O_{\sigma}$ is disjoint from $\bigcup_{i < |\sigma|} F_i$ and diam $(O_{\sigma}) < 2^{-|\sigma|}$;
- (2) $Y \subseteq \bigcup_n U_{\sigma \cap n}$;
- (3) $\overline{O}_{\sigma \cap n} \subseteq O_{\sigma}$;

Then some $\bigcap_n O_{s|n}$, $s \in \omega^{\omega}$, is disjoint from F[X]. Indeed, let White play according to U_{σ} 's. He begins with $\{U_{\langle n \rangle} : n \in \omega\}$, against Black's choice of n he plays $\{U_{\langle n,m \rangle} : m \in \omega\}$, etc. This is not a winning strategy, so $X \subseteq \bigvee_n U_{s|n}$ for some $s \in \omega^{\omega}$. Let $t \in \bigcap_n O_{s|n}$. Then for each $n, \bigcup_{m>n} U_{s|m} \times \{t\}$ is disjoint from F_n . Hence $\bigvee_n U_{s|n} \times \{t\}$ is disjoint from $\bigcup_n F_n$.

(b) \Rightarrow (a). Suppose White has a winning strategy. Thus there exist U_{σ} , $\sigma \in \omega^{<\omega}$, such that for all σ , $Y = \bigcup_n U_{\sigma ^{\frown} n}$, and for no $s \in \omega^{\omega}$, $X \subseteq \bigvee_n U_{s|n}$. Choose nonempty O_{σ} , $\sigma \in \omega^{<\omega}$, so that $O_{\emptyset} = T$ and for all σ , the $O_{\sigma ^{\frown} n}$'s are pairwise disjoint subsets of O_{σ} with diameters $< 2^{-|\sigma|}$ and union dense in O_{σ} .

Let F be the complement of $\bigcap_m G_m$, $G_m = \bigcup_{|\sigma| \geq m} U_{\sigma} \times O_{\sigma}$. Each G_m has dense vertical sections for $y \in Y$. (Fix y. Given O, find $O_{\sigma} \subseteq O$, $|\sigma| \geq m$, next find n with $y \in U_{\sigma \cap n}$. Then $O_{\sigma \cap n} \subseteq (G_m)_y \cap O$.) Thus $F \in \mathcal{F}_{\sigma} \cap \mathcal{M}^Y$. Also, F[X] = T. Indeed, if $t \in T \setminus F[X]$, then $x \in X$ yields

$$\forall m \; \exists \sigma \; |\sigma| \geq m \; \& \; x \in U_{\sigma} \; \& \; t \in O_{\sigma},$$

so $X \subseteq \bigvee_n U_{s|n}$ for $s = \bigcup \{\sigma : t \in O_{\sigma}\}$.

4.3. Proposition.

$$G_V^{\sigma} \subseteq G_Y \subseteq C_V'' \subseteq E_Y \cap S_Y \cap M_Y$$
.

If Y is finite-dimensional then also

$$E_Y \subseteq S_Y \cap M_Y$$
.

Proof.

- $G_Y^{\sigma} \subseteq G_Y$. Clear.
- $G_Y \subseteq C_Y''$. Use Lemma 4.2. If $X \notin C_Y''$ then White wins by playing covers that witness this.
- $C_Y'' \subseteq E_Y$. (Cf. [M1], Thm. 2.1.) Let $X \in C_Y''$ and let $F \in \mathcal{F} \cap \mathcal{N}^Y$ be defined by $\{U_i \times O_i : i \in \omega\}$. For finite K such that $\mu(\bigcup_{i \in K} O_i) > 1 2^{-n}$ let $U_K^n = \bigcap_{i \in K} U_i$. Then $\forall n \ Y \subseteq \bigcup_K U_K^n$. As $X \in C_Y''$, $X \subseteq \bigvee_n U_{K_n}^n$ for some K_n 's. Then

$$F[X] \subseteq \bigvee_{n} \left(T \setminus \bigcup_{i \in K_n} O_i \right) \in \mathcal{N}.$$

• $C_Y'' \subseteq S_Y$. Let $Y \subseteq \bigvee_k U_k$ and $a \in \omega^\omega \nearrow$. Define U_k^n to be U_k if $k \in [a_n, a_{n+1})$ and \emptyset otherwise. Use Lemma 4.1(2).

Now assume that Y is < N-dimensional.

• $E_Y \subseteq M_Y$. (Cf. [M1], Thms. 1.2 and 2.2.) Let $Y \subseteq \bigcap_n \bigcup_k U_k^n$. Let $\#: \omega \times \omega \to \omega$ be 1-1. For $s \in S$ let $K_s = \bigcup_n K_s^n$, where $K_s^n = \{\#(n,k) : s \in U_k^n\}$. Without loss of generality, $\forall n \ \forall y \in Y \ |K_y^n| \le N$. Define $F \in \mathcal{F} \cap \mathcal{N}^Y$ by

$$\forall s \in S \ F_s = [1_{K_s}].$$

Suppose $X \in E_Y$. Then $F[X] \in \mathcal{N}$. By Lemma 2.1, find $a \in \omega^{\omega} /$ such that for all K with $\forall n \mid K \cap a_n \mid \leq nN$, $F[X] \mid (\omega \setminus K)$ is null. Fix $x \in X$. It suffices to prove

CLAIM. $\exists n \ K_x^n \cap a_n \neq \emptyset$.

Proof. Otherwise

$$\forall n \ K_x \cap a_n \subseteq \bigcup_{m < n} K_x^m$$

 $(m \ge n \& K_x^m \cap a_m = \emptyset \Rightarrow K_x^m \cap a_n = \emptyset)$. Since $|K_x^m| \le N$, $|K_x \cap a_n| \le nN$. It follows that $F_x|(\omega \setminus K_x)$ is null, which is absurd.

• $E_Y \subseteq S_Y$. (Cf. [BS], Thm. 2.1.) Suppose $X \in E_Y$, $Y \subseteq \bigvee_k U_k$ and $a \in \omega^\omega \nearrow$. For $s \in S$ let $J_s = \{k : s \in U_k\}$. Let $A_n = [a_n, a_{n+1})$. Without loss of generality, $\forall y \in Y |A_n \cap J_y| \leq N$. Define $F \in \mathcal{F}_\sigma \cap \mathcal{N}^Y$ by

$$\forall s \in S \ F_s = \bigcup_n [1_{J_s \setminus a_n}].$$

As $X \in E_Y$, $F[X] \in \mathcal{N}$. Let Σ^{τ} 's be obtained by Lemma 2.2 applied to F[X], a and $\varepsilon_n = 1 - (1 - 2^{-N})^{(n+1)/N}$. Let $\{K_i^{\tau} : i < l\}$ be a maximal family of pairwise disjoint subsets of A_n of size $\leq N$ such that $\forall i \ [1_{K_i^{\tau}}] | A_n \subseteq \Sigma^{\tau}$. Let $K^{\tau} = \bigcup_{i < l} K_i^{\tau}$. By independence

$$(1-2^{-N})^l \ge 1 - \mu(\Sigma^{\tau}) > 1 - \varepsilon_n = (1-2^{-N})^{(n+1)/N},$$

so $l \leq n/N$ and $|K^{\tau}| \leq lN \leq n$.

Let

$$K_n = \bigcup_{\tau \in 2^{a_n}} K^{\tau}.$$

Then $|K_n| \leq n2^{a_n}$.

Let $K = \bigcup_n K_n$. Clearly, $K_n = K \cap A_n$.

Claim. $\forall x \in X \exists^{\infty} n \ K_n \cap J_x \neq \emptyset$.

Proof. Fix $x \in X$, $m \in \omega$. As $D = [1_{J_x \setminus a_m}]$ is a closed subset of F[X], by Lemma 2.2 find n and $\tau \in D|a_n$ such that $D_\tau|A_n \subseteq \Sigma^\tau$. Clearly, $n \ge m$ (otherwise $D_\tau|A_n = 2^{A_n}$, but $\mu(\Sigma^\tau) < 1$). It follows that

$$D_{\tau}|A_n = [1_{J_x}]|A_n$$
, so $[1_{J_x}]|A_n \subseteq \Sigma^{\tau}$.

By the choice of K_i^{τ} 's, some K_i^{τ} meets J_x , so K_n meets J_x .

Proposition 4.3 is proved.

4.4. Proposition. $X \in S_Z \& Z \in M_Y \Rightarrow X \in G_Y^{\sigma}$.

Proof. (Cf. [P], Lemma 2.) Suppose $Y \subseteq \bigcap_{\sigma \in \omega^{<\omega}} \bigcup_i U_{\sigma \cap i}$. We want $s \in \omega^{\omega}$ with $X \subseteq \bigvee_n U_{s|n}$.

Let $\Sigma = \bigcup_{n>0} n^n$. For $\sigma \in \Sigma$ and n let

$$U_{\sigma}^{n} = \bigcap_{\tau \in n^{\leq n}} \bigcup_{0 < i \leq |\sigma|} U_{\tau \cap \sigma|i}.$$

Clearly, for each $n, Y \subseteq \bigcup_{\sigma} U_{\sigma}^{n}$. Also, for $\sigma, \tau \in \Sigma$,

$$n \leq m \Rightarrow U_{\sigma}^{m+|\tau|} \subseteq U_{\tau \cap \sigma}^n$$
.

Let $c(n) = 2^n$ and let $\#: \bigcup_n \Sigma^{c(n)} \to \omega$ be one-to-one and such that

$$\#(\sigma_1,\ldots,\sigma_{c(n)}) \geq n + |\sigma_1| + \ldots + |\sigma_{c(n)}|.$$

Let

$$V_k^n = U_{\sigma_1}^n \cap U_{\sigma_2}^{n+|\sigma_1|} \cap \ldots \cap U_{\sigma_{c(n)}}^{n+|\sigma_1|+\ldots+|\sigma_{c(n)-1}|}$$

if $k = \#(\sigma_1, \ldots, \sigma_{c(n)})$ and $V_k^n = \emptyset$ otherwise. (So $k < n \Rightarrow V_k^n = \emptyset$.) Clearly, for each $n, Y \subseteq \bigcup_k V_k^n$. Since $Z \in M_Y$, by Lemma 4.1, find $a \in \omega^\omega \nearrow$ such that

$$Z \subseteq \bigvee_{n} \bigcup_{a_n \le k < a_{n+1}} V_k^{a_n}.$$

As $X \in S_Z$, there exist $K_n \subseteq [a_n, a_{n+1})$ of size $\leq c(a_n)$ such that

$$X \subseteq \bigvee_{n} \bigcup_{k \in K_n} V_k^n.$$

Now diagonalize. Pick σ_i^j so that

$$\#(\sigma_1^i,\ldots,\sigma_{c(a_n)}^i), \quad i=1,\ldots,c(a_n),$$

and enumerate (possibly with repetitions) K_n in such a way that $j \geq i \Rightarrow$ $|\sigma_i^j| \ge |\sigma_i^i|.$

Let

$$\tau_n = \sigma_1^1 \widehat{} \sigma_2^2 \widehat{} \dots \widehat{} \sigma_{c(a_n)}^{c(a_n)}.$$

Then

$$\bigcup_{k \in K_n} V_k^n \subseteq U_{\tau_n}^{a_n}.$$

Note that $|\sigma_1^1| + \ldots + |\sigma_{i-1}^{i-1}| \le |\sigma_1^i| + \ldots + |\sigma_{i-1}^i|$ yields

$$U_{\sigma_i^i}^{a_n+|\sigma_1^i|+\ldots+|\sigma_{i-1}^i|}\subseteq U_{\tau_n}^{a_n}.$$

As also $\forall m \ a_m + |\tau_m| \le a_{m+1}$, it follows that

$$\bigcup_{k \in K_n} V_k^n \subseteq U_{\tau_n}^{a_n} \subseteq U_{\tau_n}^{|\tau_0| + \dots + |\tau_{n-1}|}.$$

Finally, since $\tau_0 \cap \ldots \cap \tau_{n-1} \in \Sigma$,

$$U_{\tau_n}^{|\tau_0|+\ldots+|\tau_{n-1}|} \subseteq \bigcup_{0 < i \le |\tau_n|} U_{\tau_0} \cap \ldots \cap \tau_{n-1} \cap \tau_n|i.$$

Thus

$$\bigcup_{k \in K_n} V_k^n \subseteq \bigcup_{0 < i \le |\tau_n|} U_{\tau_0} \cap \dots \cap_{\tau_{n-1}} \cap \tau_n|_i,$$

hence $X \subseteq \bigvee_n U_{s|n}$ for $s = \tau_0 {}^{\smallfrown} \tau_1 {}^{\smallfrown}$.

4.5. Corollary. $G^{\sigma} = G = C'' = S \cap M \subseteq E$. For finite-dimensional sets, C'' and E are equivalent.

 ${\bf P}$ roof. By Proposition 4.4, $S\cap M\subseteq G^{\sigma}.$ By Proposition 4.3, $G^{\sigma}\subseteq G\subseteq$ $C'' \subseteq E \cap S \cap M$, and for finite-dimensional sets, $E \subseteq S \cap M$.

DEFINITION. Let $X \subseteq Y$. We say that X has property

- E_Y^+ if $F[X] \in \mathcal{E}$ for all $F \in \mathcal{F} \cap \mathcal{E}^Y$; G_Y^+ if $F[X] \in \mathcal{M}$ for all $F \in \mathcal{F} \cap \mathcal{M}^Y$.
- 4.6. Proposition. (1) $G_Y^+ \subseteq H_Y$.
- (2) $E_Y^+ \subseteq H_Y$ for finite-dimensional Y.
- (3) $X \in H_Z \& Z \in G_Y \Rightarrow X \in G_Y^+$.
- $(4) X \in H_Z \& Z \in E_Y \Rightarrow X \in E_Y^+.$

Proof. For (1) and (2) let $Y \subseteq \bigcap_n \bigcup_k U_k^n$. Define K_s and K_s^n as in Proposition 4.3 in the proof of $E_Y \subseteq M_Y$. Without loss of generality, $\forall s \in S \ \forall n \ \min(K_s^n) \le \min(K_s^{n+1})$. (Let the (n+1)th cover refine the nth cover, and define # so that $\forall k \ \exists l \ \#(n+1,k) \ge \#(n,l)$ and $U_k^{n+1} \subseteq U_l^n$.)

For (1) define $F \in \mathcal{F} \cap \mathcal{M}^Y$ by

$$\forall s \in S \ (t \notin F_s \Leftrightarrow \exists n \ \exists k \ s \in U_k^n \ \& \ |\{l < k : t(l) = 1\}| < n).$$

Then

$$\forall y \in Y \ (t \in F_y \Leftrightarrow \forall n \ |\{l < \min(K_y^n) : t(l) = 1\}| \ge n).$$

Let $X \in G_Y^+$, so that $F[X] \in \mathcal{M}$. Let $a \in \omega^{\omega} \nearrow$ be obtained from Lemma 2.1 applied to F[X] and $b_n = n$. Fix $x \in X$. It is enough to prove

CLAIM.
$$\forall^{\infty} n \ K_x^n \cap a_n \neq \emptyset$$
.

Proof. Suppose otherwise, i.e., $\exists^{\infty} n \ a_n \leq \min(K_x^n)$. Define $K = \{\min(K_x^n) : n \in \omega\}$. Then $\exists^{\infty} n \ |K \cap a_n| \leq n$, so $F_x|(\omega \setminus K)$ is meager. Note, however, that $[1_K] \subseteq F_x$. A contradiction.

For (2) note first that, without loss of generality, $\forall n, y \mid K_y^n \mid \leq N$, for some N. Define $F \in \mathcal{F} \cap \mathcal{E}^Y$ by

$$\forall s \in S \ F_s = [1_{K_s}].$$

Let $X \in E_Y^+$, so that $F[X] \in \mathcal{E} \subseteq \mathcal{M}$. Let $a \in \omega^{\omega} \nearrow$ be obtained from Lemma 2.1 applied to F[X] and $b_n = nN$. Fix $x \in X$. It suffices to prove

CLAIM.
$$\forall^{\infty} n \ K_x^n \cap a_n \neq \emptyset$$
.

Proof. If $K_x^n \cap a_n = \emptyset$, then $K_x \cap a_n \subseteq \bigcup_{m < n} K_x^m$, so $|K_x \cap a_n| \le nN$. It follows that if $\exists^{\infty} n \ K_x^n \cap a_n = \emptyset$, then $\exists^{\infty} n \ |K_x \cap a_n| \le nN$. Thus $F_x|(\omega \setminus K_x)$ is meager, which is absurd. \blacksquare

- (3) (Cf. [T], Thm. 5.3(iii).) Let $X \in H_Z$ and $Z \in G_Y$. Let $F \in \mathcal{F} \cap \mathcal{M}^Y$ be defined by $\{U_i \times O_i : i \in \omega\}$. Use Lemma 4.2 to find a dense set $\{r_n : n \in \omega\} \subseteq T \setminus F[Z]$. Let U_i^n be U_i if $r_n \in O_i$ and \emptyset otherwise. Then for each n, the U_i^n 's cover Z. Since $X \in H_Z$, find $a \in \omega^\omega$ with $X \subseteq \bigwedge_n \bigcup_{i < a_n} U_i^n$. Define $O^n = \bigcap \{O_i : r_n \in O_i, i < a_n\}$. Then $r_n \in O^n$ and $\forall x \in X \forall^\infty n$ $O^n \cap F_x = \emptyset$. It follows that $\bigvee_n O^n$ is a dense \mathbf{G}_δ set disjoint from F[X].
- (4) Let $X \in H_Z$, $Z \in E_Y$. Let $F \in \mathcal{F} \cap \mathcal{N}^Y$ be defined by $\{U_i \times O_i : i \in \omega\}$. As $F[Z] \in \mathcal{N}$, find an increasing sequence of compact sets $C^n \subseteq T \setminus F[Z]$ such that $\mu(T \setminus \bigcup_n C^n) = 0$. For n and finite $K \subseteq \omega$ let U_K^n be $\bigcap_{i \in K} U_i$ if $C^n \subseteq \bigcup_{i \in K} O_i$ and \emptyset otherwise. Then for each n, the U_K^n 's cover Z (C^n are compact!). Since $X \in H_Z$, find finite \mathcal{K}_n with $X \subseteq \bigwedge_n \bigcup_{K \in \mathcal{K}_n} U_K^n$. Let $O^n = \bigcap_{K \in \mathcal{K}_n} \bigcup_{i \in K} O_i$. Then $C^n \subseteq O^n$ and $\forall x \in X \ \forall^{\infty} n \ O^n \cap F_x = \emptyset$. It follows that $\bigwedge_n (T \setminus O^n)$ is a null \mathbf{F}_σ cover of F[X].

4.7. COROLLARY. $G^+ = C'' \cap H$. Further, $G^+ \subseteq E^+$; for finite-dimensional sets, G^+ and E^+ are equivalent.

Proof. Clearly, $G^+ \subseteq G$. By Proposition 4.6, $G^+ \subseteq H$ and $H \cap G \subseteq G^+$. Also, by Corollary 4.5, G = C''. Thus, $G^+ = H \cap C''$. Next, as $C'' \subseteq E$, we have $G^+ \subseteq H \cap E$. But $H \cap E \subseteq E^+$ by Proposition 4.6. So, $G^+ \subseteq E^+$. If $Y \in E^+$ is finite-dimensional, then $Y \in H \cap E$ by Proposition 4.6. As for finite-dimensional sets, E and C'' are equivalent, we get $Y \in H \cap C''$, hence $Y \in G^+$.

The following lemma is straightforward.

- 4.8. LEMMA. If S is a σ -field then for any property P considered in this section, $X \in P_Y$ iff $X \subseteq Y$ and $X \in P$.
- **5. Proofs of Theorems.** Let Y be a separable metric space. Set S = Y and $S = \mathbf{O}(S)$. Theorem 1.2 follows from Propositions 4.3 and 4.4; and Theorem 1.4 from Proposition 4.6. For Theorems 1.1 and 1.3, use Corollaries 4.5 and 4.7. ($Y \in E$ implies that Y is zero-dimensional; see Section 3.)

For the Borel versions, let $Y \subseteq S$, S Polish, and $S = \mathbf{B}(S)$. Then all subsets of Y are zero-dimensional. In view of Lemma 4.8, the results follow from Corollaries 4.5 and 4.7 and the fact that Borel sets from \mathcal{M}^Y can be covered by \mathcal{F}_{σ} sets from \mathcal{M}^Y , and if Y = S then the same applies to \mathcal{E}^Y .

6. Notes. (1) T can be any Polish space with no isolated points and a nonzero and nonatomic (i.e., vanishing on points) σ -finite Borel measure μ . We get the same classes of sets. For G_Y and G_Y^{σ} this follows from the proof of Lemma 4.2.

For E_Y and E_Y^+ , given such a space T, there exist a null \mathbf{F}_{σ} set $F \subseteq T$, a countable $Q \subseteq [0,1]$, and a homeomorphism $f: T \setminus F \to [0,1] \setminus Q$ such that a subset of $T \setminus F$ is μ -null iff its image is λ -null, λ being the Lebesgue measure. (Change μ so that null sets are the same and $\mu(T) = 1$. Remove all open null sets. Next remove a countable dense subset C, and for each $c \in C$ and n remove a sphere which is null, has center c and radius $\leq 2^{-n}$. This can be done because the spheres with a fixed center are pairwise disjoint. We have removed a null \mathbf{F}_{σ} set, and the remaining part T' can be identified with the irrationals of [0,1]. Define $f:[0,1] \to [0,1]$ by $f(x) = \mu([0,x) \cap T')$. Then f is a homeomorphism and for all $A \subseteq T'$, $\mu^*(A) = \lambda^*(f[A])$.)

For G_Y^+ just note that T contains a dense \mathbf{G}_δ copy of ω^ω .

- (2) Let T be as above.
- If $\mathcal{E} \subseteq \mathcal{M}$ (i.e., if open sets have positive measure), then in the definition of E_V^+ , " $F[X] \in \mathcal{E}$ " can be replaced by " $F[X] \in \mathcal{M} \cap \mathcal{N}$ ".

In G_Y^{σ} (similarly in G_Y) instead of $F[X] \neq T$ we can require that for all nonmeager $B \subseteq T$ with the Baire property, $B \setminus F[X]$ contains a perfect set.

Indeed, let $X \in G_Y^{\sigma}$. Let $O \subseteq T$ be nonempty and let D_i , $i \in \omega$, be nowhere-dense subsets of T. Suppose $F = \bigcup_i F_i$, $F_i \in \mathcal{F} \cap \mathcal{M}^Y$. Choose nonempty rectangles $U_{\sigma} \times O_{\sigma,\tau}$, $\sigma \in \omega^{<\omega}$, $\tau \in 2^{<\omega}$, $|\sigma| = |\tau|$, so that

$$O_{\sigma,\tau} \subseteq O \setminus \bigcup_{i < |\sigma|} D_i \text{ and } \operatorname{diam}(O_{\sigma,\tau}) \le 2^{-|\sigma|};$$

 $U_{\sigma} \times O_{\sigma,\tau}$ is disjoint from each F_i for $i < |\sigma|$;

$$Y \subseteq \bigcup_{n} U_{\sigma \frown n};$$

$$\overline{O}_{\sigma \frown n,\tau \frown 0} \cup \overline{O}_{\sigma \frown n,\tau \frown 1} \subseteq O_{\sigma,\tau};$$

$$O_{\sigma \frown n,\tau \frown 0} \cap O_{\sigma \frown n,\tau \frown 1} = \emptyset.$$

- Let $O_{\sigma} = \bigcup_{\tau} O_{\sigma,\tau}$. Each $\bigcap_{n} O_{s|n}$, $s \in \omega^{\omega}$, is a perfect subset of $O \setminus \bigcup_{i} D_{i}$. To see that some $\bigcap_{n} O_{s|n}$ is disjoint from F[X] suppose that White plays according to U_{σ} 's. This is not a winning strategy, so $X \subseteq \bigvee_{n} U_{s|n}$ for some $s \in \omega^{\omega}$. Now $y \in \bigcap_{n} O_{s|n}$ yields $\forall x \in X \exists^{\infty} n \langle x, y \rangle \in U_{s|n} \times O_{s|n}$, hence $\forall x \in X \ \forall i \ \langle x, y \rangle \not\in F_{i}$.
- (3) We call $A \subseteq \omega^{\omega}$ diagonalized (resp. dominated) if for some $x \in \omega^{\omega}$ for all $a \in A$, $\exists^{\infty} n \ a(n) = x(n)$ (resp. $\forall^{\infty} n \ a(n) < x(n)$). We call $f: Y \to \omega^{\omega}$ \mathcal{S} -measurable if for all n, m there is $V \in \mathcal{S}$ such that $y \in V \Leftrightarrow f(y)(n) = m$. Clearly, if Y is zero-dimensional, then X is in H_Y (resp. C_Y'') iff for all \mathcal{S} -measurable $f: Y \to \omega^{\omega}$, f[X] is dominated (resp. diagonalized).
- For $S = \mathbf{O}(S)$ (resp. $S = \mathbf{B}(S)$), S-measurable means continuous (resp. Borel). From this, X is in \widetilde{C}'' (resp. \widetilde{H}) iff all Borel images of X into ω^{ω} are diagonalized (resp. dominated) iff all Borel images of X into a given Polish space T have property C'' (resp. H). Similarly for zero-dimensional separable metric spaces, properties C'' and H, and continuous images.
- (4) Consistently, $S \not\subseteq M$ (even $S(\mathbf{B}(T)) \not\subseteq M(\mathbf{O}(T))$). Shelah ([Sh], Prop. 2.9) has an ω^{ω} bounding forcing which makes the ground model reals an $S(\mathbf{B}(T))$ set.
- (5) The argument of Proposition 4.4 shows that if W is a model of ZFC, $x \in \omega^{\omega}$ is an unbounded real over W, and the union of closed null sets coded in W[x] is null, then there is a Cohen real over W. Do we really need the intermediate unbounded real?
- (6) Clearly, E_Y , E_Y^+ and G_Y^+ are σ -ideals. So are C_Y'' , S_Y , H_Y and M_Y . For C_Y'' and M_Y just split ω into infinitely many infinite sets. (Let $\omega = \bigcup_i K_i$, with the K_i 's infinite pairwise disjoint. Let $Y \subseteq \bigcap_n \bigcup_k U_k^n$. If $X_i \in C_Y''$, $i \in \omega$, there exists $a \in \omega^\omega$ such that $\forall i \ X_i \subseteq \bigcup_{n \in K_i} U_{a_n}^n$. Then $\bigcup_i X_i \subseteq \bigcup_n U_{a_n}^n$.)

For H_Y , suppose $X_i \in H_Y$, $i \in \omega$, and $Y \subseteq \bigcap_n \bigcup_k U_k^n$. Find $a^i \in \omega^{\omega}$ with $X_i \subseteq \bigwedge_n \bigcup_{k < a_n^i} U_k^n$. Let $a_n = \max_{i \le n} a_n^i$. Then $\bigcup_i X_i \subseteq \bigwedge_n \bigcup_{k < a_n} U_k^n$.

For S_Y , let $Y \subseteq \bigvee_k U_k$ and $a \in \omega^\omega \nearrow$. Suppose $X_i \in S_Y$, $i \in \omega$, and let $K_i \in \varPhi(a)$ witness this. Set $K = \bigcup_n \bigcup_{i \le n} K_i \cap [a_n, a_{n+1})$. Then $X \subseteq \bigvee_{k \in K} U_k$ and $\forall n \mid K \cap [a_n, a_{n+1}) \mid \leq (n+1)2^{\overline{a_n}}$.

I do not know whether G_Y and G_Y^{σ} are σ -ideals. (Yes, if $Y \in M_Y$, as then $G_Y = G_Y^{\sigma} = C_Y''$. Note that if $Y = \bigcup_n X_n$ and $\forall n, X_n \in G_Y$, then $\forall n \ X_n \in M_Y$, hence $Y \in M_Y$.)

(7) Assume that S is a separable metric space, sets from S have the Baire property, $X \subseteq Y$, and all sets meager in X have one of the properties C_Y'' , E_Y , S_Y , M_Y . Then X has the respective property. (By σ -additivity, we can replace meager by nowhere-dense.)

We give a proof for S_Y . Let $Y \subseteq \bigvee_k U_k$ and let $a \in \omega^{\omega}$. Consider

$$G = \bigvee_{n} \bigcup_{a_n \le a_{n+1}} (U_k \cap X) \times \Big\{ t \in \prod_n [a_n, a_{n+1}) : t_n = k \Big\}.$$

For each $t \in \prod_n [a_n, a_{n+1})$, the horizontal section G^t determined by t is covered by $\bigvee_n U_{t_n}$. All vertical sections of G are dense \mathbf{G}_{δ} sets. Also, G, as a subset of $X \times \prod_n [a_n, a_{n+1})$, has the Baire property. By the Kuratowski–Ulam theorem, find $t \in \prod_n [a_n, a_{n+1})$ such that $Z = X \setminus G^t$ is meager in X. Then $Z \in S_Y$, so $Z \subseteq \bigvee_{k \in K} U_k$ for some $K \in \Phi(a)$. Let $L = K \cup \operatorname{rng}(t)$. Then $X \subseteq \bigvee_{k \in L} U_k$ and $\forall^{\infty} n \mid L \cap a_{n+1} \mid \leq n + 2^{a_n}$.

I do not know whether the above is true for G_Y or G_Y^{σ} . (It is if X = Y: if all nowhere-dense subsets of X have property G_X , then $X \in C''$.)

(8) If ν is a σ -finite measure on S, sets from S are measurable, $X \subseteq Y$, and all null subsets of X have property H_Y , then $X \in H_Y$.

Indeed, without loss of generality, $\nu^*(X) < \infty$ (ν is σ -finite and H_Y is σ -additive). Let $Y \subseteq \bigcap_n \bigcup_k U_k^n$. For each n pick k_n with

$$\nu^* \left(X \setminus \bigcup_{k \le k_n} U_k^n \right) < 2^{-n}.$$

Let $Z = X \setminus \bigwedge_n \bigcup_{k \leq k_n} U_k^n$. Then Z is null, so $Z \in H_Y$, hence $Z \subseteq \bigwedge_n \bigcup_{k \leq l_n} U_k^n$, for some l_n 's. It follows that $X \subseteq \bigwedge_n \bigcup_{k \leq \max(k_n, l_n)} U_k^n$.

(9) Sierpiński and Lusin sets destroy various extensions of the above. If Y is a Lusin set, then $Y \notin H_Y$, but meager subsets of Y are in $G_Y^+ \cap E_Y^+ \subseteq H_Y$. If Y is a Sierpiński set, then $G_Y^{\sigma} = G_Y = C_Y'' = E_Y$ (Y is zero-dimensional, $Y \in H_Y$ and $H_Y \subseteq M_Y$). Also, $Y \notin E_Y$ (look at the identity function on Y), while null subsets of Y are in E_Y .

References

- [AR] A. Andryszczak and I. Recław, A note on strong measure zero sets, Acta Univ. Carolin. Math. Phys. 34 (2) (1993), 7-9.
- [BS] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93–110.
- [D] C. Dellacherie, Un cours sur les ensembles analytiques, in: Analytic Sets,
 C. A. Rogers et al. (eds.), Academic Press, 1980, 183-316.
- [FM] D. H. Fremlin and A. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.
 - [G] F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 445–449.
- [GMS] F. Galvin, J. Mycielski and R. M. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
 - [Ke] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
 - [M] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 201–233.
 - [M1] —, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93–114, and 271 (1982), 347–348.
 - [P] J. Pawlikowski, Undetermined sets of point-open games, Fund. Math. 144 (1994), 279–285.
 - [P1] —, A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171–184.
 - [R] I. Recław, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994), 43–54.
 - [Sh] S. Shelah, Vive la différence I: Nonisomorphism of ultrapowers of countable models, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Springer, 1992, 357–405.
 - [T] J. Truss, Sets having calibre ℵ₁, in: Logic Colloquium '76, R. Gandy and M. Hyland (eds.), Stud. Logic Found. Math. 87, North-Holland, 1977, 595–612.

Department of Mathematics University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland

E-mail: pawlikow@math.uni.wroc.pl

Received 4 September 1996; in revised form 1 March 1997