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Loop spaces and homotopy operations

by

David B l a n c (Haifa)

Abstract. We describe an obstruction theory for an H-space X to be a loop space,
in terms of higher homotopy operations taking values in π∗X. These depend on first
algebraically “delooping” the Π-algebras π∗X, using the H-space structure on X, and
then trying to realize the delooped Π-algebra.

1. Introduction. An H-space is a topological space X with a mul-
tiplication; the motivating example is a topological group G, which from
the point of view of homotopy theory is just a loop space: G ' ΩBG =
map∗(S

1, BG). The question of whether a given H-space X is, up to ho-
motopy, a loop space, and thus a topological group (cf. [Mil, §3]), has been
studied from a variety of viewpoints—see [A, B, DL, F, H, Ma2, St1, St2,
Ste, Su, Z], and the surveys in [St3], [St4, §1], and [Ka, Part II]. Here we ad-
dress this question from the aspect of homotopy operations, in the classical
sense of operations on homotopy groups.

As is well known, the homotopy groups of a space X have Whitehead
products and composition operations defined on them; in addition, there
are various higher order operations on π∗X, such as Toda brackets; and
the totality of these actually determine the homotopy type of X (cf. [Bl3,
§7.17]). They should thus enable us—in theory—to determine whether X is
a loop space, up to homotopy. It is the purpose of this note to explain in
what sense this can actually be done:

First, we show how an H-space structure on X can be used to define the
action of the primary homotopy operations on the shifted homotopy groups
G∗ = π∗−1X (which are isomorphic to π∗Y if X ' ΩY). This action will
behave properly with respect to composition of operations if X is homotopy-
associative, and will lift to a topological action of the monoid of all maps
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76 D. Blanc

between spheres if and only if X is a loop space (see Theorem 5.7 below for
the precise statement). The obstructions to having such a topological action
may be formulated in the framework of the obstruction theories for realizing
Π-algebras and their morphisms described in [Bl3], which are stated in turn
in terms of certain higher homotopy operations:

Theorem A (Theorem 6.24 below). An H-group X is H-equivalent to a
loop space if and only if the collection of higher homotopy operations defined
in Section 6 below (taking values in homotopy groups) vanish coherently.

The question of whether a given topological space X supports anH-space
structure to begin with was addressed in [Bl4], where a similar obstruction
theory, in terms of higher homotopy operations, was defined.

1.1. Notation and conventions. T∗ will denote the category of pointed
CW complexes with base-point preserving maps, and by a space we shall
always mean an object in T∗, which will be denoted by a boldface letter:
A,B, . . . ,X, Sn, and so on. The base-point will be written ∗ ∈ X. The
full subcategory of 0-connected spaces will be denoted by T0. ∆[n] is the
standard topological n-simplex in Rn+1.

The space of Moore loops on Y ∈ T0 will be denoted by ΩY. This is
homotopy equivalent to the usual loop space, that is, the space map∗(S

1,Y)
of pointed maps (see [W, III, Corollary 2.19]). The reduced suspension of X
is denoted by ΣX.
AbGp is the category of abelian groups, and grAbGp the category of

positively graded abelian groups.

Definition 1.2. ∆ is the category of ordered sequences n = 〈0, 1, . . . , n〉
(n ∈ N), with order-preserving maps, and ∆∂ the subcategory having the
same objects, but allowing only one-to-one morphisms (so in particular,
morphisms from n to m exist only for n ≤ m). ∆op, ∆op

∂ are the opposite
categories.

As usual, a simplicial object over any category C is a functor X : ∆op →
C; more explicitly, it is a sequence {Xn}∞n=0 of objects in C, equipped with
face maps di : Xn → Xn−1 and degeneracies sj : Xn → Xn+1 (0 ≤ i, j ≤ n),
satisfying the usual simplicial identities ([Ma1, §1.1]). We often denote such a
simplicial object by X•. The category of simplicial objects over C is denoted
by sC.

Similarly, a functor X : ∆op
∂ → C is called a ∆-simplicial object over C;

this is simply a simplicial object without the degeneracies, and will usually
be written X∆

• . When C = Set , these have been variously called ∆-sets,
ss-sets, or restricted simplicial sets in the literature (see [RS]). The category
of ∆-simplicial objects over C is denoted by ∆C. We shall usually denote the
underlying ∆-simplicial object of a simplicial object Y• ∈ sC by Y ∆• ∈ ∆C.
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The category of pointed simplicial sets will be denoted by S∗ (rather
than sSet∗); its objects will be denoted by boldface letters K,L,M, . . . The
subcategory of fibrant simplicial sets (Kan complexes) will be denoted by
SKan
∗ , and that of reduced Kan complexes by SKan

0 . |K| ∈ T∗ will denote
the geometric realization of a simplicial set K ∈ S∗, while SX ∈ SKan

∗
will denote the singular simplicial set associated with a space X ∈ T∗. G is
the category of simplicial groups. (See [Ma1, §§3, 14, 15, 17] for the defini-
tions.)

For each of the categories C = T∗, T0, SKan
∗ , SKan

0 , or G, we will denote
by [X,Y]C (or simply [X,Y], if there is no danger of confusion) the set of
pointed homotopy classes of maps X → Y (cf. [Ma1, §5] and [K, §3]). The
constant pointed map will be written c∗, or simply ∗. The homotopy category
of C, whose objects are those of C, and whose morphisms are homotopy
classes of maps in C, will be denoted by hoC. The adjoint functors S and | · |
induce equivalences of categories hoT∗ ≈ hoSKan

∗ ; similarly hoSKan
0 ≈ hoG

under the adjoint functors G, W (see §5.1 below).

Definition 1.3. An H-space structure for a space X ∈ T∗ is a choice
of an H-multiplication map m : X ×X → X such that m ◦ i = ∇, where
i : X ∨X ↪→ X ×X is the inclusion, and ∇ : X ∨X → X is the fold map
(induced by the identity on each wedge summand). If X may be equipped
with such an m, we say that 〈X,m〉 (or just X) is an H-space. (If we only
have m ◦ i ∼ ∇, we can find a homotopic map m′ ∼ m such that m′ ◦ i = ∇,
since X is assumed to be well-pointed.)

AnH-space 〈X,m〉 is homotopy-associative ifm◦(m, idX) ∼ m◦(idX ,m):
X × X × X → X. It is an H-group if it is homotopy-associative and has
a (two-sided) homotopy inverse ι : X → X with m ◦ (ι × idX) ◦∆ ∼ c∗ ∼
m ◦ (idX ×ι) ◦ ∆ (where ∆ : X → X × X is the diagonal). In fact, any
connected homotopy-associative H-space is an H-group (cf. [W, X, Theo-
rem 2.2]).

If 〈X,m〉 and 〈Y, n〉 are two H-spaces, a map f : X → Y is called an
H-map if n ◦ (f × f) ∼ f ◦m : X ×X → Y. The set of pointed homotopy
classes of H-maps X→ Y will be denoted by [X,Y]H .

One similarly defines H-simplicial sets and simplicial H-maps in the
category S∗.

1.4. Organization. In Section 2 we review some background material on
Π-algebras, and in Section 3 we explain how an H-space structure on X
determines the Π-algebra structure of its potential delooping. In Section 4
we provide further background on (∆-)simplicial spaces and Π-algebras, and
bisimplicial groups. In Section 5 we show, in the context of simplicial groups,
that the Π-algebra structure on π∗−1X can be made “topological” if and
only if X is a loop space (Theorem 5.7).
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Finally, in Section 6 we recall the obstruction theory of [Bl3] for realizing
Π-algebras in terms of rectifying (∆-)simplicial spaces, and explain how it
applies to the recognition of loop spaces (see Theorem 6.24). We also simplify
the general obstruction theory in question, by showing that it suffices to
rectify the underlying ∆-simplicial space associated with a free simplicial
Π-algebra resolution (Proposition 6.14).

I would like to thank the referee for his comments.

2. Π-algebras. In this section we briefly recall some facts on the primary
homotopy operations.

Definition 2.1. A Π-algebra is a graded group G∗ = {Gk}∞k=1 (abelian
in degrees > 1), together with an action on G∗ of the primary homotopy
operations (i.e., compositions and Whitehead products, including the “π1-
action” of G1 on the higher Gn’s, as in [W, X, §7]), satisfying the usual
universal identities. See [Bl1, §3] or [Bl2, §2.1] for a more explicit description.
The category of Π-algebras (with the obvious morphisms) will be denoted
by Π-Alg.

Definition 2.2. We say that a space X realizes a Π-algebra G∗ if there
is an isomorphism of Π-algebras G∗ ∼= π∗X. (There may be non-homotopy
equivalent spaces realizing the same Π-algebra—cf. [Bl3, §7.18].) Similarly,
a morphism of Π-algebras φ : π∗X → π∗Y (between realizable Π-algebras)
is realizable if there is a map f : X→ Y such that π∗f = φ.

Definition 2.3. The free Π-algebras are those isomorphic to π∗W, for
some (possibly infinite) wedge of spheres W; we say that π∗W is gener-
ated by a graded set L∗ = {Lk}∞k=1, and write π∗W ∼= F (L∗), if W =∨∞
k=1

∨
x∈Lk Skx.

Fact 2.4. If we let Π denote the homotopy category of wedges of spheres,
and F ⊂ Π-Alg the full subcategory of free Π-algebras, then π∗ : Π → F is
an equivalence of categories. Note that any Π-algebra morphism φ : G∗ →
G′∗ is uniquely realizable if G∗ is a free Π-algebra.

For future reference we note the following:

Lemma 2.5. If A∗, B∗ ∈ F are free Π-algebras and A∗
i
↪→ B∗

r→→ A∗ is
a retraction (r ◦ i = idA∗), then there is a free Π-algebra C∗ ∈ F such that
B∗ = A∗ q C∗.

P r o o f. Let Q : Π-Alg → grAbGp be the “indecomposables” functor
(so Q(π∗W) ∼= H∗(W ;Z)—see [Bl1, §2.2.1]); then Q(A∗) and Q(B∗) are free

abelian groups, and as Q(A∗)
Q(i)
↪→ Q(B∗)

Q(r)→→ Q(A∗) is a retraction in AbGp,
there is a graded free abelian group E∗ such that Q(B∗) = Q(A∗) ⊕ E∗.
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Choosing graded sets {eγ}γ∈Γ of generators for E∗ (in degree 1, choose
generators for the free group Ker(r) ⊆ B∗), and setting C∗ = F ({eγ}γ∈Γ ),
yields the required decomposition (by the Hurewicz Theorem).

Definition 2.6. Let T : Π-Alg → Π-Alg be the “free Π-algebra”
comonad (cf. [M, VI, §1]), defined by TG∗ =

∐∞
k=1

∐
g∈Gk\{0} π∗S

k
(g). The

counit ε = εG∗ : TG∗ →→ G∗ is defined by ιk(g) 7→ g (where ιk(g) is the canoni-
cal generator of π∗Sk(g)), and the comultiplication ϑ = ϑG∗ : TG∗ ↪→ T 2G∗ is

induced by the natural transformation ϑ : idF → T |F defined by xk 7→ ιk(xk).

Definition 2.7. An abelian Π-algebra is one for which all Whitehead
products vanish.

These are indeed the abelian objects of Π-Alg—see [Bl2, §2]. If X is an
H-space, then π∗X is an abelian Π-algebra (cf. [W, X, (7.8)]).

3. Secondary Π-algebra structure. We now describe how an H-
space structure on X determines the Π-algebra structure of a (potential)
classifying space.

3.1. The James construction. For any X ∈ T∗, let JX be the James
reduced product construction, with λ : JX → ΩΣX the homotopy equiva-
lence of [W, VII, (2.6)], and jX : X ↪→ JX and iX : X ↪→ ΩΣX the natural
inclusions.

If 〈X,m〉 is an H-space, then there is a retraction m : JX → X (with
m ◦ jX = idX), defined by

(3.2) m(x1, x2, . . . , xn) = m(. . .m(m(x1, x2), x3), . . . , xn)

(cf. [J, Theorem 1.8]).

Definition 3.3. Let X be an H-space. Given homotopy classes α ∈
[ΣA, ΣB] and β ∈ [B,X], we define the derived composition α ? β ∈ [A,X]
as follows:

Choose representatives f : ΣA → ΣB and g : B → X for α, β respec-
tively, and let λ−1 : ΩΣX→ JX be any homotopy inverse to λ. Then α?β
is represented by the composite

A iA−→ ΩΣA Ωα−→ ΩΣB λ−1

−→ JB
Jβ−→ JX m−→ X.

Fact 3.4. Note that if α = Σα for some α : A→ B, then α ? β = α#β
(this is well-defined, because X is an H-space).

We shall be interested in the case where B is a wedge of spheres and
A = Sn, so ? assigns a class ω ? (β1, . . . , βk) ∈ πnX to any k-ary homotopy
operation ω# : πn1+1(−) × . . . × πnk+1(−) → πn+1(−) and collection of
elements βi ∈ πniX (i = 1, . . . , k).
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In particular, if ω : Sp+q+1 → Sp+1 ∨ Sq+1 represents the Whitehead
product, one may define a “Samelson product” ω ? (−,−) : πpX × πqX →
πp+qX for any H-space X, even without assuming associativity or the exis-
tence of a homotopy inverse (compare [W, X, §5]).

However, in general this ω ? (−,−) need not enjoy any of the usual
properties of the Samelson product (bi-additivity, graded-commutativity,
Jacobi identity—cf. [W, X, Theorems 5.1 & 5.4]). To ensure that they hold,
one needs further assumptions on X.

First, we note the following homotopy version of [W, VII, Theorem 2.5],
which appears to be folklore:

Lemma 3.5. If 〈X,m〉 is a homotopy-associative H-space, then any map
f : A → X extends to an H-map f̂ : JA → X, which is unique up to
homotopy.

P r o o f. Given f : A→ X, define f̂ : JA→ X by

f̂(x1, . . . , xr) = m(. . .m(m(f(x1), f(x2)), f(x3)), . . . , f(xr)).

This is an H-map by [N, Lemma 1.4]. Now let ĝ : JA → X be another
H-map, with a homotopy H : f ' g := ĝ ◦ jA. Since ĝ is an H-map, there
is a homotopy G : n ◦ (ĝ × ĝ) ' ĝ ◦ m (where m : JA × JA → JA is
the H-multiplication). Moreover, by [N, Lemma 1.3(a)] we may assume G
is stationary on JA ∨ JA.

For each r ≥ 0, let JrA denote the rth stage in the construction of JA,
with jsr : JsA ↪→ JrA and js : JsA ↪→ JA the inclusions, starting with
J0A = ∗ and J1A = A. We define TrA to be the pushout in the following
diagram:

Jr−1A Jr−1A×A

JrA TrA

i1 //

jr−1
r

²²
qr

²²
ι

//
PO
� �� �

for r ≥ 1 (so T1A = A ∨A); then Jr+1A is the pushout in

TrA JrA×A

JrA Jr+1A

ψr=(i1,jr−1
r ×id)//

ϕr=(id,qr)

²²
qr+1

²²

jrr+1

//
PO
� �� �

Now let f̂r = f̂ |JrA and ĝr = ĝ|JrA; we shall extend H : f ' g to a
homotopy Ĥ : f̂ ' ĝ by inductively constructing homotopies Ĥr : f̂r ' ĝr
(starting with Ĥ1 = H) such that Ĥr|Jr−1A = Ĥr−1: let nr : Xr → X
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denote the n-fold multiplication nr(x1, . . . , xr) = n(. . . n(x1, x2), . . .), xr)
and qr : Ar → JrA the quotient map, so that nr ◦ fr = f̂r ◦ qr.

As a first approximation, define Hr+1 : f̂r × f ' ĝr × g on JrA ×A in
the above pushout to be the sum of homotopies Hr+1 = n ◦ (Ĥr ×H) +G ◦
(jr × jA). This does not quite agree with Ĥr ◦ ϕr on TrA, but since G is
stationary on JA∨ JA we have Hr+1|JrA = n ◦ (Ĥr × id) + (stationary) =
Ĥr+(stationary) and Hr+1|Jr−1A×A = n◦(Ĥr−1×H)+G◦(jr−1×jA) = Hr.

As Ĥ1 = H, we see that H2|T2A = (H + (stationary), H), while H ◦ ϕ1

= (H,H). Thus we may assume by induction that there is a homotopy of
homotopies F : Hr+1|TrA ' Ĥr ◦ϕr. Since TrA ↪→ JrA×A is a cofibration,
the inclusion

TrA× I2 ∪ (JrA×A)× ({0, 1} × I ∪ I × {0}) ↪→ (JrA×A)× I2

is a trivial cofibration, and thus we may use the homotopy extension prop-
erty to obtain a new homotopy F̃ on (JrA × A) × I2 which restricts to
H̃r+1 : f̂r × f ' ĝr × g on JrA × A × I × {1}, such that H̃r+1 extends
Ĥr ◦ϕr, and thus may be combined with Ĥr to define a homotopy Ĥr+1 as
required.

Corollary 3.6. If X is a homotopy-associative H-space, then for any
A ∈ T∗ the inclusion jA : A → JA induces a bijection j∗A : [JA, X]H

∼=→
[A,X]T∗ .

P r o o f. Since X is a homotopy-associative H-space, the retraction n =
îdX : JX→ X is an H-map, by Lemma 3.5, so we may define φ : [A,X]T∗ →
[JA,X]H by φ([f ]) = [m ◦ J(f)], and clearly j∗A(φ([f ])) = [m ◦ J(f)
◦ jA] = [f ]. On the other hand, given an H-map g : JA → X we have
m ◦ J(g ◦ jA) ◦ jA ' g ◦ jA, which implies that m ◦ J(g ◦ jA) ' g by
Lemma 3.5 again. Thus also φ(j∗A([g])) = [g].

3.7. Notation. If X is a homotopy-associative H-space, we shall write
πHt X for [ΩSt,X]H = [JSt−1,X]H ∼= πt−1X.

Proposition 3.8. If X is a homotopy-associative H-space, then

α ? (β ? γ) = (α#β) ? γ

for any α ∈ [ΣA, ΣB], β ∈ [ΣB, ΣC], and γ ∈ [C,X].

P r o o f. It suffices to consider α = idΣB , and so to show that

ΩΣB ΩΣC ΩΣX

ΩΣX X

Ωβ //

ΩΣ(β?γ)

JJJJJJJJ$$

ΩΣγ //

m̂

²²
m̂

//
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commutes up to homotopy (where m̂ is the composite ΩΣX λ−1

−→ JX
m−→ X)—or, since β ? γ is defined to be the composite m̂ ◦ΩΣγ ◦Ωβ ◦ iB ,

that the two composites φ = m̂ ◦ΩΣγ ◦Ωβ and ψ = m̂ ◦ΩΣm̂ ◦ (ΩΣ)2γ ◦
ΩΣΩβ ◦ΩΣiB are homotopic.

Now if X is a homotopy-associative H-space, then m̂ is an H-map by
Lemma 3.5, so φ, ψ : ΩΣB → X are H-maps. By Corollary 3.6 it suffices
to check that φ ◦ iB ∼ ψ ◦ iB—i.e., that m̂ ◦ΩΣγ ◦Ωβ ◦ iB is homotopic to
the composition of

B iB−→ ΩΣB ΩΣiB−−−−→ (ΩΣ)2B ΩΣΩβ−−−−→ (ΩΣ)2C
(ΩΣ)2γ−−−−−→ (ΩΣ)2X ΩΣm̂−−−−→ ΩΣX m̂−→ X.

But ΩΣγ ◦Ωβ ◦ iB is adjoint to (Σγ) ◦ β, while the composition of

B iB−→ΩΣB ΩΣiB−−−−→ (ΩΣ)2B ΩΣΩβ−−−−→ (ΩΣ)2C (ΩΣ)2γ−−−−−→ (ΩΣ)2X ΩΣm̂−−−−→ΩΣX

is adjoint to Σ(m̂◦ΩΣγ ◦Ωβ ◦ iB) which is equal to Σ(m̂◦ ˜(Σγ) ◦ β) (where
f̃ denotes the adjoint of f). Since for any f : Y → Z the adjoint of Σf is
ΩΣf ◦ iY , we see m̂ ◦ Σ̃f ∼ f , which completes the proof.

It is readily verified that when X ' ΩY, the secondary composition is
the adjoint of the usual composition in π∗Y; thus we have:

Corollary 3.9. If X is an H-group, then the graded abelian group G∗
defined by Gk := πHk X ∼= πk−1X (with γ ∈ Gk corresponding to γ ∈ πk−1X)
has a Π-algebra structure defined by the derived compositions; that is, if
ψ ∈ πk(St1 ∨ . . . ∨ Stn) and γj ∈ Gtj for 1 ≤ j ≤ n, then

ψ#(γ1, . . . , γn) := ψ ? (γ1, . . . , γn) ∈ Gk.
If X ' ΩY, then G∗ is isomorphic to π∗Y as a Π-algebra.

Definition 3.10. For any H-group 〈X,m〉, the Π-algebra structure on
the graded abelian group G∗ of Corollary 3.9 will be called the delooping of
π∗X, and denoted by Ω−1π∗X (so in particular Ω−1π∗ΩY ∼= π∗Y).

Remark 3.11. Note that Corollary 3.9 provides us with an algebraic
obstruction to delooping a space X: if there is no way of putting a Π-algebra
structure on the graded abelian group G∗ = π∗−1X which is consistent with
Fact 3.4, then X is not a loop space, or even a homotopy-associativeH-space.
(This is of course assuming that the Π-algebra π∗X is abelian—otherwise
X cannot even be an H-space.)

Example 3.12. Consider the Π-algebra G∗ defined by G2 = Z〈x〉 (i.e.,
x generates the cyclic group G2), G3 = Z/2〈η#

2 x〉, G4 = Z/2〈η#
3 η

#
2 x〉, and

G5 = Z/2〈η#
4 η

#
3 η

#
2 x〉, with Gt = 0 for t 6= 2, 3, 4, 5 and all Whitehead

products zero.
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There can be no homotopy-associative H-space X with π∗X ∼= G∗, since
the Π-algebra G′∗ = Ω−1G∗ cannot be defined consistently: we would have
G′3 = Z〈x〉, G′4 = Z/2〈η#

3 x〉, G′5 = Z/2〈η#
4 η

#
3 x〉, and G′6 = Z/2〈η#

5 η
#
4 η

#
3 x〉

by Fact 3.4; but π6S3 = Z/12〈α〉 with 6α = η#
5 η

#
4 η3, and thus α#x ∈ G′6

cannot be defined consistently with the fact that (6α)#x 6= 0.
(We do not claim that G∗ is realizable; but the obstructions to realizing

G∗ by a space X ∈ T∗ require secondary (or higher order) information, while
the obstructions to its realization by an H-group are primary.)

4. Simplicial spaces and Π-algebras. We next recall some back-
ground on (∆-)simplicial spaces and Π-algebras, and bisimplicial groups:

Definition 4.1. Recall that a simplicial object over a category C is a
functor X : ∆op → C (§1.2); an augmented simplicial object X• → A over C
is a simplicial object X• ∈ sC, together with an augmentation ε : X0 → A
in C such that

(4.2.) ε ◦ d1 = ε ◦ d0.

Similarly for an augmented ∆-simplicial object .

Definition 4.3. A simplicial Π-algebra A∗• is called free if for each
n ≥ 0 there is a graded set Tn ⊆ (A∗)n such that (A∗)n is the free Π-algebra
generated by Tn, and each degeneracy map sj : (A∗)n → (A∗)n+1 takes Tn

to Tn+1.
A free simplicial resolution of a Π-algebra G∗ is defined to be an aug-

mented simplicial Π-algebra A∗• → G∗ such that A∗• is a free simplicial
Π-algebra, the homotopy groups of the simplicial group Ak• vanish in di-
mensions n ≥ 1, and the augmentation induces an isomorphism π0Ak• ∼= Gk.

Such resolutions always exist, for any Π-algebra G∗—see [Q1, II, §4], or
the explicit construction in [Bl1, §4.3].

4.4. Realization. Let W• ∈ sT∗ be a simplicial space; its realization (or
homotopy colimit) is a space |W•| ∈ T∗ constructed by making identifica-
tions in

∐∞
n=0 Wn × ∆[n] according to the face and degeneracy maps of

W• (cf. [S1, §1]). There is also a modified realization ‖W•‖ ∈ T∗, defined
similarly, but without making the identifications along the degeneracies; for
“good” simplicial spaces (which include all those we shall consider here) one
has ‖W•‖ '→ |W•| (cf. [S2, App. A]). Of course, ‖W∆

• ‖ is also defined for
∆-simplicial spaces W∆

• ∈ ∆T∗.
For any reasonable simplicial space W•, there is a first quadrant spectral

sequence with

(4.5) E2
s,t = πs(πtW•)⇒ πs+t|W•|

(see [BF, Thm. B.5] and [BL, App.]).



84 D. Blanc

Definition 4.6. For any connected X ∈ T∗, an augmented simplicial
space W• → X is called a resolution of X by spheres if each Wn is homo-
topy equivalent to a wedge of spheres, and π∗W• → π∗X is a free simplicial
resolution of Π-algebras (Def. 4.3).

Using the above spectral sequence, we see that the natural map W0 →
|W•| then induces an isomorphism π∗X ∼= π∗|W•|, so |W•| ' X.

5. A simplicial group version. For our purposes it will be convenient
to work at times in the category G of simplicial groups. First, we recall some
basic definitions and facts:

5.1. Simplicial groups. Let F : S∗ → G denote the free group functor
of [Mi2, §2]; this is the simplicial version of the James construction, and in
particular |FK| ' J |K|.

Let G : S∗ → G be Kan’s simplicial loop functor (cf. [Ma1, Def. 26.3]),
with W : G → SKan

0 its adjoint, the Eilenberg–Mac Lane classifying space
functor (cf. [Ma1, §21]).

Then |GK| ' Ω|K| and |K| ' |WGK|. Moreover, unlike T∗, where
we have only a (weak) homotopy equivalence, in G there is a canonical
isomorphism φ : FK ∼= GΣK (cf. [C, Prop. 4.15]), and there are natural
bijections

(5.2) HomS∗(ΣL,WFK) ∼= HomG(GΣL, FK)
φ∗−→ HomG(FL, FK) ∼= HomS∗(L, FK)

for any L ∈ S∗ (induced by the adjunctions), and similarly for homotopy
classes of maps.

Thus, we may think of FSn as the simplicial group analogue of the
n-sphere; in particular, if K is in G, or even if K is just an associative H-
simplicial set which is a Kan complex, we shall write πHt K for [FSt−1,K]H
(compare §3.7). Similarly, Fen is the G analogue of the n-disc in the sense
that any nullhomotopic map f : FSn−1 → K extends to Fen.

R e m a r k 5.3. The same facts as in §4.4 hold also if we consider bisim-
plicial groups (which we shall think of as simplicial objects G• ∈ sG) instead
of simplicial spaces. In this case the realization |W•| should be replaced by
the diagonal diag(G•), and the spectral sequence corresponding to (4.5),
with

(5.4) E2
s,t = πs(πtG•)⇒ πs+t diag G•,

is due to Quillen (cf. [Q2]).

The above definitions provide us with a functorial simplicial version of
the derived composition of §3.3:
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Definition 5.5. If K ∈ SKan
∗ is an H-simplicial set which is a Kan

complex, one again has a retraction of simplicial sets m : FK→ K, defined
as in (3.2). Given a homomorphism of simplicial groups f : FA→ FB and
a map of simplicial sets g : B → K, the composite m ◦ Fg ◦ f : FA → K
will be denoted by f ? g.

Note that if f̃ : ΣA → WFB and f : A → FB correspond to f under
(5.2), the composite m ◦ Fg ◦ f corresponds to f ? g, and represents the
derived composition [f ] ? [g] in [A,K]S∗ ∼= [|A|, |K|]T∗ .

R e m a r k 5.6. The simplicial version of the ? operation defined here is
obviously functorial in the sense that (e∗f) ? g = e∗(f ? g) for e : FC→ FA
in G, and f ? (g∗h) = (f ? g)∗h for any H-map h : 〈K,m〉 → 〈L, n〉 between
fibrant H-simplicial sets which is strictly multiplicative (i.e., n ◦ (h × h) =
h ◦m : K×K→ L).

However, Proposition 3.8 is still valid only in the homotopy category,
and this is in fact the obstruction to K being equivalent to a loop space:

Theorem 5.7. If K is an H-group in SKan
∗ such that

(∗) f ? (g ? h) = (f#g) ? h for all f : FA→ FB and g : FB→ FC in G
and h : C→ K,

then K is H-homotopy equivalent to a simplicial group (and thus to a loop
space); conversely , if K ∈ G (in particular , if K = GL for some L ∈ S0),
then (∗) holds.

P r o o f. Assume that K is an H-group in SKan
∗ satisfying (∗). We shall

need a simplicial variant of Stover’s construction of resolutions by spheres
(Def. 4.6), so as in [Stv, §2], define a comonad L : G → G by

(5.8) LG =
∞∐

k=0

∐

φ∈HomG(FSk,G)

FSkφ ∪
∞∐

k=0

∐

Φ∈HomG(Fek+1,G)

Fek+1
Φ ,

where Fek+1
Φ , the G-disc indexed by Φ : Fek+1 → G, is attached to FSkφ,

the G-sphere indexed by φ = Φ|F∂ek+1 , by identifying F∂ek+1 with FSk

(see §5.1 above). The coproduct here is just the (dimensionwise) free prod-
uct of groups; the counit ε : LG → G is “evaluation of indices”, and the
comultiplication ϑ : LG ↪→ L2G is as in §2.6.

Now let

W =
∞∨

k=1

∨

f∈HomG(Sk,K)

Skf ∪
∞∨

k=1

∨

F∈HomS∗ (ek+1,K)

ek+1
F

(the analogue for S∗ of LG, with the corresponding identifications), and let
z : W→ K be the counit map. Then z induces an epimorphism z∗ : π∗W→→
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π∗K of Π-algebras. (K is a Kan complex, but W is not, so we understand
π∗W to be the corresponding free Π-algebra ∼= π∗|W|—cf. §2.3).

Likewise, we have an epimorphism of Π-algebras ζ̃ : π∗ΣW→→ G∗, where
G∗ = Ω−1π∗K is the delooping of π∗K—or equivalently, z̃∗ : πH∗ FW →
πH∗ K, induced by z̃ = m ◦ Fz : FW→ K (cf. §5.5).

Let Mn = LnFW for n = 0, 1, . . . , with face and degeneracy maps
determined by the comonad structure maps ε, ϑ—except for dn : Mn →
Mn−1, defined by dn = Ln−1d, where d : LFW → FW, restricted to a
summand FAα in LFW (A = Sk, ek+1), is an isomorphism onto FAβ ↪→
FW, where β : A→ K is the composite (α ? z) ◦ jA.

Because (∗) holds exactly, we may verify that d◦Td = d◦Tε : M2 →M0,
so that M• is a simplicial object over G. Moreover, the augmented simplicial

Π-algebra π∗M•
ζ̃−→ G∗ is acyclic, by a variant of [Stv, Prop. 2.6]. Thus

the Quillen spectral sequence for M• (see (5.4)) has E2
s,t = 0 for s > 0,

and E2
0,∗ ∼= G∗, so it collapses, and πH∗ diag M• ∼= G∗ = πH∗ K. Therefore, if

we set L = diagWM• (which is isomorphic to W diag L•) we obtain a Kan
complex L such that K ' GL—so |K| ' Ω|L|.

The converse is clear, since if K ∈ G then jA : A → FA induces a one-
to-one correspondence between maps f : A→ K in S∗ and homomorphisms
ϕ : FA→ K in G, by the universal property of F .

6. Rectifying simplicial spaces. Theorem 5.7 suggests a way to de-
termine whether an H-group X is equivalent to a loop space. Note that in
fact we need only verify that 5.7(∗) holds for A, B, and C in S∗ which
are homotopy equivalent to wedges of spheres. We now suggest a universal
collection of examples which may be used for this purpose, organized into
one (very large!) simplicial diagram. First, some definitions:

Definition 6.1. A simplicial space up-to-homotopy is a diagram hW•
over T∗ consisting of a sequence of spaces W0,W1, . . . , together with face
and degeneracy maps di : Wn → Wn−1 and sj : Wn → Wn+1 (0 ≤ i, j
≤ n), satisfying the simplicial identities only up to homotopy.

Note that such a diagram constitutes an ordinary simplicial object over
hoT∗, so we can apply the functor π∗ : T∗ → Π-Alg to hW• to obtain
an (honest) simplicial Π-algebra π∗(hW•) ∈ sΠ-Alg. Similarly for a ∆-
simplicial space up-to-homotopy hW∆

• .

R e m a r k 6.2. Note that diagrams denoted by W•, hW•, W∆
• , and

hW∆
• each consist of a sequence of spaces W0,W1, . . . ; they differ in the

maps with which they are equipped, and whether the identities which these
maps are required to satisfy must hold in T∗ or only in hoT∗.
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Definition 6.3. An (ordinary) simplicial space V• ∈ sT∗ is called a
rectification of a simplicial space up-to-homotopy hW• if Vn ' Wn for
each n ≥ 0, and the face and degeneracy maps of V• are homotopic to
the corresponding maps of hW• (see [DKS, §2.2], e.g., for a more precise
definition). For our purposes all we require is that π∗V• be isomorphic (as a
simplicial Π-algebra) to π∗(hW•). Similarly for rectification of ∆-simplicial
spaces, and (∆-)simplicial objects in hoSKan

∗ or hoG.

6.4. A ∆-simplicial space up-to-homotopy. Given an H-group X, we
wish to determine whether it is a loop space, up to homotopy. We start
by choosing some free simplicial Π-algebra A∗• resolving G∗ = Ω−1π∗X.
By Remark 2.4, the free simplicial Π-algebra A∗• corresponds to a sim-
plicial object over the homotopy category, unique up to isomorphism (in
hoT∗), with each space homotopy equivalent to a wedge of spheres. There-
fore, it may be represented by a simplicial space up-to-homotopy hW•,
with π∗(hW•) ∼= A∗• (§6.1). We denote its underlying ∆-simplicial space
up-to-homotopy by hW∆

• .
In light of Theorem 5.7 it would perhaps be more natural to consider the

corresponding simplicial object up-to-homotopy over G, or S∗, but given the
equivalence of homotopy categories hoT∗ ∼= hoG ∼= hoS∗, we prefer to work
in the more familiar topological category.

Now hW• may be rectified if and only if it can be made ∞-homotopy
commutative—that is, if and only if one can find a sequence of homotopies
for the simplicial identities among the face and degeneracy maps, and then
homotopies between these, and so on (cf. [BV, Corollary 4.21 & Theorem
4.49]). An obstruction theory for this was described in [Bl3], and we briefly
recall the main ideas here, mainly because we wish to present a technical
simplification which eliminates the need for [Bl3, §6]: as we shall see below,
it suffices to rectify hW∆

• ; so we describe an obstruction theory for the
rectification of ∆-simplicial spaces up-to-homotopy. For this, we need some
definitions from [Bl3, §5]:

Definition 6.5. The k-dimensional permutohedron Pk is defined to be
the convex hull in Rk+1 of the (k + 1)! points (σ(1), σ(2), . . . , σ(k + 1)) ∈
Rk+1, indexed by permutations σ ∈ Σk+1 (cf. [Zi, 0.10]). Its boundary is
denoted by ∂Pk.

For n ≥ 0 and any morphism δ : n+1→ n−k in ∆op
∂ (see §1.2 above), we

may label the vertices of Pk by all possible ways of writing δ as a composite of
face maps (cf. [Bl3, Lemma 4.7]), and one can similarly interpret the faces
of Pk. We shall write Pk(δ) for Pk so labelled (thought of as an abstract
combinatorial polyhedron).
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Definition 6.6. Let hW∆
• be a ∆-simplicial space up-to-homotopy, and

δ : n + 1→ n−k some morphism in ∆op
∂ . We denote by C(δ) the collection

of all proper factors of δ—that is, γ ∈ C(δ)⇔ γ′ ◦ γ ◦ γ′′ = δ and γ′, γ′′ are
not both id .

A compatible collection for C(δ) and hW∆
• is a set {gγ}γ∈C(δ) of maps

gγ : Pn−k n Wn → Wk−1, one for each γ = [(ik, . . . , in)] ∈ C(δ), such
that for any partition 〈ik, . . . , i`1 | i`1+1, . . . , i`2 | . . . | i`r−1+1, . . . , in〉 of
ik, . . . , in into r blocks (where γ = din ◦ . . . ◦ dik in ∆op

∂ ), with γ1 = di`1 ◦
. . . ◦ dik , . . . , γr = din ◦ . . . ◦ di`r−1+1 , and we set P := P`1−k−1(γ1) ×
P`2−`1(γ2) . . . Pn−`r−1(γr), then we require that gγ |PnY n be the composite
of the corresponding maps gγi , in the obvious sense. We further require that
if γ = [ij ], then gγ must be in the prescribed homotopy class of [dij ] ∈
[Wj+1,Wj ].

We shall be interested in such compatible collections only up to the
obvious homotopy relation. Note that for any δ : n + 1→ n−k in ∆op

∂ , any
compatible collection {gγ}γ∈C(δ) induces a map f = fδ : ∂Pk nWn+1 →
Wn−k, and compatibly homotopic collections induce homotopic maps.

Definition 6.7. Given hW∆
• as in §6.4, for each k ≥ 2 and δ : n + 1→

n− k ∈ ∆op
∂ , the kth order homotopy operation (associated with hW∆

• and
δ) is a subset 〈〈δ〉〉 of the track group [Σk−1Wn+1,Wn−k], defined as follows:

Let S ⊆ [∂Pk nWn+1,Wn−k] be the set of homotopy classes of maps
f = fδ : ∂Pk(δ) n Wn+1 → Wn−k which are induced as above by some
compatible collection {gγ}γ∈C(δ). Choose a splitting

∂Pk(δ)nWn+1
∼= Sk−1 nWn+1 ' Sk−1 ∧Wn+1 ∨Wn+1,

and let 〈〈δ〉〉 ⊆ [Σk−1Wn+1,Wn−k] be the image under the resulting pro-
jection of the subset S ⊆ [∂Pk nWn+1,Wn−k].

6.8. Coherent vanishing. It is clearly a necessary condition in order for
the subset 〈〈δ〉〉 to be non-empty that all the lower order operations (for γ ∈
C(δ)) vanish—i.e., contain the null class; a sufficient condition is that they do
so coherently , in the sense of [Bl3, §5.7]. Again one may define a collection of
higher homotopy operations in various track groups [ΣWm,Wm−`], whose
vanishing guarantees the coherence of a given collection of maps (see [Bl3,
§5.9]). One then has

Proposition 6.9 (see Theorem 6.12 of [Bl3]). Given a ∆-simplicial space
up-to-homotopy hW∆

• , it may be rectified to a strict ∆-simplicial space V∆
•

if and only if all the sequence of higher homotopy operations defined above
vanish coherently.

6.10. Adding degeneracies. Now assume given a ∆-simplicial space W∆
• ∈

∆T∗, to which we wish to add degeneracies, in order to obtain a full sim-
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plicial space W•. Note that because the original ∆-simplicial space up-to-
homotopy hW∆

• of §6.4 above was obtained from the simplicial Π-algebra
A∗•, in the case of interest to us W∆

• is already equipped with degeneracy
maps—but these satisfy the simplicial identities only up to homotopy!

In this situation, a similar obstruction theory was defined in [Bl3, §6] for
rectifying the degeneracies; but it was conjectured there that this theory is
actually unnecessary ([Bl3, Conj. 6.9]). We now show this is in fact correct.

Definition 6.11. Given a ∆-simplicial space V∆
• , its nth matching space

MnV∆
• is defined to be the limit

MnV∆
• := {(x0, . . . , xn) ∈ (Vn−1)n+1 | dixj = dj−1xi

for all 0 ≤ i < j ≤ n}.
The map δn : Vn → MnV∆

• is defined by δn(x) = (d0x, . . . , dnx). (See [Hi,
XVII, 87.17], and compare [BK, X, §4.5].)

Definition 6.12. A ∆-simplicial space V∆
• is called Kan if for each

n ≥ 1 the map δn : Vn → MnV∆
• is a fibration. (See [Hi, XVII, 88.2] or

[DHK, XII, §54], where this is called a Reedy fibrant object.)

Lemma 6.13. For any ∆-simplicial space X∆
• , there is a Kan ∆-simplicial

space V∆
• and a map of ∆-simplicial spaces f• : X∆

• → V∆
• such that each

fn is a homotopy equivalence.

P r o o f. This follows from the existence of the so-called Reedy model cat-
egory structure on ∆T∗ (see [Hi, XVII, Thm. 88.3]); V∆

• may be constructed
directly from X∆

• by successively changing the maps δn into fibrations as in
[W, I, (7.30)].

Thus the proof of [Bl3, Conj. 6.9] follows from:

Proposition 6.14 (compare Theorem 5.7 of [RS]). If V∆
• is a Kan ∆-

simplicial space which rectifies the ∆-simplicial space up-to-homotopy hW∆
•

of §6.4, then one can define degeneracy maps on V∆
• making it into a full

simplicial space.

P r o o f. Using the singular functor S : T∗ → SKan
∗ we may work with

simplicial sets, rather than topological spaces; the maps δn : Vn → MnV∆
•

are now assumed to be Kan fibrations in S∗.
By induction on n ≥ 0 we assume that degeneracy maps sj : Vk → Vk+1

have been chosen for all 0 ≤ j ≤ k < n, satisfying all relevant simplicial
identities.

Let Σ denote the subcategory of ∆op with the same objects as ∆op,
but only the degeneracies as morphisms. For each k ≥ 0, let Σ/k denote
the “over category” of k. By assumption V∆

• , together with the existing
degeneracies, defines a functor V : Σ/n−1 → S∗. Denote its colimit by
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Ln; this may be thought of as the sub-simplicial set of Vn consisting of the
degenerate simplices; i.e.,

⋃n−1
j=0 Im(sj). We also have an associated “free”

functor Σ/m → S∗ for each m ≥ 0 (with the same values on objects as
V , but all morphisms trivial). Its colimit, denoted by Dm, is the coproduct
(i.e., wedge) over Obj(Σ/m) of the spaces Vk (0 ≤ k < m), indexed by
all possible iterated degeneracies si1 ◦ . . . ◦ sim−k : k → m. This comes
equipped with structure maps em−1

j : Vm−1 → Dm (0 ≤ j < m). See
[Mal, p. 95] or [Bl1, §4.5.1] for an explicit description. For example, L0 =
D0 = ∗, L1 = D1

∼= V0, but D2 = (V1)s0 ∨ (V0)s1s0 ∨ (V1)s1 , while
L2 = (V1)s0 q(V0)s1s0

(V1)s1 (the pushout).
In fact, if we define Y• ∈ sS∗ by Yn := Vn ∨ Dn, with the obvious

degeneracies (defined by the structure maps emj ) and face maps (induced
from those of V∆

• via the simplicial identities), then F (V∆
• ) := Y• defines

a functor F : ∆S∗ → sS∗ which is left adjoint to the forgetful functor
U : sS∗ → ∆S∗, and there is a natural inclusion ι : V∆

• → UFV∆
• .

Note that the degeneracies up-to-homotopy s′j : Vn → Vn, which ex-
ist because V∆

• rectifies U(hW•) (where π∗(hW•) ∼= A∗• as simplicial Π-
algebras), define a map σ′n+1 : Dn+1 → Vn+1.

Our objective is to define inductively a retraction σ : UFV∆
• → V∆

•
in ∆S∗, starting with σ0 = idV0 , such that σn ∼ σ′n for all n. This map σ
must commute with the degeneracies defined so far: that is, at the nth stage
we must choose a map σn+1 : Dn+1 → Vn+1 homotopic to σ′n+1, and then
define snj : Vn → Vn+1 by

(6.15) snj := σn+1 ◦ enj ◦ ιn.
Moreover, together with the face maps of V∆

• , the degeneracies chosen so
far determine a map %n : Dn+1V∆

• →Mn+1V∆
• , by the universal properties

of the limit and colimit; the simplicial identities in hW• guarantee that
δn+1 ◦ σ′n+1 ∼ %n+1. Note than in order for the simplicial identities disj =
sj−1di (for i < j), djsj = dj+1sj = id, and disj = sjdi−1 (for i > j + 1) to
be satisfied, it suffices that

(6.16) δn+1 ◦ σn+1 = %n+1,

that is, σn+1 must be a lift for the given map %n+1. On the other hand, in
order that sjsi = si+1sj hold for all j ≤ i, it suffices to have

(6.17) σn+1 ◦ enj = σn+1 ◦ enj ◦ ιn ◦ σn for all 0 ≤ j ≤ n
(where ιn : Vn ↪→ (UFV∆

• )n is the inclusion).
Now Dn+1 has a wedge summand Dn+1 such that Dn+1 = Dn+1 ∨∨n

j=0(Vn)sj , and σ′n+1 : Dn+1 → Vn+1 thus defines a map σ ′n+1 =
σ′n+1|Dn+1

: Dn+1 → Vn+1. Since δn+1 is a fibration, one may use the homo-
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topy lifting property to obtain a map σn+1 ∼ σ ′n+1 such that δn+1 ◦σn+1 =
%n+1|Dn+1

.
Note that Ln = Im(σn), by induction, so (6.17) for n − 1 and (6.15)

imply that, for each 0 ≤ j ≤ n, the map σn+1 ◦ enj : Dn → Vn+1 induces a
map gj : Ln → Vn+1.

Because A∗• is a free simplicial Π-algebra (Def. 4.3) and π∗(hW•) ∼= A∗•,
Lemma 2.5 guarantees that there is a Zn ∈ S∗, weakly equivalent to a
wedge of spheres, and a map fn : Zn → Vn which, together with the
inclusion hn : Ln ↪→ Vn, induces a weak equivalence of simplicial sets
(hn, fn) : Ln∨Zn

'→ Vn. Since hn is a cofibration, using a minimal complex
for Zn (see [Ma1, §9]) we may assume that (hn, fn) is a trivial cofibration
in S∗ (cf. [Q1, II, 3.14]). Again the fact that δn+1 is a fibration implies that
there exists a lifting αj : Zn → Vn+1 for %n+1|(Vn)sj

◦ fn : Zn →Mn+1V∆
• .

Thus the left lifting property (cf. [Q1, I, 5.1]) for the solid commutative
square

Ln ∨ Zn Vn+1

(Vn)sj Mn+1V∆
•

(gj ,αj) //

triv. cof. (hn,fn)
²²

δn+1 fib.
²²

%n+1|(Vn)sj

//

(σn+1)sj
1:

l l l l l l

guarantees the existence of a dashed lifting (σn+1)sj : (Vn)sj → Vn+1

for %n+1|(Vn)sj
, and these liftings, for various j, together with σn+1, define

σn+1 : Dn+1 → Vn+1 satisfying (6.17) (and of course (6.16)), as required.
(6.15) then defines sj : Vn → Vn+1 for all 0 ≤ j ≤ n, completing the
induction.

Corollary 6.18. If V∆
• is a ∆-simplicial space such that π∗V∆

• is a
free simplicial Π-algebra (Def. 4.3), then there is a spectral sequence with
E2
s,t = πs(πtV∆

• )⇒ πs+t‖V∆
• ‖.

P r o o f. See §4.4 and 4.5, noting that the definition of the homotopy
groups of a simplicial group is also valid for a ∆-simplicial group (see [Mal,
§17]), and that in the proof of Proposition 6.14 we did not use the fact that
A∗• was a resolution of G∗.

If the higher homotopy operations described in §6.7 vanish coherently,
then the ∆-simplicial space up-to-homotopy hW∆

• of §6.4 may be rectified
to a strict ∆-simplicial space W∆

• , which may in turn be replaced by a
Kan ∆-simplicial space V∆

• using Lemma 6.13, with π∗V∆
• ∼= A∗•. The

spectral sequence of Corollary 6.18 then implies that Y := ‖V∆
• ‖ satisfies

π∗Y ∼= G∗ = Ω−1π∗X. We have thus realized the algebraic delooping of
π∗X by a space Y.



92 D. Blanc

R e m a r k 6.19. As in any obstruction theory, if one of the homotopy
operations in question does not vanish (or if there is a non-vanishing ob-
struction to coherence, as in §6.8), one must backtrack, changing choices
made at previous stages. On the face of it, if all such choices show that the
∆-simplicial space up-to-homotopy hW∆

• cannot be rectified, we must then
try other choices for the resolution A∗• → G∗. However, we conjecture that
in fact if one free simplicial Π-algebra resolution of G∗ = Ω−1π∗X is realiz-
able, then any resolution is realizable (so that any obstruction to rectifying
hW• shows that X is not a loop space).

6.20. Realizing Π-algebra morphisms. It remains to ascertain that the
space Y which realizes G∗ is in fact a delooping of X. In other words, we
have an abstract Π-algebra isomorphism φ : π∗ΩY

∼=→ π∗X (cf. Corollary
3.9), which we wish to realize by a map of spaces f : ΩY → X. Now,
there is an obstruction theory for the realization of Π-algebra morphisms,
simpler than but similar in spirit to that described above, which we briefly
recapitulate. For the details, see [Bl3, §7], as simplified in [Bl4, §4.9] (and
see [Bl5, §4] for an algebraic version).

We start with some ∆-simplicial resolution of ΩY by wedges of spheres—
i.e., an augmented ∆-simplicial space V∆

•
ε→ ΩY such that π∗V∆

• is a ∆-
simplicial Π-algebra resolution of π∗ΩY ∼= π∗X, and each Vn is homotopy
equivalent to a wedge of spheres (see [Stv, §1]). The spectral sequence of
Corollary 6.18 then implies that |V∆

• | ' ΩY.
By Fact 2.4, we can realize ε : π∗V0 → π∗X by a map e0 : V0 → X, and

then define en : Vn → X by en := en−1 ◦ dn for n > 0. By the simplicial
identities for π∗V∆

• → π∗ΩY, we know π∗(en) = π∗(en−1) ◦ di, so that
en ∼ en−1 ◦ di for all 0 ≤ i ≤ n. If we can make this hold on the nose,
rather than just up to homotopy, then V∆

•
e0→ X is also a (strict) augmented

∆-simplicial space, so the spectral sequence of Corollary 6.18 now implies
that |V∆

• | ' X, and thus ΩY ' X. This is where the appropriate higher
homotopy operations (defined as follows) come in:

Definition 6.21. Let D[n] denote the standard simplicial n-simplex,
together with an indexing of its non-degenerate k-dimensional faces D[k](γ)

by the composite face maps γ = din−k ◦ . . . ◦ din : n → k − 1 in ∆op. Its
(n − 1)-skeleton, which is a simplicial (n − 1)-sphere, is denoted by ∂D[n].
We choose once and for all a fixed isomorphism ϕ(γ) : D[k](γ) → D[k] for
each face D[k](γ) of D[n].

Definition 6.22. Given V∆
• as above, for each n ∈ N we define a ∂D[n]-

compatible sequence to be a sequence of maps {hk : D[k] n Vk → X}n−1
k=0

such that h0 = e0, and for any iterated face maps δ = dij+1 ◦ . . . ◦ din and
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γ = dij ◦δ (0 ≤ j < n) we have hj◦(idndij ) = hj+1◦(ιγδnid) on D[j]nVj+1,
where ιγδ := ϕδ ◦ ι ◦ (ϕγ)−1, and ι : D[j](γ) → D[j + 1](δ) is the inclusion.

Any such ∂D[n]-compatible sequence {hk : D[k]nVk → X}n−1
k=0 induces

a map h : ∂D[n] n Vn → X, defined on the “faces” D[n − 1](di) n Vn

by h|D[n−1](di)nVn
= hn−1 ◦ (idndi), and for each n ≥ 2, the nth order

homotopy operation (associated with V∆
• ) is a subset 〈〈n〉〉 of the track group

[Σn−1Vn,X] defined analogously to §6.7.
Again as in §6.8, the coherent vanishing of all the operations {〈〈n〉〉}∞n=2

is a necessary and sufficient condition for ΩY ' X.

R e m a r k 6.23. We observe that if we choose to work in the category
SKan
∗ , rather than T∗, we replace ΩY by G(SY), and we may then use the

resolution M• → G(SY) of Theorem 5.7 (or rather, M∆
• → G(SY)) instead

of V∆
• → ΩY. The obstruction theory that arises is of course equivalent to

the one we just sketched, but it fits directly into the philosophy of Section 5,
since our theory implies that X is a loop space if and only if the H-group
augmentation up-to-homotopy from the given bisimplicial group M• to SX
can be rectified.

We summarize the results of this section in

Theorem 6.24. An H-group X is H-equivalent to a loop space if and
only if the collection of higher homotopy operations defined in §6.7 and §6.20
above (taking values in homotopy groups of spheres or in π∗X, respectively)
vanish coherently.

R e m a r k 6.25. The obstruction theory described here is not applicable
as such to the related question of the existence of An-structures on an H-
space X (cf. [St1, §2]). An alternative approach to the loop-space question,
more closely related to Stasheff’s theory, but still expressible in terms of
homotopy operations taking values in homotopy groups (rather than higher
homotopies), will be described in a future paper, with a view to such an
extension.
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