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A strong shape theory with S-duality

by

Friedrich W. B a u e r (Frankfurt a.M.)

Abstract. If in the classical S-category P, 1) continuous mappings are replaced by
compact-open strong shape (= coss) morphisms (cf. §1 or [1], §2), and 2) ∧-products are
properly reinterpreted, then an S-duality theorem for arbitrary subsets X ⊂ Sn (rather
than for compact polyhedra) holds (Theorem 2.1).

0. Introduction. In a previous paper [1] we introduced the concept
of coss-shape (compact-open strong shape or strong shape with compact
support) and established for each X = (X,m), with m ∈ Z and finite-
dimensional X ∈Met (= category of separable metric spaces), i.e. for any
object in an S-category P (cf. [1, §4]), an S-dual DX ∈ P which is, up to
isomorphism in P, uniquely determined and natural, and satisfies D2X ≈ X
and P(X,Y) ≈ P(DY, DX).

In the present paper we introduce in §1 and §3 new, additional coss-
morphisms X → Y ∧ Z and X ∧ Y → Z (Y ∧ Z and X ∧ Y are pairs of
objects in P) which for special choices of X, Y, Z can be interpreted as
coss-morphisms between X and Y ∧ Z ∈ P (cf. §3) resp. X ∧Y and Z, or
sometimes even as strong shape morphisms (1.2 and §5).

The main objective of this paper is the verification of Theorem 2.1 as-
serting the existence of a natural isomorphism

(1) {X ∧Y,Z}c ≈ {X, DY ∧ Z}c
({. . . , . . .}c denoting the respective sets of coss-morphisms in the S-category,
cf. §3).

Among the corollaries in §2 we recover the main theorem of [1] and
two other S-duality theorems for special choices of X, Y, Z. In particular,
classical S-duality (cf. [9], [10]) turns out to be a corollary of (1) (cf. §2(8)).
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All these corollaries have in common that the concept of new coss-
morphisms as introduced in §1 does not enter, but that we get along with
either coss-morphisms between spaces (2.2), strong shape morphisms or
even continuous mappings (2.3).

In §3 we treat the S-duality operator D and introduce stable coss-
morphisms, while in §4 we provide the necessary Alexander duality theorems
from which all kinds of S-duality are derived.

The reader is supposed to be familiar with [1]: Not only do we retain all
notations from [1] but if a construction or a proof has a counterpart in [1],
then we do not resume the arguments, referring instead to the corresponding
statement or assertion there.

1. The coss-morphisms α : X ∧ Y → Z, β : X → Y ∧ Z. Before we
present the definition of two kinds of new coss-morphisms, we have to set
up the categories of topological spaces in which we are going to operate.
This is primarily done by referring to [1, §1], with the only exception that,
in contrast to [1], we are working with based spaces. Thus we understand by
Met the category of based separable metrizable spaces, with based continu-
ous mappings. Very rarely we encounter unbased spaces (specifically, in the
formulation of Alexander duality theorems in §4). Then X ∈ Met always
means, by an abuse of notation, X+ ∈Met.

By an ANR (or a good space) we understand an ANR in Met. The same
pertains to compact spaces. Hence by a space we always mean a space in
Met.

By a classical theorem, all spaces allow an embedding in the Hilbert
cube, resp. in some Sn whenever they are finite-dimensional.

In dealing with smash products X ∧ Y between spaces in Met, we face
the same kind of problem which we settled in [1, §1] concerning cones and
suspensions:

Since X ∧ Y with the customary topology is not necessarily an object
in Met unless X and Y are compact, we have to adjust the topology. This
can be done, for example, in the finite-dimensional case, by taking embed-
dings X ⊂ Sn, Y ⊂ Sm and equipping X ∧ Y with the subset topology of
Sn ∧ Sm = Sn+m; in general we employ any compacta K, L satisfying
X ⊂ K, Y ⊂ L. This topology turns out to be independent of the specific
embedding, which can be easily realized by displaying an intrinsic definition
of this topology in the same way as we did in [1, §1].

In particular, both concepts of ∧-products are always homotopy equiva-
lent (details are as in [1, §1]). We always mean this topology whenever we
write X ∧ Y .

Let P, Q be ANRs. Then P ∧ Q is again an ANR. The quickest way
to confirm that is an inspection of the proof of [5, Theorem 8.2, p. 406]
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by O. Hanner, dealing with the question whether a quotient space P/Q of
an ANR P , with Q a closed subspace and an ANR, is again an ANR. The
answer is in the affirmative under some compactness assumption, which is
only needed in order to guarantee that the resulting space is in Met, which
in our case is ensured by our convention concerning the topology of P ∧Q.

Thus we have P ∧Q ⊂ Sn ∧ Sm = Sn+m, which is an ANR whenever P
and Q are finite-dimensional ANRs.

In [1, §2] we introduced the concept of coss-morphisms between spaces.
This carries over immediately to based spaces, simply by employing based
continuous and based strong shape morphisms in the constructions.

In addition to strong shape morphisms between compact spaces f : X →
Y , we need strong shape mappings of the form X → Y ∧R and X → R∧Y ,
where Y is compact, R good and X either compact or an ANR. This kind
of strong shape morphisms is already known from [3] and recorded in §4.

Let X,Y, Z be spaces and X∧Y , Y ∧Z pairs of spaces. Then we introduce
new morphisms α : X ∧ Y → Z and β : X → Y ∧ Z in the following way:

Let P,Q,R, P̃ , Q̃ be good spaces (i.e. ANRs in Met), X ′, Y ′, Z ′, Ỹ com-
pact in Met, and r : X → P , s : Y → Q, t : Z → R, a : X ′ → X,
b : Y ′ → Y , c : Z ′ → Z, s̃ : Ỹ → Q, ã : X ′ → P̃ and b̃ : Y ′ → Q̃ continuous
mappings.

We consider diagrams σ = σ(a, b, c, r, s, t, ã, b̃, g1, g2, f)

(1)

P ∧ Q̃ R

X ′ ∧ Y ′ Z ′

P̃ ∧Q R

g1 //

ra∧b̃
OO

f̄ //

ã∧sb
²²

tc

OO

tc

²²g2 //

with g1, g2 being stable homotopy classes of continuous morphisms and f a
stable homotopy class of a strong shape morphism (cf. [1, §2], the associated
definition of a coss-morphism between spaces), which are stably homotopy
commutative. This means that f(Σk(tc)) (i.e. the strong shape morphism
f evaluated at Σk(tc)) and g1(Σk(ra) ∧ b̃) (resp. g2(Σkã ∧ sb)) are stably
homotopic. In other words, there exist natural numbers l, m such that

Σlf(Σk(tc)) ' Σlg2(Σl+k(ã∧sb)), Σmf(Σk(tc)) ' Σmg1(Σk+m(ra)∧ b̃).
Thus, by taking appropriate representatives f , g1, g2, we can assume (as in
[1, §2]) that for suitable k,

f(Σk(tc)) ' g2(Σk(ã ∧ sb)), f(Σk(tc)) ' g1(Σk(ra) ∧ b̃).
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Let T (a, b, t) be the class of all such diagrams (a, b, t fixed). Then σ1, σ2 ∈
T (a, b, t) are equivalent whenever we detect continuous mappings P1 → P2,
Z ′1 → Z ′2, Q̃1 → Q̃2, P̃1 → P̃2 and Q1 → Q2 rendering all diagrams which
result from inserting these mappings into σ1, σ2 stably commutative.

This generates (as in [1, §2]) an equivalence relation. The set of equiva-
lence classes is denoted by

T [a, b, c] = lim−→T (a, b, t).

Now we proceed as in [1, §2], considering assignments α which assign to
a, b, t an element in T [a, b, t] such that for a commutative diagram

(2)

X ′1 X ′2

X

//

a1

²²
a2

}}||||||

the diagram resulting from α(a2, b, t) by inserting (2) (in an obvious way)
is equal to α(a1, b, t) (in T [a1, b, t]).

The same is required for commutative diagrams

Y ′1 Y ′2

Y

//

b1

²²
b2~~}}}}}}

and

R1 R2

Z

//

t1

OO

t2{{{{{{==

This procedure is some kind of inverse limit and, in complete analogy to [1,
Definition 2.1], we set up

Definition 1.1. The set of these α (X,Y, Z fixed in Met) is denoted
by

{X ∧ Y, Z}c = lim←− lim−→T (a, b, t) = coss(X ∧ Y, Z).
In the same way we define mappings β : X → Y ∧Z: We consider stably

commutative diagrams

(1?)

P Ỹ ∧R

X ′ Q ∧ Z ′ Q ∧R

P̃ Y ′ ∧R

f̄ //

s̃∧1
IIIIIIII$$

ra

OO

ḡ //

ã

²²

1∧tc //

h̄ //
rb∧1uuuuuuuu::

and denote by T (a, t, s) all those diagrams with fixed a, t, s. Then we form
again the equivalence classes

T [a, t, s] = lim−→T (a, t, s)
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and declare a morphism β : X → Y ∧ Z to be an assignment which assigns
to each (a, t, s) an element β(a, t, s) ∈ T [a, t, s] satisfying obvious naturality
properties, providing us finally with

Definition 1.1? .

{X,Y ∧ Z}c = lim←− lim−→T (a, t, s) = coss(X,Y ∧ Z).

We do not define all kinds of compositions between new or old coss-
morphisms but confine ourselves to the following cases:

1) Let β : X → Y ∧ Z, γ ∈ coss(Y, Y1) and η ∈ coss(Z,Z1). Then the
composition (γ ∧ η)β ∈ coss(X,Y1 ∧ Z1) is established in the same way as
the composition of coss-morphisms between spaces in [1, §2].

The same pertains to the compositions:

2) X1 ∧ Y1
γ∧η−→ X ∧ Y α→ Z,

3) X1
γ→ X

β→ Y ∧ Z,
4) X ∧ Y α→ Z

η→ Z1.

We do not define morphisms

X ∧ Y α→ Z
β→ X1 ∧ Y1 nor X

β→ Y ∧ Z α→ X1.

So coss-morphisms only form a category for spaces (that was already ac-
complished in [1]), for pairs of spaces, but not for spaces and pairs of spaces
together (cf. remark at the end of this section).

Proposition 1.2. If Y is a compact ANR in Met, then for all X,Z ∈
Met, we have natural equivalences

coss(X ∧ Y,Z) ≈ coss(X ∧ Y, Z),(3)

coss(X,Y ∧ Z) ≈ coss(X,Y ∧ Z).(4)

Here on the left hand sides we have new coss-morphisms (between spaces),
and on the right hand sides the old ones.

P r o o f. 1) Denote by A ∧̃B the ∧-product between two spaces in Met
with the ordinary topology (i.e. A ∧̃B = A×B/A ∨B). Then we have:

(?) Every continuous ã : K → X ∧̃ Y with K compact factorizes through
X ′ ∧ Y = X ′ ∧̃ Y with X ′ ⊂ X compact.

This has (for B = Y = S1) already been verified and used in the proof
of Lemma 2.7 in [1]. The proof of (?) follows the same line.

2) A morphism α : X ∧ Y → Z determines mappings

(5) P ∧ Q̃→ R, P̃ ∧Q→ R, f : X ′ ∧ Y ′ → Z ′,
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hence, we are allowed to set Y = Y ′ = Q = Q̃ = Ỹ ; a mapping g : P ∧Q→
R, and therefore the diagram (1) reduces to

(6)

X ′ ∧ Y ′ Z ′

X ∧ Y Z

P ∧Q R

f̄ //

²² ²²

²² ²²
//

Suppose a : K → X ∧ Y is given, with K compact. Then according to (?)
we have a homotopy commutative diagram

K X ∧ Y

X ′ ∧̃ Y X ∧̃ Y

a //

²²
aX ∧̃1Y //

'
OO

employing the homotopy equivalence between X ∧̃ Y and X ∧ Y (the ∧-
product with the ordinary and that with the new topology). As a result we
find

(7)

K X ′ ∧ Y Z ′

X ∧ Y Z

P ∧Q R

// f̄ //

²² ²²

²² ²²g //

where f, g stem from (6). In view of Definition 2.1 of [1] this gives rise to
a coss-morphism α̂ : X ∧ Y → Z, hence to a transformation

(8) coss(X ∧ Y, Z)→ coss(X ∧ Y,Z).

3) Suppose we start with a coss-morphism β : X ∧ Y → Z, and let
a : X ′ → X with X ′ compact and r : Z → R. Then we have a stably
commutative diagram

X ′ ∧ Y ′ Z ′

X ∧ Y Z

P ′ R

//

²² ²²

r1

²²
t

²²
//
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We have r̃1 : X ∧̃ Y → P ′, P ′ ∈ ANR, satisfying

X ∧̃ Y X ∧ Y

P ′

' //

r̃1

²²
r1

yyttttttttt

and a homotopy commutative diagram

X ∧ Y X ∧̃ Y P ′Y∧ Y

P ′

' //

r1

UUUUUUUUUUUUUUUUUUU**

//

ε

²²

where ε is the evaluation map.
So we finally get a stably commutative diagram

X ′ ∧ Y ′ Z ′

X ∧ Y Z

P ∧Q R

//

²² ²²

²² ²²
//

for suitable P with Q = Y . Although we cannot simply implement P = P ′Y

right away (because this is not necessarily an object of Met), there exists
a P , e.g. an open neighborhood of X in a Hilbert cube containing X, over
which X → P ′Y extends. This provides us with the mapping (5) giving rise

to a β̌ ∈ coss(X ∧ Y, Z) such that ˆ̌β = β and ˇ̂α = α. The naturality is
immediate. The verification of (4) is similar.

Proposition 1.3. For all X, Y, Z in Met we have a natural equivalence

coss(X ∧ Y, Z) ≈ coss(Y ∧X,Z).

P r o o f. A morphism α : X ∧ Y → Z is defined by means of strong
shape resp. continuous mappings X ′ ∧ Y ′ → Z ′, P̃ ∧Q → R, P ∧ Q̃ → R,
exhibiting a symmetry in X and Y .

R e m a r k. There is no analogous equivalence between coss(X,Y ∧Z) and
coss(X,Z ∧ Y ), because we are considering in Definition 1.1?, in particular
in diagram (1?), all strong shape morphisms X ′ → Q ∧ Z but only those
strong shape morphisms X ′ → Y ′ ∧R which allow an extension over a good
P̃ . Moreover, f : P → Ỹ ∧ R has no counterpart in this definition for Y, Z
interchanged.
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In analogy to definition 2.1, 2) of [1] we are able to fix embeddings
X ⊂ P, Y ⊂ Q, Z ⊂ R (in practice P,Q,R will be certain n-spheres)
and deal with diagrams (1) resp. (1?) where all a : X ′ ⊂ X, b : Y ′ ⊂ Y ,
c : Z ′ ⊂ Z, r : X ⊂ U , s : Y ⊂ V , t : Z ⊂ W, ã : X ′ ⊂ Ũ , b̃ : Y ′ ⊂ Ṽ
and s̃ : Ỹ ⊂ V are inclusions and U, Ũ ⊂ P , V, Ṽ ⊂ Q and W ⊂ R are
open subsets. The set of all such squares is denoted by T ′. In this case, for
a diagram σ of the form (1) or (1?) we prefer to write σ(X ′, Y ′, . . .) instead
of σ(a, b, . . .).

Proposition 1.4. There is an equivalence between coss(X,Y ∧ Z) and
lim←− lim−→T ′(X ′, V,W ), and between coss(X∧Y, Z) and lim←− lim−→T ′(X ′, Y ′,W ).

The proof follows exactly the same pattern as that of Lemma 2.6 in [1]
which can be immediately translated to the present case.

We would like to have, analogous to Lemma 2.7 of [1], a stability propo-
sition for the new coss-morphisms.

To this end, for a based space X = (X,x0) ∈Met we define the suspen-
sion ΣX = (ΣX, ?) as the unreduced suspension of X with top vertex ? of
ΣX as base point and observe:

Lemma 1.5. For good X in Meth, resp. compact X in Kh = Comh,
we have a homotopy equivalence between (ΣX, ?) and (ΣX, x0) = Σ̂X in
Meth, resp. in Kh.

P r o o f. The spaces (X,x0) are well-pointed in both categories (cf. [3,
A10, p. 301]) so that the contention for Σ̂ and Σ̃ follows by standard ar-

guments. However, Σ̃ and Σ (resp. ̂̃Σ and Σ̂) are known to be homotopy
equivalent (cf. [1, §1]).

So we obtain:

Lemma 1.6. There are equivalences between coss(ΣX ∧ Y,ΣZ) and
coss(X ∧ΣY,ΣZ) (resp. coss(ΣX,ΣY ∧Z) and coss(ΣX,Y ∧ΣZ)) and
the related morphism sets, where all or some Σ are replaced by Σ̂.

P r o o f. Follows (using the same argument as in the proof of [1, Lemma
2.7]) from the definition of these morphisms (involving only good or compact
spaces) because these equivalences exist for strong shape resp. continuous
mappings and because of 1.5.

Proposition 1.7. We have natural equivalences

Σ∗ : coss(ΣX,ΣY ∧ Z) ≈ coss(ΣX,Y ∧ΣZ) ≈ coss(X,Y ∧ Z)

and

Σ∗ : coss(ΣX ∧ Y,ΣZ) ≈ coss(X ∧ΣY,ΣZ) ≈ coss(X ∧ Y, Z).

The same holds for Σ̂ replacing Σ.
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P r o o f. These equivalences are established by the same arguments lead-
ing to Lemma 2.7 of [1].

Proposition 1.8. coss(X ∧ Y, Z) and coss(X,Y ∧ Z) carry a natural
abelian group structure, turning both equivalences Σ∗ from 1.7 as well as
those in 1.2 and 1.3 into isomorphisms of abelian groups.

P r o o f. Follows in the same way as 2.8 of [1].

R e m a r k. We could easily repair the fact that coss with these new
morphisms X → Y ∧ Z and X ∧ Y → Z is not any more a category: We
distinguish between two different types of pairs, say X ∧ Y (for outgoing

mappings X ∧ Y → Z) and X
=∧ Y (for mappings Z → X

=∧ Y ). There

are no mappings starting from X
=∧ Y with target being a space, resp. no

mappings going out from a space into X ∧ Y and no mappings between
X

=∧ Y and ∧-products and vice versa.
Such pairs are customarily called virtual spaces to distinguish them from

real spaces (i.e. spaces in Met).

2. The S-duality isomorphism. We now formulate and prove the main
theorem of this paper. Concerning the definition of D, the S-category P and
the abelian groups {X ∧Y,Z}c, {X,Y ∧ Z}c, we refer to §3.

Theorem 2.1. For X,Y,Z ∈ P there exists an isomorphism of abelian
groups

(1) φ : {X ∧Y,Z}c ≈ {X, DY ∧ Z}c
which is natural with respect to morphisms in P.

P r o o f. Recall that a morphism α ∈ {X ∧ Y,Z}c is determined by
diagrams §1(1), hence by mappings f : X ′ ∧ Y ′ → Z ′, g1 : P ∧ Q̃ → R and
g2 : P̃ ∧ Q → R. Moreover, in view of 1.4 we can assume without loss of
generality that X ⊂ Sn, Y ⊂ Sm and Z ⊂ Sk are given embeddings and
that 1) X ′ ⊂ X, Y ′ ⊂ Y , Z ′ ⊂ Z, X ′ ⊂ P̃ and Y ′ ⊂ Q̃ are all inclusions,
and 2) P = U , Q = V , R = W , P̃ = Ũ and Q̃ = Ṽ are open subsets of the
given spheres. In the same way we realize that β ∈ {X,Y∧Z}c is associated
with mappings g : X → V ∧ Z ′, h : P̃ → Y ′ ∧W and f ′ : P → Ỹ ∧W .
The equivalence φ is established by detecting natural bijections between
(f, g1, g2) and (g, f ′, h). To this end, using the terminology of §4, we employ
the Alexander duality isomorphisms

{X ′ ∧ Y ′, Z ′} II≈ {S0, (DX ′ ∧DY ′) ∧ Z ′}(2)

≈ {S0, DX ′ ∧ (DY ′ ∧ Z ′)} III≈ {X ′, DY ′ ∧ Z ′},
{Ũ ∧ V,W} I≈ {S0, (DŨ ∧DV ) ∧W} I≈ {Ũ ,DV ∧W},(3)
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{U ∧ V,W} I≈ {S0, (DU ∧DṼ ) ∧W} I≈ {U,DṼ ∧W}.(4)

The numbers over the ≈ signs refer to the specific associated Alexander
duality isomorphisms of §4 which are applied. Furthermore, we have made
use of Proposition 3.8; moreover, 5.2 ensures that

{X ′ ∧ Y ′, Z ′}c ≈ {X ′ ∧ Y ′, Z ′}.
We observe that DY ′ is a V , DQ̃ a Ỹ and DV a V ′ for DY (instead of Y ).

Let α ∈ {X∧Y,Z}c, i.e. α ∈ coss(ΣkX∧Y,ΣlZ) for suitable k, l. Then
α(X ′, Y ′,W ) determines a triple f, g1, g2 which, in turn, by means of (2), (3),
(4), gives rise to a triple g, f ′, h, hence, according to the naturality properties
of the Alexander duality isomorphisms I–III (cf. 4.5), to a β(X ′, DY ′,W ).

This establishes a transformation φ which can be obviously inverted,
yielding a φ−1. The naturality of φ follows easily from the naturality prop-
erties of the Alexander duality isomorphisms involved (cf. 4.5). The addi-
tivity of φ is also immediate (cf. 3.5 concerning the abelian group structure
of {. . . , . . .}c).

Corollary 2.2. For X,Y ∈ P we have natural isomorphims

(5) {X,Y}c ≈ {DY, DX}c.
P r o o f. Recall that {X ∧Y,Z}c is symmetrical in X and Y (cf. 2.3 for

spaces, which implies the contention for objects in P). So we calculate:

{X,Y}c ≈ {X ∧DY,S0}c ≈ {DY ∧X,S0}c ≈ {DY, DX}c
(S0 = Σ−n(Sn, 0) for suitable n). The first and the third isomorphisms stem
from Theorem 2.1.

R e m a r k s. 1) Corollary 2.2 for unbased spaces is the main subject of
[1] (Theorem 4.3). It could be easily achieved (without involving 2.1) by
adapting the original proof to the case of based spaces.

2) We could extend the definition of D to the case of pairs of spaces by
setting

D(X ∧ Y ) = DX ∧DY, D(X ∧Y) = DX ∧DY,

furnishing us with an isomorphism

D2(X ∧Y) = D(DX ∧DY) ≈ X ∧Y.

However, we have in general

{D(X ∧Y), DZ}c 6≈ {Z,X ∧Y}c,
{D(X ∧Y), D(X1 ∧Y1}c 6≈ {X1 ∧Y1,X ∧Y}c,

because {X,Y ∧ Z}c is not symmetrical in Y and Z, unless we impose
restrictions on the objects involved.

Let P′ and KP be defined as in §3 with X ∧Y as in §3(7).
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Corollary 2.3. 1) If X,Y,Z are compact , then we have a natural
equivalence

(6) KP(X ∧Y,Z) ≈ KP(X, DY ∧ Z).

2) If X,Y,Z are good and X or Y also compact , then we have a natural
equivalence

(7) P′(X ∧Y,Z) ≈ KP(X, DY ∧ Z).

P r o o f. Follows immediately from the stabilized versions of 5.1 and 5.2.

R e m a r k s. 1) The equivalences (6) and (7) can both be regarded as
extensions of Theorem 1.1 of [2] in the same sense as Theorem 2.1 is an ex-
tension of Corollary 2.2 and Theorem 4.3 of [1]. The abelian groups involved
do not require coss-morphisms but merely strong shape or continuous map-
pings. Moreover, on the left hand side we find ordinary ∧-products.

2) Assuming that X,Y,Z are good but Y also compact, we obtain again
a good and compact DY (up to isomorphism), hence

KP(X, DY ∧ Z) ≈ P′(X, DY ∧ Z).

As a result, (7) yields

(8) P′(X ∧Y,Z) ≈ P′(X, DY ∧ Z),

which is ordinary , classical S-duality (cf. [8, p. 18, Theorem 19] and [9]).
3) Suppose that X and Z are compact, Y = S0 (i.e. compact and good).

Then we calculate

P′(DX, DZ) ≈ P′(S0 ∧DX, DZ)
(7)≈ KP(S0,X ∧DZ)

≈ KP(S0, DZ ∧X)
(6)≈ KP(S0 ∧ Z,X) = KP(Z,X)

(
(n)≈ denoting the isomorphisms n = (6) or (7) of Corollary 2.3). In addition

we have used the fact that there exists (in contrast to the case of coss-
morphisms) by definition an isomorphism

KP(A,B ∧ C) ≈ KP(A,C ∧B)

whenever both sides are defined.
As a result we obtain

(9) P′(DX, DZ) ≈ KP(Z,X),

yielding another formulation of Theorem 1.1 of [1] (now for based spaces).
4) The first attempt to extend S-duality over the category of finite poly-

hedra was successfully made by E. Lima [7]. He anticipated stable ordinary
shape theory (ten years before this notion was explicitly introduced). The
associated contention for strong shape theory, which is an immediate con-
sequence of Alexander duality, constitutes the main result of [2] (Theorem
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1.1; cf. [1, §1] for a correction). This theorem goes back to Q. Haxhibeqiri
and S. Nowak [6], who proved it by using different methods.

On the other hand, there were negative results, asserting that there is
principally no S-duality for categories like the Boardman category [4]. A
second non-existence proof for S-duality emerges from a result by T. Lin [8].
His argument applies to any category which is stable and contains sufficiently
many Eilenberg–MacLane objects.

Crucial for all these non-existence proofs is the validity of a Whitehead
theorem: A map inducing isomorphisms of homotopy groups is a homotopy
equivalence. In our category coss, as in all kinds of shape categories, we do
not have such a Whitehead theorem.

3. The S-dual D and some S-categories. Since, in contrast to [1], we
are dealing with based spaces X = (X,x0), we define for (X,x0), X ⊂ Sn,

DnX = ((Sn \ {x0}) ∪ C(Sn \X), ?),

where C(. . .) denotes the unreduced cone over . . . and ? the vertex of this
cone. Employing the cone C̃ with the ordinary topology we have analogously

D̃nX = (Sn \ {x0}) ∪ C̃(Sn \X)

observing that D̃nX and DnX are naturally homotopy equivalent.
Since Sn \ {x0} ⊂ Sn \ {x0} ∪ C̃(Sn \ X) is closed and, in addition, a

cofibration, we have

Proposition 3.1. In Met there exists a homotopy equivalence

DnX ' (Σ(Sn \X), ?)

(? = top vertex of Σ).

P r o o f. Follows for D̃n and Σ̃, thus for Dn and Σ.

This allows us to retain for based (X,x0) Corollary 3.4 of [1]:

Proposition 3.2. If X ⊂ Sn ⊂ Sn+1 (Sn = equator of Sn+1), X =
(X,x0), is an embedding , then in coss we have natural equivalences

ΣDnX ≈ Dn+1X,(1)

Dn+1ΣX ≈ DnX,(2)

Dn+1DnX ≈ ΣX.(3)

Corollary 3.3. If X in 3.2 is compact , then the equivalences (1)–(3)
hold already in Meth (i.e. they are ordinary homotopy equivalences).

P r o o f. The fact that (1) is an ordinary homotopy equivalence is verified
in [1, 3.5]. Concerning (2) we have (cf. [1, §5, and Corollary 3.5])
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Dn+1(X × I) ≈ Dn+1X and Dn+1(X × I) ≈ ΣDnX.

Finally, (3) follows from (2) immediately as in the proof of [1, 3.4].

Dn turns out to be compatible with the ∧-product. More precisely:

Proposition 3.4. For (X,x0), (Y, y0) ∈Met with X ⊂ Sn and Y ⊂ Sm,
we have a homotopy equivalence

(4) DnX ∧DmY ' Dn+m(X ∧ Y )

(X ∧ Y ⊂ Sn ∧ Sm ≈ Sn+m).

P r o o f. We show the argument for D̃n, D̃m and ∧̃ instead of Dn, Dm

and ∧ (cf. §1 and [1, §1]); since both are homotopy equivalent, the assertion
follows.

We compare

(5) D̃nX ∧̃ D̃mY = (Sn \ {x0} ∪ C̃(Sn \X)) ∧̃ (Sm \ {y0} ∪ C̃(Sm \ Y ))

with

(6) D̃n+m(X ∧̃ Y ) = Sn+m \ {x0, y0} ∪ C̃(Sn+m \X ∧̃ Y )

by specifying various kinds of points in both spaces.
Adopting the notation: x̃ ∈ Sn \ {x0}, ỹ ∈ Sm \ {y0}, x ∈ Sn \ X,

y ∈ Sm \ Y, we obtain

[x̃, ỹ] ∈ Sn \ {x0} ∧̃ Sm \ {y0} resp. in Sn+m \ {x0, y0}
(observing that in the latter space we also find [x0, ỹ] = ? = [x̃, y0]),

[x̃, y, t] ∈ Sn \ {x0} ∧̃ C̃(Sm \ Y ) resp. in C̃(Sn+m \X ∧̃ Y ),

[x, ỹ, s] ∈ C̃(Sn \X) ∧̃ Sm \ {y0} resp. in C̃(Sm+n \X ∧̃ Y ),

[x, y, s, t] ∈ C̃(Sn \X) ∧̃ C̃(Sm \ Y ), s, t ∈ I.
The points of the last kind are those of the double cone over Sn\X ∧̃Sm\Y ,
which is a strong deformation retract of C̃(Sn \X ∧̃ Sm \ Y ) = {[x, y, t]}.

Since

{[x̃, y, t]} ∪ {[x̃, ỹ, s]} ∪ C̃(Sn \X ∧̃ Sm \ Y ) = C̃(Sm+n \X ∧̃ Y ),

we conclude that (6) is a deformation retract of (5), thereby completing the
proof of 3.4.

In [1, §4] we introduced the S-category P, with pairs X = (X,m), m ∈ Z,
X ∈ Met finite-dimensional, as objects, whose morphisms are defined by
means of coss-morphisms in a well-known way. This also works for based
spaces and morphisms, so that we are able to transfer all results of [1, §4] to
our case. In particular, we obtain DkX for any k ≥ 0, DX = D0X and (as
a consequence of 3.2(3)) D2X ≈ X. We agree to write simply X for (X, 0)
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and call X = (X,m) compact (resp. good) whenever X is compact (resp.
good).

We have to define mappings

α : X ∧Y → Z, β : X→ Y ∧ Z,

for X = (X,m), Y = (Y,m′), Z = (Z,m′′). This is accomplished in the
same way as in [1, §4]:

Suppose that for suitable k, l we have coss-morphisms

α : ΣkX ∧ Y → ΣlZ

with k +m+m′ = l +m′′, and

β : ΣkX → ΣlY ∧ Z
with k + m = m′ + m′′ + l. Because coss-morphisms can be desuspended
(cf. 1.7), we are allowed to confine ourselves to morphisms

α : Σm′+m′′−mX ∧ Y → Z, m′ +m′′ −m ≥ 0,

α : X ∧ Y → Σm−m′−m′′Z, m′ +m′′ −m ≤ 0,

and

β : Σm′+m′′−mX → Y ∧ Z, m′ +m′′ −m ≥ 0,

β : X → Σm−m′−m′′Y ∧ Z, m′ +m′′ −m ≤ 0.

So we define

{X,Y ∧ Z}c =
{
{Σm′+m′′−mX,Y ∧ Z}c if m′ +m′′ −m ≥ 0,
{X,Σm−m′−m′′Y ∧ Z}c if m′ +m′′ −m ≤ 0,

and

{X ∧ Y,Z}c =
{
{Σm′+m′′−mX ∧ Y,Z}c if m′ +m′′ −m ≥ 0,
{X ∧ Y,Σm−m′−m′′Z}c if m′ +m′′ −m ≤ 0.

Since according to 1.8 all {. . . , . . .}c = coss(. . . , . . .) carry a natural abelian
group structure which is preserved under suspension, we conclude

Proposition 3.5. {X∧Y,Z}c as well as {X,Y∧Z}c are endowed with
an abelian group structure, which is natural with respect to coss-morphisms
in P.

In addition to P we need 1) the S-category P′ with the same objects as
P but stable homotopy classes of continuous mappings (rather than coss-
morphisms as in the case of P) as morphisms; 2) the S-category KP with
compact X as objects and stable homotopy classes of strong shape mor-
phisms as morphisms; 3) morphism sets KP(X,Y∧Z) (not forming a cate-
gory) which are established by the same procedure as {X,Y∧Z}c above, but
with strong shape morphisms X → Y ∧ Z, X compact or good, Z compact
and Y good, or Y and Z exchanged (§4).
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We have the based version of Lemma 4.1 of [1]:

Lemma 3.6. Up to isomorphism in P, DnX is independent of the par-
ticular embedding X ⊂ Sn and therefore of the dimension n which is used
to establish a “geometrical” DnX.

Lemma 3.7. For compact X the independence of DkX is up to isomor-
phism in P′. Moreover , the isomorphism D2X ≈ X occurs already in P′.

P r o o f. Follows from 3.3 in the same way as 3.6 (i.e. [1, 4.1]) from [1,
3.3].

We define in P

(7) X ∧Y = (X,n) ∧ (Y,m) = (X ∧ Y,m+ n)

obtaining

Proposition 3.8. We have in P an equivalence

(8) D(X ∧Y) ≈ DX ∧DY.

For X, Y compact , this equivalence occurs already in P′.

P r o o f. Follows from 3.2–3.4:
D(X ∧Y) = Σ−m−nDn+m(X ∧Y) ≈ Σ−n−m(DnX ∧DmY)

≈ Σ−nDnX ∧Σ−mDmY = DX ∧DY,

where m and n are dimensions such that DnX and DmY are geometrically
defined.

4. Shape morphisms and Alexander duality. In addition to shape
morphisms f : X → Y between compacta we have to deal with strong shape
morphisms f : X → B ∧ Y (or f : X → Y ∧ B) where X is either compact
or an ANR, B ∈ ANR and Y is compact. This kind of shape morphism has
been defined in [3].

It is a 2-functor f : PB∧Y → PX , where PX is a 2-category with continu-
ous g : X → P ∈ ANR as objects and suitably defined 1- and 2-morphisms,
while PB∧Y is a 2–category with continuous mappings g′ : B ∧ Y → Q ∈
ANR as objects, which factorize over a 1∧ g : B ∧ Y → B ∧ P (B ∈ ANR
is kept fixed). For details we refer to [3], where in particular A5–A8, p. 298,
ensure that we are allowed to confine ourselves to a subcategory P′B∧Y , with
objects of the form 1 ∧ gm : B ∧ Y → B ∧ Cm, Cm being a compact ANR,
m = 1, 2, . . .

In the same way we define f : X → Y ∧B.
The set of all these strong shape morphisms (resp. all their stable homo-

topy classes) is denoted by K(X,B∧Y ) and K(X,Y ∧B) (resp. {X,B ∧ Y }
= Ks(X,B ∧ Y ) and {X,Y ∧B} = Ks(X,Y ∧B)).
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There are three different versions of Alexander duality which are used
throughout this paper. We will assume of course that all spaces Ek in a
spectrum E = {Ek} are in Met.

Theorem 4.1. Let E = {Ek} be a spectrum and (X,x0) = X ⊂ Sn a
based compact space. Then we have a natural (with respect to inclusions)
isomorphism

(1) Ep(X,x0) ≈ Eq(Sn \ {x0}, Sn \X), p+ q = n, p, q ∈ Z.
Theorem 4.2. Suppose E = {Ek} is a spectrum with compact Ek and

(X,x0) = X ⊂ Sn a based compact space. Then we have a natural (with
respect to inclusions) isomorphism

(2) Ep(Σ(Sn \X), ?) ≈ Eq(X,x0), p+ q = n, p, q ∈ Z.
In 4.1 and 4.2, (co-) homology Ep(X), Eq(Y ) is always defined by using

strong shape morphisms, e.g. Sn+k → X+ ∧ Ek for homology and ΣkY →
Ek+q for cohomology, resp. in the based case (cf. [3, §3, §5], for details).

In order to formulate the next Alexander duality theorem, we take a
compact spectrum E′ = {E′k} as in 4.2 and a good space B ∈Met. Now we
introduce a formal spectrum E = {B ∧ E′k} = B ∧ E′, with pairs of spaces
B ∧ E′k and mappings of pairs of spaces

σk = 1 ∧ σ′k : B ∧ΣE′k → B ∧ E′k+1

as bonding maps. Alternatively we could realize all this by talking about
virtual spaces B∧Ek and (componentwise defined) mappings between these
virtual spaces (cf. remark at the end of §1).

This entitles us to form for compact X ⊂ Sn (co-) homology Ep(Sn\X),
Eq(X) by using strong shape morphisms

Sp+k → ((Sn \X)+ ∧B) ∧ E′k and ΣkX → B ∧ E′q+k.
The relative groups are defined in the same way. We have e.g.

Ep(Sn \X) = E′p((S
n \X) ∧B).

We can of course also introduce formal spectra E = E′ ∧B.

Theorem 4.3. Let E = B ∧ E′ be such a formal spectrum. Then for
compact based (X,x0) = X ⊂ Sn we have the same isomorphism as in 4.2:

(3) Ep(Σ(Sn \X), ?) ≈ Eq(X,x0), p+ q = n, p, q ∈ Z.
All these duality isomorphisms are also natural with respect to mappings

of spectra (in a well-known way; cf. 4.5 below).
Theorem 4.1, being a classical Alexander isomorphism, is identical with

[3, Theorem 7.1]; Theorem 4.2(2) is identical with Theorem 1.2(2) of [2].
Only Theorem 4.3 is new. However, the proof is virtually identical with

that of 4.2 in [2, §3]: One simply has to replace the 2-category P′Y , Y = Eq+k,
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by P′B∧Y . Then all conclusions in [2, p. 20] carry through without any
change.

We reformulate (1):

Corollary 4.4. Under the same assumptions as in 4.1 we have for based
compacta (X,x0) a natural isomorphism

(1′) Ep(X,x0) ≈ Eq(Σ(Sn \X), ?), p+ q = n, p, q ∈ Z,
where, as usual , ? = top vertex of the unreduced suspension.

P r o o f. There are isomorphisms

Eq(Sn \ {x0}, Sn \X) ≈ Eq(Sn \ {x0} ∪ C(Sn \X), C(Sn \X))

≈ Eq(Sn \ {x0} ∪ C(Sn \X), ?)

≈ Eq(Σ(Sn \X), ?);

the first isomorphism is an excision (one cuts off the top of the cone); the
second stems from the exact cohomology sequence and the third from 3.1.

For suspension spectra E = {ΣkA}, {Σk}, {ΣkY ∧B}, we translate (1′),
(2), (3) into a stable form:

(1′′) {Sp, X ∧A},≈ {ΣpDX,A}, X compact, A arbitrary,

(2′) {S−p, DX ∧ Y } ≈ {Σ−pX,Y }, X, Y compact,

(3′) {S−p, (DX ∧B) ∧ Y } ≈ {S−p, DX ∧ (Y ∧B)}
≈ {Σ−pX,Y ∧B}, X, Y compact, B good,

and in all three cases p ∈ Z.
As a result we obtain, replacing X by ΣpX, in the same order and for

the same kind of spaces:

{S0, X ∧A} ≈ {DX,A},(I)

{S0, DX ∧ Y } ≈ {X,Y },(II)

{S0, (DX ∧B) ∧ Y } ≈ {S0, DX ∧ (Y ∧B)} ≈ {X,Y ∧B}.(III)

In applications we encounter A = P ∧ Y , P good, Y compact.

Proposition 4.5. The isomorphisms (I)–(III) are natural with respect to
stable homotopy classes of strong shape morphisms f : X → X ′, g : Y → Y ′

and continuous mappings h : P → P ′, h′ : B → B′ for good B, B′, P , P ′.
Since P ′, B′ are assumed to be good , the mappings h, h′ can be replaced by
strong shape mappings.

P r o o f. First of all, (1′′), (2′), (3′) are natural with respect to stable map-
pings between coefficient spectra (cf. also [3, §6, p. 267]) and with respect
to inclusions for the spaces X. Now we proceed as in [1, §1] and factorize a
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strong shape morphism f as in [1, §1(3)]. The same argument which estab-
lished [1, Corollary 1.2] assures us that for given embeddings X,X ′ ⊂ Sn

(n fixed) the isomorphisms (1′′), (2′), (3′) are natural with respect to strong
shape morphisms.

The naturality properties of the stabilized versions (I)–(III) follow now
from 3.6.

5. Some special properties of coss-morphisms. In §1 we introduced
coss-morphisms β : X → Y ∧ Z by referring to strong shape morphisms of
the form X ′ → Q ∧ Z ′ and P → Ỹ ∧ R (X ′, Ỹ , Z ′ compact, P,Q,R good).
Therefore we have to investigate whether

1) for X, Z compact and Y good, and
2) for X, Z good and Y compact,

such a β reduces to a strong shape morphism of this kind and vice versa.

Ad 1) Given a strong shape morphism f : X → Y ∧ Z (X,Z compact,
Y good) and t : Z → R ∈ ANR, we have a continuous f : X → Y ∧ R
and an extension over some good X ⊂ P (e.g. some open neighborhood in
a Hilbert cube or some Sn containing X) which, because X is compact, can
be assumed to be also compact: f1 : P → Y ∧R. Because Z is compact, we
can assume that R is compact, so that f1 maps already into some Ỹ ∧ R,
with Ỹ ⊂ Q = Y compact. This establishes h : P → Ỹ ∧R. Setting X ′ = X,
Z ′ = Z we obtain a g : X ′ → Q ∧ Z ′ (Q = Y ), namely g = f . The same
kind of argument provides us with an h : P̃ → Y ′ ∧ R (observing that we
can assume X = X ′, P = P̃ ).

Ad 2) Suppose that X,Z are good and Y compact and let f : X → Y ∧Z
be a strong shape morphism. Then we set X = P = P̃ and Y ′ = Ỹ = Y ,
providing us with P̃ → Y ′ ∧R and P → Ỹ ∧R. Moreover, let s : Y → Q ∈
ANR and a : X ′ → X be given, with X ′ compact. Then composing with
f yields (up to homotopy) a continuous h1 : X ′ → Q ∧ Z = Q ∧ R. By the
same argument as in 1) we find a compact Z ′ ⊂ Z such that h1 factorizes
through Q ∧ Z ′, yielding a g : X ′ → Q ∧ Z ′.

In both cases it is clear that these morphisms establish a β ∈ coss(X,
Y ∧ Z).

On the other hand, let β ∈ coss(X,Y ∧ Z) with either X,Z compact,
Y good or X,Z good and Y compact. Then the existence of a strong shape
morphism

X = X ′ → Q ∧ Z ′ = Y ∧ Z and X = P → Ỹ ∧R = Y ∧ Z
is part of the definition.

Summarizing, we have:
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Proposition 5.1. For 1) X, Z compact , Y good , or 2) X,Z good , Y
compact , there exists a natural isomorphism between coss(X,Y ∧ Z) and
the abelian group of all stable homotopy classes of strong shape morphisms
X → Y ∧ Z denoted by Ks(X,Y ∧ Z).

Concerning coss-morphisms α : X ∧Y → Z we have a similar assertion:

Corollary 5.2. 1) For X, Y, Z compact we have an isomorphism

coss(X ∧ Y, Z) ≈ Ks(X ∧ Y, Z) = {X ∧ Y, Z}.
2) For X, Y, Z good and X or Y compact we have an isomorphism

coss(X ∧ Y,Z) ≈Mets(X ∧ Y, Z).

P r o o f. Ad 1) Let α ∈ coss(X ∧ Y,Z) with X,Y, Z compact. Then we
can set X = X ′, Y = Y ′ and Z = Z ′, hence X ′ ∧ Y ′ → Z ′ (as part of
α(X ′, Y ′, R)) gives a g ∈ Ks(X ∧ Y, Z).

Suppose on the other hand that g ∈ Ks(X ∧ Y, Z). Then by setting
X ′ = X, Y ′ = Y and Z ′ = Z we obtain a map X ′ ∧ Y ′ → Z ′. Moreover, let
t : Z → R ∈ ANR. Then

X ∧ Y → Z → R

can be assumed to be continuous, allowing an extension over some P ∧Q ∈
ANR, hence providing us with mappings P̃ ∧ Q → R and P ∧ Q̃ → R

(P = P̃ , Q = Q̃). According to Definition 1.1, these mappings determine an
α ∈ coss(X ∧ Y,Z).

Ad 2) It suffices to treat the case of X, Y, Z good and Y compact,
because of 1.3.

Then according to 1.2(3),

coss(X ∧ Y,Z) ≈ coss(X ∧ Y, Z).

Moreover, since X,Y, Z are good, [1, 2.3] applies, yielding

coss(X ∧ Y,Z) ≈Mets(X ∧ Y, Z).

This completes the proof of 5.2.

R e m a r k. There are of course stabilized versions of 5.1 and 5.2 operating
with {. . . , . . .}s instead of coss(. . . , . . .), KP instead of Ks, P′ instead of
Mets and X,Y,Z replacing X,Y, Z.
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