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The Σ∗ approach to the fine structure of L

by

Sy D. F r i e d m a n (Cambridge, Mass.)

Abstract. We present a reformulation of the fine structure theory from Jensen [72]
based on his Σ∗ theory for K and introduce the Fine Structure Principle, which captures
its essential content. We use this theory to prove the Square and Fine Scale Principles,
and to construct Morasses.

1. The J-hierarchy. The most elegant hierarchy for Gödel’s L is ob-
tained through iterated first-order definability. For any set x let Def(x)
denote {y | y ⊆ x, y is definable over 〈x,∈〉 by a first-order formula
with parameters}. Then L is obtained as the union of all Lα, where L0

= ∅, Lλ =
⋃{Lα | α < λ} for limit λ, and

Lα+1 = Def(Lα).

Unfortunately, Lα+1 is not closed under pairing and for this reason,
Jensen [72] defined a modified hierarchy 〈Jα | α ∈ ORD〉 for L to get
around this problem. We now present a description of the J-hierarchy which,
as above, is based on the idea of iterated definability.

Recall the Lévy hierarchy of formulas: A formula is Σ0 (= ∆0 = Π0) if
it is built from atomic formulas through the use of logical connectives and
bounded quantifiers ∀x ∈ y, ∃x ∈ y. A formula is Σn+1 if it is of the form
∃~xϕ where ϕ is Πn. Dually, a formula is Πn+1 if it is of the form ∀~xϕ where
ϕ is Σn. Every formula is logically equivalent to a Σn formula for some n,
as it can be put into prenex normal form.

We want to define the J-hierarchy so that Jα+1∩P (Jα) = Def(Jα), Jα+1

is closed under pairing and in addition, Jα+1 satisfies Σ0-Comprehension.
The latter is the statement that for any x we can form {y ∈ x | ϕ(y)},
where ϕ is a Σ0 formula with arbitrary parameters. This is important for
the construction of universal Σn predicates, a notion that we define next.
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A binary relation Wn(e, x) on a transitive set S is a universal Σn predi-
cate for S if it is Σn-definable over 〈S,∈〉 without parameters and wherever
Y ⊆ S is Σn-definable over 〈S,∈〉 with parameters, there exists e ∈ S such
that

Y = {x ∈ S |Wn(e, x)}.
Thus the sets {x ∈ S | Wn(e, x)} are exactly the sets Σn-definable over
〈x,∈〉 with parameters, as e varies over S.

Lemma 1. Suppose that S is a transitive set closed under pairing , satis-
fying Σ0-Comprehension + “Every set has a transitive closure.” Then there
exists a universal Σn predicate for S.

P r o o f. It is enough to treat the case n = 1, as for example to get W2

from W1 we can just define W2(e, x)↔ ∃y ∼W1(e, 〈x, y〉).
Let 〈ϕi | i ∈ ω〉 be a standard list of formulas with one free variable

with subformulas enumerated earlier, and define Sat(z, i, x) to mean: z is
transitive, x ∈ z and 〈z,∈〉 |= ϕi(x). Sat can be expressed by a Σ1 formula:

Sat(z, i, x) ↔ z is transitive, x ∈ z and ∃Y ⊆ (i + 1) × z such that
{∀j ≤ i [If ϕj(x) is atomic then 〈j, x〉 ∈ Y ↔ ϕj true; if ϕj(x) is
∃y ϕj′(〈x, y〉) then 〈j, x〉 ∈ Y ↔ ∃y ∈ z (〈j′, 〈x, y〉〉 ∈ Y ); if ϕj(x) is
∼ϕj′(x) then 〈j, x〉 ∈ Y ↔ 〈j′, x〉 6∈ Y ; if ϕj(x) is ϕj1(x) ∧ ϕj2(x) then
〈j, x〉 ∈ Y ↔ (〈j1, x〉 ∈ Y and 〈j2, x〉 ∈ Y )] and 〈i, x〉 ∈ Y }.

The fact that S satisfies pairing and Σ0-Comprehension implies that when
restricted to S, Sat is Σ1-definable over 〈S,∈〉, via the above definition.
Finally, we set:

W1(e, x)↔ e = 〈i, p〉 and for some transitive z, Sat(z, i, 〈x, p〉).
W1 is universal, using pairing, the existence of transitive closures and the
persistence of Σ1 formulas over transitive sets.

We are ready to define the J-hierarchy. By induction on α we define Jα
to satisfy the hypotheses of Lemma 1. Let Wα

n (e, x) denote the canonical
universal Σn predicate for Jα coming from the proof of Lemma 1. For α = 0
we have J0 = ∅ and for α = 1 we have J1 = Lω. For α limit, Jα =

⋃{Jβ |
β < α}. Note that the hypotheses of Lemma 1 are met by Jα, given that
they are met by each Jβ , β < α.

Suppose that Jα and Wα
n (e, x) are defined for some α > 0 and we wish

to define Jα+1. An n-code is a pair (n, e) where e ∈ Jα. By induction on n
define

X(0, e) = e,

X(n+ 1, e) = {X(n, f) |Wα
n+1(e, f)}.

Then Jα,n = {X(n, e) | e ∈ Jα} and Jα+1 =
⋃{Jα,n | n ∈ ω}.
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Lemma 2. (a) n ≤ m→ Jα,n ⊆ Jα,m.
(b) Jα,n is transitive.
(c) ORD(Jα,n) = ωα+ n.
(d) Jα+1 |= Pairing +Σ0-Comprehension.
(e) Jα+1 ∩ P (Jα) = Def(Jα).

P r o o f. (a) By induction on n, we define a Σ1(Jα) function F (n, e),
e ∈ Jα, that produces f ∈ Jα such that X(n, e) = X(n + 1, f). For n =
0, let F (0, e) = f where {g | Wα

1 (f, g)} = e; then X(0, e) = e = {g |
Wα

1 (f, g)} = X(1, f). Suppose that F (n, e) has been defined for all e. Then
let F (n+ 1, e) = f where {g |Wα

n+2(f, g)} = {F (n, h) |Wα
n+1(e, h)}; clearly

f exists as F restricted to pairs (n, h), h ∈ Jα, is Σ1(Jα) and therefore
the latter set is Σn+1(Jα) with parameter e. Finally, we get X(n + 2, f) =
{X(n + 1, F (n, h)) | Wα

n+1(e, h)} = {X(n, h) | Wα
n+1(e, h)} by induction,

and the latter set is X(n+ 1, e).
(b) Jα,0 = Jα is transitive by induction on α, and if x ∈ Jα,n+1 then

x ⊆ Jα,n and hence x ⊆ Jα,n+1 by (a).
(c) Clearly ORD(Jα,n) ≤ ωα + n since x ∈ Jα,n+1 → x ⊆ Jα,n. By

induction on n, define en+1 such that X(n+1, en+1) = ωα+n: For n = 0 we
can take e1 so that ωα = {f |Wα

1 (e1, f)}. If en+1 is defined take en+2 so that
{f |Wα

n+2(en+2, f)} = {F (n, g) |Wα
n+1(en+1, g)}∪{en+1}, where F is from

the proof of (a). Then X(n+2, en+2) = X(n+1, en+1)∪{X(n+1, en+1)} =
ωα+ n+ 1.

(d) Jα+1 is closed under pairing because all 2-element subsets of Jα,n
belong to Jα,n+1. For Σ0-Comprehension note that Jα,n = {X(n, e) | e ∈
Jα} = X(n + 1, f) for some f so Jα,n ∈ Jα,n+1 and it suffices to show
that if X ⊆ Jα,n is definable over 〈Jα,n,∈〉 then X belongs to Jα,m for
some m. But {e | X(n, e) ∈ X} is a definable subset of Jα as 〈Jα,n,∈〉
with the additional function (n, e) → X(n, e) is isomorphic to a structure
definable over Jα. Choose m so that this set is Σm-definable over Jα and
using F from the proof of (a), produce a Σ1(Jα) G such that for each e,
X(n, e) = X(m,G(e)). Then {G(e) | X(n, e) ∈ X} is Σm-definable over Jα
and X = {X(m,G(e)) | X(n, e) ∈ X} belongs to Jα,m+1.

(e) We get Def(Jα) ⊆ Jα+1 by (d). Conversely, if X(n, e) ⊆ Jα then
{f | f ∈ X(n, e)} = X(n, e) is a definable subset of Jα, using the definition
of X(n, e).

Of course now we may define Wα+1
n (e, x), using (d) of Lemma 2, thereby

completing the definition of the J-hierarchy. It is occasionally convenient to
refer to the refined hierarchy 〈J̃α | α ∈ ORD〉 defined by J̃ωα+n = Jα,n and
conveniently: ORD(J̃α) = α.
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Lemma 3. (a) 〈J̃α | α < λ〉 is Σ1(J̃λ) for limit λ, via a definition inde-
pendent of λ.

(b) There is a Σ1(Jα) well-ordering <α of Jα, via a definition indepen-
dent of α.

(c) (Condensation) If 〈X,∈〉 is Σ1-elementary in 〈Jα,∈〉 then 〈X,∈〉 '
〈Jᾱ,∈〉 for some α.

P r o o f. (a) We have x = J̃α ↔ ∃〈xβ | β < γ〉 such that x = xα where
xn = Ln for finite n < γ, xλ =

⋃{xβ | β < λ} for limit λ < γ and for
λ + n < γ, λ limit, xλ+n is obtained from xλ as in the definition of Jα,n
from Jα, α > 0. This definition works inside any J̃λ, λ limit.

(b) Define well-orderings <α of Jα as follows: <0 =∅, <1 = some Lω-de-
finable well-ordering of Lω;x <λ y ↔ x <α y for some α < λ for limit λ;
x <α+1 y ↔ x <α y or for some n, y ∈ Jα,n+1 − Jα,n and either x ∈ Jα,n or
(<α-least e such that X(n+1, e) = x) <α (<α-least e such that X(n+1, e) =
y). Then <α is Σ1(Jα), via a definition independent of α.

(c) Let 〈X,∈〉 ' 〈X,∈〉 be the transitive collapse of X. Then 〈X,∈〉 |=
Σ0-Comprehension + ∀x ∃β (x ∈ J̃β) + ∀β ∃y (y = J̃β). But Σ0-Compre-
hension gives (J̃β)X = J̃β for β ∈ X so that X = J̃ωᾱ = Jᾱ where ωα =
ORD(X).

Σ1-Skolem functions. Condensation, as stated in Lemma 3(c), is a pow-
erful tool for proving things about L. To unleash its power, we must first
provide a method for generating Σ1-elementary submodels. Fix an ordinal
α > 0.

Definition 1. Suppose X ⊆ Jα. The Σ1-hull of X is the smallest Σ1-
elementary submodel of Jα containing X as a subset. A Σ1-Skolem function
is a partial function h : ω × Jα → Jα with Σ1 graph such that for any
X ⊆ Jα, Σ1-hull of X = {h(n, x) | n ∈ ω, x a finite sequence from X}.

Lemma 4. For any X ⊆ Jα, the Σ1-hull of X exists. Moreover , there is
a Σ1-Skolem function for Jα, with a Σ1-definition independent of α.

P r o o f. Let ϕ0, ϕ1, . . . be a standard list of formulas of 2 free variables
and define h∗(n, x) =<α-least pair (y, t) such that x, y ∈ t, t transitive,
〈t,∈〉 |= ϕn(x, y); if no such pair (y, t) exists then h∗(n, x) is undefined.
Then h(n, x) = y when h∗(n, x) = (y, t). Any Σ1-elementary submodel of
Jα must be closed under h, and clearly for any X ⊆ Jα, {h(n, x) | x a finite
sequence from X} is a Σ1-elementary submodel of Jα.

The key to Fine Structure Theory is to find a suitable generalization of
Lemma 4 to higher levels of definability. We will take this up in the next
section.
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We close this section with an illustration of how Σ1-hulls can be used to
prove a version of Jensen’s �-principle in L (see Jensen [72]). Our version will
include some technical conditions which are of use in our proof of Jensen’s
Coding Theorem (see Friedman [94]). Assume V = L and let α be an infinite
cardinal.

Definition 2. C ⊆ α+ is closed unbounded (CUB) if
⋃
C = α+ and⋃

(C ∩ β) ∈ C for each β < α+. S ⊆ α+ is stationary if S ∩ C 6= ∅ for each
CUB C ⊆ α+.

For µ < α+, β′(µ) denotes the largest β such that either β = µ or
µ < β, Jβ |= µ is a cardinal greater than α.

Lemma 5. There exists 〈Dµ | µ < α+〉 such that Dµ ⊆ Jµ and :

(a) If D ⊆ Jα+ then {µ < α+ | D ∩ Jµ = Dµ} is stationary.
(b) Dµ is uniformly definable as an element of Jβ′(µ), for µ < α+.
(c) If Jβ′(µ) |= α++ exists or µ = β′(µ) then Dµ = ∅.
P r o o f. Let Dµ = ∅ if Jβ′(µ) |= α++ exists or µ = β′(µ) and otherwise

let 〈Dµ, Cµ〉 be least in Jβ′(µ) such that Cµ is CUB in µ, Dµ ⊆ Jµ and
µ ∈ Cµ → Dµ ∩ Jµ̄ 6= Dµ̄; if 〈Dµ, Cµ〉 does not exist then let Dµ = ∅. We
need only prove (a).

Suppose (a) fails and let 〈D,C〉 be least in Jα++ such that D ⊆ Jα+ ,
C is CUB in α+ and µ ∈ C → D ∩ Jµ 6= Dµ. Let σ < α++ be least
such that ωσ = σ, Jσ |= α+ is the largest cardinal and 〈D,C〉 ∈ Jσ. Let
H = Σ1-hull of α ∪ {α+} in Jσ and µ = H ∩ α+. Then 〈H,∈〉 ' 〈Jβ′ ,∈〉
for some β′ and since Jβ′ |= µ = α+ we have β′ ≤ β′(µ). But now we
have 〈Dµ, Cµ〉 = 〈D ∩ Jµ, C ∩ µ〉 and since µ =

⋃
(C ∩ µ) ∈ C, this is a

contradiction.

2. Fine Structure Theory. Our main goal is to develop a version of
Lemma 4 for higher levels of definability. Specifically, we want to define the
notion of Σ∗n formula so as to obtain:

(a) There is a universal Σ∗n predicate for Jα for each n.
(b) For any X ⊆ Jα, the Σ∗n-hull of X in Jα exists for each n.
(c) There is a Σ∗n-Skolem function for Jα for each n.
(d) Every formula is Σ∗n for some n.

What happens if we just take Σ∗n = Σn? Then (a) holds by Lemma 1
and (d) is clear.

Proposition 1. For any X ⊆ Jα and n ∈ ω there is a least Σn-
elementary submodel of Jα containing X as a subset.

P r o o f. Let M = {y ∈ Jα | For some Σn formula ϕ with parameters
from X, y is the <α-least solution to ϕ in Jα}. Then M is Σn-elementary in
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Jα since if yi is the <α-least solution to ϕi, 1 ≤ i ≤ n, then 〈y1 . . . yn〉 is the
<α-least solution to ϕ1((z)1) ∧ . . . ∧ ϕn((z)n), where (z)i = ith component
of z. Suppose X ⊆ N, N is Σn-elementary in Jα and ϕ is a Σn formula
with parameters from X with a solution in Jα. Then ϕ has a solution y0 in
N and if y0 is not the least solution then N also has a solution y1 <α y0.
Continuing in this way we see that in fact N does contain the <α-least
solution to ϕ and hence we get M ⊆ N .

So (b) holds. What fails is property (c):

Proposition 2. For some α there is no Σ2-Skolem function for Jα.

P r o o f. Let κ denote ω1. For each limit α < ω1, α is the least β such that
J̃κ+α |= κ+β does not exist. If J̃κ+α has a Σ2-Skolem function then α must
be the unique solution in J̃κ+α to a Σ2 formula ∃x ∀y ϕα where ϕα is Σ0

with parameter κ. Suppose that each J̃κ+α has a Σ2-Skolem function and
by Fodor’s Theorem choose ϕ and α0 < κ such that for stationary-many
α, ϕα = ϕ and J̃κ+α |= ∃x ∈ J̃κ+α0∀y ϕ holds at α. But then choose any
α < β in this stationary set, α0 < α and we have J̃κ+α |= ∃x ∀y ϕ holds at
both α and β. Contradiction.

R e m a r k. A result similar to the previous appears in Devlin [84], pages
106–107.

It is shown in Jensen [72] that for any α and any n there is a partial
Σn function with parameters that can serve as a Σn-Skolem function for
Σn-hulls without parameters. However, this does not achieve our goal as
the definition of the necessary parameters does not reflect to arbitrary Σn-
elementary submodels that contain them.

Instead we take an approach based on the idea that in a certain sense
Σn+1 can be viewed as Σ1 relativized to Σn, for an arbitrary Jα. Though
this is only true for the usual Lévy hierarchy when awkward parameters
are introduced, we define Σ∗n in such a way that this is true using only
“standard” parameters, whose definitions relativize without difficulty to Σ∗n-
hulls. Our approach is derived from Jensen’s Σ∗ Theory in Jensen [?]. Σ∗n
in our sense corresponds to Σ(n−1)

1 in Jensen’s terminology.

The Σ∗n-hierarchy . In order to define the notion of Σ∗n formula we must
also define the auxiliary notions of nth reduct and nth standard parameter,
all by induction on n.

Let M denote some fixed Jα, α > 0. We order finite sets of ordinals
by the maximum difference order: x < y iff β ∈ y, where β is the largest
element of (y − x) ∪ (x− y).

A Σ∗1 formula is just a Σ1 formula. The Σ∗1 projectum of M , denoted
by %M1 , is the least % such that there is a subset of ω% which is Σ∗1 with
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parameters but not an element of M . The 1st standard parameter of M ,
denoted by pM1 , is the least finite set of ordinals p such that A ∩ ω%M1 6∈M
for some A which is Σ∗1 with parameter p. We use HM

1 to denote J%M1 and
for any x ∈M , A1(x) = {〈y,m〉 | the mth Σ∗1 formula is true at 〈y, x, pM1 〉,
y ∈ HM

1 }. The 1st reduct of M relative to x, denoted by M1(x), is the
structure 〈HM

1 , A1(x)〉.
For n ≥ 1: a Σ∗n+1 formula is one of the form ϕ(x) ↔ Mn(x) |= ψ,

where ψ is Σ1. The Σ∗n+1 projectum of M , denoted by %Mn+1, is the least %
such that there is a subset of ω% which is Σ∗n+1 with parameters but not an
element of M . The (n+ 1)st standard parameter of M , denoted by pMn+1, is
pMn ∪ p where p is the least finite set of ordinals such that A ∩ ω%Mn+1 6∈ M
for some A which is Σ∗n+1 with parameter pMn ∪ p. We use HM

n+1 to denote
J%M

n+1
and for any x ∈ M , An+1(x) = {〈y,m〉 | the mth Σ∗n+1 formula is

true at 〈y, x, pMn+1〉, y ∈ HM
n+1}. The (n + 1)st reduct of M relative to x,

denoted by Mn+1(x), is the structure 〈HM
n+1, An+1(x)〉.

This completes the definition of the Σ∗n-hierarchy. Thus a Σ∗n+1 formula
is a formula expressing a Σ1 property on nth reducts, uniformly. In order
to achieve amenability when relativizing to a Σ∗n predicate, we take our nth
reduct to have ordinal height ω%Mn .

Lemma 6. (a) If ϕ and ψ are Σ∗n formulas then ϕ ∨ ψ and ϕ ∧ ψ are
equivalent to Σ∗n formulas.

(b) If ϕ is a Σ∗n formula then both ϕ and ∼ϕ are equivalent to Σ∗n+1
formulas.

(c) There is a universal Σ∗n formula, i.e., a Σ∗n formula ϕ(e, x) such that
if ψ(x) is Σ∗n then for some e ∈ ω, ψ(x)↔ ϕ(e, x) for all x.

(d) The reduct Mn(x) = 〈HM
n , An(x)〉 is amenable, i.e., if y ∈ HM

n then
y ∩An(x) ∈ HM

n .

P r o o f. (a) is clear because a Σ∗n+1 formula is of the form ϕ(x) ↔
Mn(x) |= ψ,ψ Σ1 and Σ1 is closed under ∨ and ∧.

(b) If ϕ(x) is Σ∗n then so is ϕ′(y, x, z) ↔ ϕ(x) and choose k so that ϕ′

is the kth Σ∗n formula. Then ϕ(x) ↔ 〈∅, k〉 ∈ An(x) so ϕ is equivalent to a
Σ∗n+1 formula. Similarly for ∼ϕ since ∼ϕ(x)↔ 〈∅, k〉 6∈ An(x).

(c) If ψ is a universal Σ1 formula then ϕ(k, x) ↔ 〈HM
n , An(x)〉 |=

ψ(k, ∅)↔ 〈
HM
n , An(〈k, x〉)〉 |= ψ∗ is a universal Σ∗n+1 formula (where ψ∗ is

Σ1 and chosen to satisfy the last ↔).
(d) By (c) we see that An(x) is Σ∗n (with parameter pMn ) and hence

An(x) ∩ y ∈ M for each y ∈ HM
n . But either HM

n = M or ω%Mn is a
cardinal of M . Using Proposition 1 and condensation, we find that if κ is an
M -cardinal then every bounded subset of κ in M actually belongs to Jκ: if
x ⊆ γ < κ and x is Σn-definable with parameter p over M ′, a proper initial
segment of M , then let H = Σn-Skolem hull of γ∪{p} in M ′. Then H ' Jβ
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where β is less than κ, since in M the cardinality of H is at most γ (we may
assume ω ≤ γ < κ). But x is definable over Jβ , so x ∈ Jβ+1 ⊆ Jκ.

As promised, we have the following analogue of Lemma 4, in the Σ∗

context.

Lemma 7. For any X ⊆ Jα, the Σ∗n-hull of X exists. Moreover , there is
a Σ∗n-Skolem function for Jα, via a Σ∗n-definition independent of α.

P r o o f. By induction on n. The base case n = 1 is Lemma 4. Suppose
the result holds for n ≥ 1 and we establish it for n + 1. Let hn(k, x) be a
Σ∗n-Skolem function for Jα.

Lemma 1 holds uniformly for amenable structures so we may define a
partial Σ∗n+1 function h(k, x) such that for each x, H(x) = {h(k, x) | k ∈
ω, h(k, x) defined} is a Σ1-elementary submodel of Mn(x) = 〈HM

n , An(x)〉.
Define

hn+1(k, x) = hn((k)0, 〈h((k)1, x), pMn 〉)
where k = 〈(k)0, (k)1〉 is a pairing function on ω. Now graph(hn+1) is a Σ∗n+1
relation because hn+1(k, x) = y ↔ ∃z ∈ HM

n (y = hn((k)0, 〈z, pMn 〉) ∧ z =
h((k)1, x)) and as graph(hn) is Σ∗n, graph(h) is Σ∗n+1 this yields a Σ∗n+1
definition of graph(hn+1). If H is a Σ∗n+1-elementary submodel of M then
H is closed under hn+1, since it is closed under hn by induction, is closed
under h by Σ∗n+1-elementarity and must contain pMn since “x = pMn ” is a
Σ∗n+1 formula.

It remains to show that H = {hn+1(k, x) | k ∈ ω} is Σ∗n+1-elementary in
M . (It then follows that for any X ⊆ M , {hn+1(k, x) | x a finite sequence
from X} is Σ∗n+1-elementary in M.) As H is Σ1-elementary in M we know
thatH satisfies extensionality so we may take the transitive collapse π : M '
H ⊆ M . It will suffice to show that π−1[H ∩Mn(π(x))] = Mn(x) for each
x ∈ M , for then the closure of H under h guarantees Σ∗n+1-elementarity.
Now Mn(π(x)) = 〈HM

n , An(π(x))〉 and HM
n = Jω%Mn , An(π(x)) = {〈y,m〉 |

the mth Σ∗n formula is true at 〈y, π(x), pMn 〉, y ∈ HM
n } so since by induction

we have Σ∗n-elementarity, it is enough to show

π−1[%Mn ] = %Mn , π−1(pMn ) = pMn .

Let % = π−1[%Mn ]. Suppose A ⊆ J%̄ is Σ∗n-definable in M with parameter
q. For γ < % we have A ∩ Jγ̄ ∈ M by Σ1-elementarity of π from Mn(q)
to Mn(π(q)). Note that if p = π−1(pMn ) then every A ∈ M is of the form
hn(k, 〈x, p〉), x ∈ J%̄, so the set {〈k, x〉 | k ∈ ω, x ∈ J%̄, hn(k, 〈x, p〉) defined,
〈k, x〉 6∈ hn(k, 〈x, p〉)} is Σ∗n-definable in M with parameters and does not
belong to M . So % = %Mn and p ≥ pMn .

Finally, we show that p ≤ pMn . Let H = Σ∗n-hull of {q | q < p}. We
may assume that p 6= ∅ and therefore % ⊆ H. Now if H ' M then we get
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H = M and hence p ∈ H. But then by Σ∗n-elementarity, pMn ∈ Σ∗n-hull of
{q | q < pMn }, which contradicts the definition of pMn . So H ' proper initial
segment of M and therefore A ∩ J%̄ ∈ M whenever A is Σ∗n-definable in M

from a parameter q < p. So p ≤ pMn .

Our next lemma helps to clarify the meaning of the standard parameters,
as well as the relationship between Σ∗n and Σn.

Lemma 8. Let H = Σ∗n-Skolem hull of %Mn ∪ {pMn } in M . Then H = M .

P r o o f. Let π : H ' M . Then M = M as A ∩HM
n is definable over M

whenever A is Σ∗n-definable in M with parameter pMn . So M = Σ∗n-Skolem
hull of %Mn ∪ {π(pMn )}. But we must have π(pMn ) = pMn , else π(pMn ) < pMn
contradicts the definition of pMn .

Corollary 1. For each n, Σn ⊆ Σ∗n and for m < n, Σ∗n is closed under
existential quantification over HM

m .

P r o o f. We can assume m = 0 as “x ∈ HM
m ” is a Σ∗m+1 formula. By

induction on n: Assume that we have an effective translation of Σn formulas
into Σ∗n formulas; then if ϕ is ∃x ψ(x) where ψ is Πn we can write ∃x ψ(x)↔
∃x ∈ HM

n ∃k ψ(hn(k, 〈x, pMn 〉)) and after translating ψ into a Π∗n formula,
this gives a Σ∗n+1 translation of ϕ.

R e m a r k. With some effort, it can be shown that conversely, each Σ∗n
formula is equivalent to a Σn formula with parameters. But we will have no
use for this fact.

It will be useful to have approximations to the Σ∗n-hulls and Σ∗n-Skolem
functions. For n = 1 and limit σ < ωα = ORD(M) we let hσ1 (k, x) be defined
by restricting the Σ1 definition of h1 to J̃σ: if h1(k, x) = y ↔ ∃z ϕ(x, y, z)
where ϕ is Σ0 then hσ1 (k, x) = y ↔ ∃z ∈ J̃σ ϕ(x, y, z). For any n ≥ 1
and σ < ω%Mn we define hσn+1(k, x) = hn((k)0, 〈hσ((k)1, x), pMn 〉), where
hσ is defined by restricting the Σ∗n+1 definition of h (from the proof of
Lemma 7) to J̃σ: if h(k, x) = y ↔ Mn(k, x, y) |= ∃z ϕ where ϕ is Σ0 then
hσ(k, x) = y ↔ Mn(k, x, y) |= ∃z ∈ J̃σ ϕ. Also let Σ∗n¹σ-hull(X) denote
{hσn(k, x) | x is a finite sequence from X}.

Lemma 9. For any X ⊆ Jα, 1 ≤ n ∈ ω, and every limit σ < ω%Mn+1,
Σ∗n+1¹σ-hull(X) is Σ∗n-elementary in M .

P r o o f. It suffices to show that the hull in question is closed under hn.
This follows from the facts that

{hσ(k, x) | x a finite sequence from X}
is closed under pairing and that {hn(k, 〈y, p〉) | y a finite sequence from Y }
is closed under hn for any Y ⊆M, p ∈M .
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The following fact about hull approximation is very useful.

Lemma 10. Suppose X ⊆ Jα, ω < β ≤ %Mn−1, β is a regular M -cardinal
and β ∈ Σ∗n-hull(X) in M . Let

β =
⋃

(Σ∗n-hull(X) ∩ β) and σ =
⋃

(Σ∗n-hull(X) ∩ %Mn−1).

Then β = β ∩Σ∗n¹σ-hull(X ∪ β) and if n ≥ 2 then for any β < β, and x a
finite sequence from X, β ∩Σ∗n−1-hull({x} ∪ β) is bounded strictly below β.

P r o o f. Suppose that γ ∈ β ∩ Σ∗n¹σ-hull(X ∪ β). Then there exists a
finite sequence x from X such that γ ∈ Σ∗n¹σ-hull({x} ∪ β) where σ, β

∈ Σ∗n-hull({x}), σ < σ, β < β. But Σ∗n¹σ-hull({x} ∪ β) ∩ β belongs to
Σ∗n-hull(X) and hence so does its supremum δ. As β is regular in M , we
have δ < β and therefore δ < β. Since γ < δ we get γ < β, as desired. The
second conclusion of the lemma also follows, by Lemma 9.

The Square Principle. An important application of fine structure the-
ory is to Jensen’s Square Principle, which we now establish using the Σ∗

approach.

Square. Assume V = L. Then there is 〈Cµ | µ a singular limit ordinal〉
such that

(a) Cµ is closed unbounded in µ.
(b) ordertype(Cµ) < µ.
(c) µ ∈ LimCµ → µ is singular and Cµ̄ = Cµ ∩ µ.
(d) 〈J̃µ, Cµ〉 is amenable and if 〈J̃µ̄, C〉 → 〈J̃µ, Cµ〉 is Σ1-elementary then

C = Cµ̄.

We refer the reader to Jensen [72] for background on and applications of
the Square Principle.

Let µ be a singular limit ordinal. We wish to define Cµ. Let β(µ) ≥ µ

be the least limit ordinal β such that µ is not regular with respect to J̃β-
definable functions and let n(µ) be least such that there is a Σ∗n(µ)(J̃β(µ))
partial function (with parameters) from an ordinal less than µ cofinally into
µ. Note that ω%β(µ)

n(µ) ≤ µ (where %βn denotes %Nn , N = J̃β) as otherwise such a

partial function would belong to J̃β(µ), contradicting the leastness of β(µ).

Also µ ≤ ω%
β(µ)
n(µ)−1, else by Lemma 8 we have contradicted the leastness

of n(µ).
For X ⊆ J̃β(µ) let H(X) denote Σ∗n(µ)-hull(X) in J̃β(µ). For some least

parameter q(µ) ∈ J̃β(µ), H(µ ∪ {q(µ)}) = J̃β(µ). (Actually, q(µ) = p
β(µ)
n(µ) −

µ − pβ(µ)
n(µ)−1.) Also let α(µ) =

⋃{α < µ | α = H(α ∪ {q(µ)}) ∩ µ}. Then
α(µ) < µ and (unless α(µ) =

⋃ ∅ = 0) α(µ) = H(α(µ) ∪ {q(µ)}) ∩ µ. The
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former is because for large enough α < µ, H(α ∪ {q(µ)}) contains both the
domain and defining parameter for a Σ∗n(µ) partial function from an ordinal
less than µ cofinally into µ.

If µ < β(µ) let p(µ) = 〈q(µ), µ〉 and if µ = β(µ) let p(µ) = ∅.
We are ready to define Cµ. Let C0

µ = {µ < µ | For some α ≥ α(µ),
µ =

⋃
(H(α ∪ {p(µ)}) ∩ µ)}. Then C0

µ is a closed subset of µ. If C0
µ is

unbounded in µ then let Cµ = C0
µ. If C0

µ is bounded but nonempty then
let µ0 =

⋃
C0
µ and define C1

µ = {µ < µ | For some α, µ =
⋃

(H(α ∪
{p(µ), µ0}) ∩ µ)}. If C1

µ is unbounded then let Cµ = C1
µ. If C1

µ is bounded
but nonempty then let µ1 =

⋃
C1
µ and define C2

µ = {µ < µ | For some
α, µ =

⋃
(H(α ∪ {p(µ), µ0, µ1}) ∩ µ)}. Continue in this way, defining Ckµ

for k ∈ ω until Ckµ is unbounded or empty for some least k = k(µ). To
see that k(µ) exists, note that α0 > α1 > . . . where αk is greatest such
that

⋃
(H(αk ∪ {p(µ), µ0 . . . µk−1}) ∩ µ contains no ordinal ≥ µk: we get

αk ∈ H({p(µ), µ0 . . . µk}); so H(αk ∪ {p(µ), µ0 . . . µk}) ∩ µ ⊇ H(αk + 1 ∪
{p(µ), µ0 . . . µk−1}) ∩ µ, which by definition of µk is unbounded in µ; hence
αk+1 < αk.

If Ck(µ)
µ is unbounded in µ then let Cµ = C

k(µ)
µ . If Ck(µ)

µ = ∅ then

H({p(µ), µ0 . . . µk(µ)−1}) ∩ µ
is unbounded in µ. And H({p(µ), µ0 . . . µk(µ)−1})∩ω%β(µ)

n(µ)−1 is unbounded in

ω%
β(µ)
n(µ)−1 else this set belongs to J̃β(µ) and µ is singular inside J̃β(µ), contra-

dicting leastness of β(µ). Let %(µ) = ω%
β(µ)
n(µ)−1, p = {p(µ), µ0 . . . µk(µ)−1} and

hn(k, x) the Σ∗n-Skolem function for J̃β(µ). Also let σm = max({hn(k, p) |
k < m} ∩ µ) and σm = max({hn(k, p) | k < m} ∩ %(µ)). We define
Cµ = {δ0, δ1, . . .} where δm is the ordertype of the transitive collapse of
Σ∗n(µ)¹σm-hull(σm ∪ {p}). Note that δm < µ as µ is regular inside J̃β(µ) and

card(δm) ≤ σm in J̃β(µ).
This completes the definition of Cµ. Clearly Cµ is closed unbounded in

µ. The argument that α(µ) < µ also implies that ordertype(Cµ) < µ. So we
need only show (c), (d) from the statement of Square.

Lemma 11. µ ∈ Ckµ → Ckµ̄ = Ckµ ∩ µ.

P r o o f. First suppose that k = 0. Given µ ∈ C0
µ choose α < µ such that

µ =
⋃

(H(α ∪ {p(µ)}) ∩ µ), where H(X) = Σ∗n(µ)-hull(X) in J̃β(µ). Also

let % =
⋃

(H(α ∪ {p(µ)}) ∩ ω%β(µ)
n(µ)−1). Let H = Σ∗n(µ)¹%-hull(µ ∪ {p(µ)})

and π : J̃β̄ ' H ⊆ J̃β(µ). By Lemma 10, H ∩ µ = µ and therefore when

µ < β(µ), π(µ) = µ. By Lemma 9, π : J̃β̄ → J̃β(µ) is Σ∗n(µ)−1-elementary

(when n(µ) > 1), so we get β(µ) = β and n(µ) ≤ n(µ). By the second
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conclusion of Lemma 10 we get n(µ) > n(µ) − 1, so n(µ) = n(µ). Thus to
conclude that C0

µ̄ = C0
µ ∩ µ we need only check that π(q(µ)) = q(µ) when

µ < β(µ), and α(µ) = α(µ).
For the former, first note that µ ∈ H({µ′} ∪ {q(µ)}) for some µ′ < µ,

µ′ ∈ H({p(µ)}), since µ, q(µ) ∈ H({p(µ)})∩H(µ∪{q(µ)}). So in fact µ and
α(µ) belong to Σ∗n(µ)¹%-hull(µ∪{q(µ)}) and hence the latter is just H. Now

let q = π−1(q(µ)). We see that Σ∗n(µ̄)-hull(µ ∪ {q}) = J̃β(µ̄) and hence q ≥
q(µ). But q ∈ Σ∗n(µ̄)-hull(µ∪{π(q(µ))}) in J̃β(µ) hence q(µ) ≥ q, else we have
contradicted the definition of q(µ). So π(q(µ)) = q(µ). Now since α(µ) < µ
we get α(µ) ≤ α(µ). Conversely, α(µ) < α where µ =

⋃
(H(α∪{p(µ)})∩µ)

so H(α(µ) ∪ {p(µ)}) ∩ µ = α(µ) and we get α(µ) ≤ α(µ). So α(µ) = α(µ).
Now suppose k = 1. The above argument shows that µ ∈ C1

µ → C0
µ̄ =

C0
µ ∩ µ and hence, since µ0 < µ, we get µ0 = µ0. Then the above argument

shows that C1
µ̄ = C1

µ ∩ µ. The general case k ≥ 0 follows similarly.

To verify (c) in the statement of Square: if µ ∈ LimCµ then we must
have Cµ = Ckµ for some k and so Ckµ̄ = Cµ ∩ µ is unbounded in µ. Hence
Cµ̄ = Ckµ̄ = Cµ ∩ µ as desired. Now we verify (d).

Lemma 12. (a) A ⊆ J̃µ, A ∈ J̃β(µ) implies A is ∆1〈J̃µ, Cµ〉.
(b) Suppose π : 〈J̃µ̄, C〉 → 〈J̃µ, Cµ〉 is Σ1-elementary. Then C = Cµ̄

and π extends uniquely to a Σ∗n(µ)-elementary π̃ : J̃β(µ̄) → J̃β(µ) such that
p(µ) ∈ Range(π̃).

P r o o f. First suppose that Cµ = Ckµ for some k. For µ′ ∈ Cµ form H(µ′)
asH was formed in the proof of Lemma 11 for µ. Then π(µ′) : J̃β(µ′) → J̃β(µ),
with range H(µ′), is Σ∗n(µ)−1-elementary and J̃β(µ) =

⋃{H(µ′) | µ′ ∈ Cµ}.
Also π(µ′) is the identity on µ′ and sends p(µ′) to p(µ).

(a) If A ⊆ J̃µ and A ∈ J̃β(µ) then A∩J̃µ′ is Σ∗n(µ)-definable as an element

of H(µ′) from some fixed parameter x ∈ J̃µ, uniformly for sufficiently large
µ′ ∈ Cµ. So A is ∆1〈J̃µ, Cµ〉. This proves (a).

(b) Let X = Range(π) and X̃ = Σ∗n(µ)-hull(X ∪ {p(µ)}) in J̃β(µ). If

y ∈ X̃ ∩ J̃µ then for some µ′ ∈ Cµ, y ∈ Σ∗n(µ)-hull((X ∩ J̃µ′) ∪ {p(µ′)}) in

J̃β(µ′), and as this property of µ′ is Σ1〈J̃µ, Cµ〉 with parameters from X,
µ′ can be chosen in Σ1-hull(X) in 〈J̃µ, Cµ〉. It follows that y ∈ (Σ1-hull(X)
in 〈J̃µ, Cµ〉) = X. So X̃ ∩ J̃µ = X and if π̃ : J̃β̄ ' X̃ ⊆ J̃β(µ) then π̃
is a Σ∗n(µ)-elementary embedding extending π with p(µ) in its range. Let
µ∗ =

⋃
(X ∩ µ).
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As X̃ ' Σ∗n(µ∗)-hull(X ∪ {p(µ∗)}) in J̃β(µ∗) (by the Σ∗n(µ)-elementarity
of π(µ∗) when µ∗ < µ) we see that µ is regular with respect to partial
Σ∗n(µ)−1(J̃β̄) functions and singular with respect to Σ∗n(µ)(J̃β̄) partial func-

tions. So we get β(µ) = β and n(µ) = n(µ). Then the Σ∗n(µ)-elementarity of

π̃ and the fact that p(µ) ∈ Range(π̃) guarantee that C = Cµ̄. The unique-
ness of π̃ comes from the fact that J̃β(µ̄) = Σ∗n(µ̄)-hull(µ ∪ {p(µ)}) and π̃¹µ
is determined by π. This proves (b).

If Ckµ = ∅ for some k then Cµ was defined as a special ω-sequence cofinal
in µ. That definition was made precisely to enable the preceding arguments
to also apply in this case. (Also note that in this case µ∗ = µ.)

Relativization. Square and Diamond hold relative to reshaped strings, a
fact which is useful in the proof of Jensen’s Coding Theorem (Beller–Jensen–
Welch [82] and Friedman [94]). We state these versions here.

Assume that A ⊆ ORD and Lα[A] = Hα for each cardinal α. For each
such α define Sα to consist of all s : [α, |s|)→ 2, α ≤ |s| < α+, such that for
all η ≤ |s|, L[A ∩ α, s¹η] |= card(η) ≤ α. These are the “reshaped strings”
at α.

We must also define coding structures. For s ∈ Sα define µ<s and µs

inductively by: µ<∅α = α (where ∅α ∈ Sα, |∅α| = α, is the empty string),
µ<s =

⋃{µt | t a proper intial segment of s} for s 6= ∅α, and µs = least
µ > µ<s such that µ′µ = µ for µ′ < µ and Lµ[A∩α, s] |= card(|s|) ≤ α. Also
let µ̂s = largest µ > µ<s such that µ′µ = µ for µ′ < µ, Lµ[A ∩ α, s] |= |s| is
a cardinal, if exists; if there is no such µ then µ̂s = µ<s. Then As = Lµs [A∩
α, s], A<s = 〈Lµ<s [A ∩ α, ŝ ], A ∩ α, ŝ 〉 and Âs = 〈Lµ̂s [A ∩ α, ŝ ], A ∩ α, ŝ 〉
where ŝ = {µ<s¹η | s(η) = 1}.

And we must discuss collapsibility . If 〈A, C〉 is an amenable structure of
the form 〈J̃µ[B], B,C〉 we define A+ to be 〈J̃µ∗ [B], B〉 where µ∗ ≥ µ is the
least limit ordinal such that J̃µ∗+ω[B] |= µ is not a cardinal (if it exists),
and 〈A, C〉 is collapsible if A+ exists and whenever π : 〈A, C〉 → 〈A, C〉
is Σ1-elementary then A+ exists, C is definable over A+ and π lifts to a
Σ1-elementary π+ : A+ → A+.

Relativized Square. Suppose α is an uncountable limit cardinal. Then
there exists 〈Cs | s ∈ Sα〉 such that:

(a) s 6= ∅α → Cs is CUB in µ<s, ordertype(Cs) ≤ α, Cs ∈ As.
(b) µ ∈ LimCs → µ = µ<s¹η for some η ≤ |s| and Cs¹η = Cs ∩ µ.
(c) 〈A<s, Cs〉 is collapsible.
(d) s 6= ∅α, D ⊆ A<s, D ∈ (A<s)+ → D is ∆1〈A<s, Cs〉.
Relativized Diamond. Suppose α is an uncountable limit cardinal.

Then there exists 〈Ds | s ∈ Sα〉 such that:
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(a) Ds ⊆ A<s and 〈Dt | t an initial segment of s〉 ∈ As.
(b) If D ⊆ A<s and D ∈ Âs 6= A<s then {η < |s| | Ds¹η = D ∩ A<s¹η}

is stationary in Âs.
(c) If µ<s¹η ∈ LimCs and η < |s| then Ds¹η = ∅. If Âs |= |s|++ exists

then Ds = ∅. And if π : 〈A<s̄, C〉 → 〈A<s, Cs〉 is Σ1-elementary and π(α) =
α where s ∈ Sᾱ then Ds̄ = π−1[Ds].

P r o o f. For Relativized Square, define Cs using 〈J̃β(s)[A∩α, ŝ ], A∩α, ŝ 〉
as we defined Cµ using J̃β(µ), where β(s) ≥ µ<s is least so that µ<s is not
regular with respect to functions definable over this structure. Note that this
structure belongs to As. As before, we get property (a), and (b) follows from
(the analogue of) Lemma 11. Properties (c), (d) follow from (the analogue
of) Lemma 12.

For Relativized Diamond, define Ds using 〈J̃β(s)[A∩α, ŝ ], A∩α, ŝ 〉 as we
defined Dµ in Lemma 5 using Jβ′(µ). Property (a) follows from (the analogue
to) (b) of Lemma 5 and (b) follows from the same argument used to establish
(a) of Lemma 5. Also, that argument in fact shows that (a) of Lemma 5 holds
in the stronger form: if D ⊆ Jα+ then {µ < α+ | D ∩ Jµ = Dµ and C0

µ = ∅}
is stationary; note that C0

µ = ∅ → µ ∈ LimCµ′ for any µ < µ′. So by (the
analogue to) this proof we may assume that the first statement of Relativized
Square (c) holds. The second statement of (c) follows from (the analogue
to) Lemma 5(c) and the final statement follows from (the analogues to)
Lemmas 12 and 5(b).

The Fine Structure Principle. We summarize here those aspects of the
Σ∗ theory that are used when establishing combinatorial principles in L.
For any set X let Seq(X) denote the set of all finite sequences from X
and recall the ordering < on finite sets of ordinals: p < q iff α ∈ q where
α = max((p − q) ∪ (q − p)). Also for any limit ordinal λ let Mλ denote J̃λ
(= Jα, where ωα = λ).

(FSP) There exists a sequence of recursive sets of formulas Σ1 = Σ∗1 ⊆
Σ∗2 ⊆ . . . and partial functions hλn : ω ×Mλ → Mλ for λ limit and n ∈ ω
such that

1)
⋃{Σ∗n | n ∈ ω} = All first-order formulas, Π∗n = {∼ϕ | ϕ ∈ Σ∗n} ⊆

Σ∗n+1 and Σ∗n is closed under ∃, ∧, ∨.
2) hλn is Σ∗n-definable and if ϕ(x) is Σ∗n then for some k, Mλ |= ϕ(x)↔

hn(k, x) is defined.
3) For any X ⊆ Mλ, Hλ

n(X) = {hλn(k, x) | x ∈ Seq(X), k ∈ ω} is the
least Σ∗n-elementary submodel of Mλ containing X as a subset.

4) Let %λn = least ordinal % such that for some p ∈ Seq(λ) and A ⊆ λ
where A is Σ∗n(Mλ) in parameter p, A ∩ ω% 6∈ Mλ. And let pλn = <-least
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such p. Then pλn ∈ Hλ
n+1(∅) and Mλ = Hλ

n(ω%λn ∪ {pλn}). Also the formula
“x ∈Mω%λn

” is Σ∗n+1.

5) If π : Mλ̄ →Mλ is Σ∗n+1-elementary then π−1[%λn] = %λ̄n and π−1(pλn) =
pλ̄n.

6) Approximations: hλn =
⋃{hλ,σn | σ < ω%λn−1, σ limit} where σ < σ′ →

hλ,σn ⊆ hλ,σ
′

n , {〈σ, k, x, y〉 | hλ,σn (k, x) = y} is Σ∗n ∩Π∗n and when n > 1, for
each σ, Hλ,σ

n (X) = {hλ,σn (k, x) | k ∈ ω, x ∈ Seq(X)} is Σ∗n−1-elementary in
Mλ. (When n = 1 we take ω%λn−1 to be λ.)

It is not difficult to verify that the proof of Square that we gave can be
carried out directly from the FSP. In the next section we use the FSP to
construct morasses.

R e m a r k. Σ∗ theory can also be applied in core models other than L,
as in its original form (Jensen [?]), however Lemma 3(c)(Condensation) may
fail in this more general context. For this reason the fine structure theory
for core models in general presents numerous new difficulties, some of which
remain unsolved.

3. Morasses. A strong form of the gap-1 morass principle is useful in
the theory of strong coding. We now establish a global form of this principle,
which we call Morass with Square.

In Square we found a uniform way of writing a singular ordinal as the
union of a short sequence of smaller ordinals. In Morass we find a uniform
way of writing an ordinal of regular cardinality as the direct limit of ordinals
of smaller cardinality. These two principles interact in Morass with Square.

Rather than begin with a statement of our principle, we first use the Fine
Structure Principle to describe the actual object which will interest us. In
this way it is easier to see the motivation behind a list of its combinatorial
properties, expressed in Morass with Square.

An ordinal α is cardinal-correct if whenever Jα |= κ is a cardinal, then
κ really is a cardinal. Let S0 = {α > ω | α is cardinal-correct}. Then S0 is
CUB in every uncountable cardinal. For α ∈ S0 let Sα = {ν | α < ν < α+, ν
is a limit ordinal, J̃ν |= α is regular and α is the largest cardinal}. Then Sα
is a closed subset of (α, α+) and α not a cardinal, α < β in S0 → ⋃

Sα < β.
We write ν0 <0 ν1 iff ν0 < ν1 and for some α ∈ S0, ν0 and ν1 both belong to
Sα. When ν ∈ Sα we write α(ν) = α. (This is a different use of the notation
α(ν) than was made in the proof of Square.) Let S1 =

⋃{Sα | α ∈ S0}.
Now we come to the main definition. For ν ∈ S1, β(ν) = least limit

ordinal β ≥ ν such that %βn ≤ α(ν) for some n and n(ν) = least such n. And
q(ν) = least q ∈ Seq(β(ν)) such that J̃β(ν) = H

β(ν)
n(ν) (α(ν) ∪ {q}). (Actually,

q(ν) = p
β(ν)
n(ν) − α(ν).) We write ν <1 ν iff there is π : J̃β(ν̄) → J̃β(ν) such
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that π is Σ∗n(ν̄)-elementary, n(ν) = n(ν), π(α(ν)) = α(ν), π(q(ν)) = q(ν)
and π¹α(ν) = identity; in addition we impose the Q-condition:

(Q) Whenever ϕ(x) is Σ∗n(ν) with parameter p ∈ J̃β(ν̄) then {ν0 < ν |
J̃β(ν) |= ϕ(ν0, π(p))} is bounded in ν iff {ν0 < ν | J̃β(ν̄) |= ϕ(ν0, p)}
is bounded in ν.

This condition originates in Jensen [72].
If ν <1 ν then π as above is unique and we write πν̄ν = π¹ν : ν → ν,

π̃ν̄ν = π.
The above structure, together with the Square sequence 〈Cα | α singu-

lar limit〉 from the preceding section, constitutes our realization of Morass
with Square. Before stating this principle we make a few observations re-
garding the relation <1. Using the fact that π̃ν̄ν is Σ∗n(ν)-elementary and
sends (α(ν), q(ν)) to (α(ν), q(ν)) it follows not only that π̃ν̄ν = π is unique
but also that <1 is a tree, ν <0-minimal, <0-limit → ν <0-minimal, <0-
limit. Also π−1[Sα(ν)] = Sα(ν̄) ∩ ν and π(ν+

0 ) = π(ν0)+ when ν+
0 = (<0-

successor to ν0) <0 ν. Also if ν0 <0 ν and ν0 = π(ν0) then π¹J̃β(ν̄0) is
elementary from J̃β(ν̄0) into J̃β(ν0) so ν0 <1 ν0 and πν̄0ν0 = πν̄ν¹ν0. Finally,
ν <1 ν <1 ν → πνν = πν̄ν ◦ πνν̄ and {α(ν) | ν <1 ν} is always closed in
α(ν), unbounded if ν is not <0-maximal. If {α(ν) | ν <1 ν} is unbounded
then ν =

⋃{Range(πν̄ν) | ν <1 ν}.
There are four more properties of π which take a bit of argument. First

we claim that if ν < β(ν) then ν ∈ Range(π): If n(ν) > 1 then this is clear
because J̃β(ν) |= ν = α(ν)+ and the property of being a cardinal is Σ∗2 . If
n(ν) = 1 then we claim that q(ν)− ν is nonempty and hence if γ ∈ q(ν)− ν
we see that ν = α(ν)+ of J̃γ belongs to H

β(ν)
1 ({α(ν), q(ν)}) ⊆ Range(π).

The reason that q(ν)−ν is nonempty is that as in the proof of Lemma 6(d),
we can show that J̃ν is Σ1-elementary in J̃β(ν) and hence q(ν) ⊆ ν would

contradict Hβ(ν)
1 (α(ν) ∪ {q(ν)}) = J̃β(ν).

Second, we claim that if ν is <0-limit and λ =
⋃

Range(π) < ν then ν <1

λ and πν̄λ = πν̄ν : As in the proof of Square we form H = H
β(ν),σ
n(ν) (λ∪{q(ν)})

where σ =
⋃

(Range(π) ∩ %β(ν)
n(ν)−1). Then as in the proof of Lemma 10,

H ' J̃β(λ) and q(ν) is sent to q(λ) under this isomorphism. By composing
with π, we get a Σ∗n(ν)-elementary embedding from J̃β(ν̄) into J̃β(λ) sending
(α(ν), q(ν)) to (α(λ), q(λ)). As the range of this embedding contains a cofinal
subset of λ, the Q-condition is satisfied and ν <1 λ, πν̄λ = πν̄ν .

Third, we claim that if ν <1 ν, πν̄ν is cofinal and α is such that for each
ν0 <0 ν, α = α(ν′0) for some ν′0 <1 πν̄ν(ν0) then α = α(ν′) for some ν′ <1 ν.
For, H = H

β(ν)
n(ν) (α ∪ {q(ν)}) =

⋃{Hβ(ν),σ
n(ν) (α ∪ {q(ν)}) | σ ∈ Range(π̃ν̄ν),
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σ < ω%
β(ν)
n(ν)−1} and hence H∩α(ν) = α since for each σ as above, α = α(ν′σ)

for some ν′σ <1 νσ =
⋃

(ν∩Hβ(ν),σ
n(ν) (α∪{q(ν)})). Since H∩ν is cofinal in ν (as

we can assume that α ≥ α(ν)) we get α = α(ν′) where ν′ = ordertype(H∩ν).
Fourth, we claim that if ν is a <0-successor then so is ν: This is clear

if ν < β(ν) or n(ν) > 1 as being the <0-predecessor to ν is Π1(J̃ν). If
(β(ν), n(ν)) = (ν, 1) then we must use the Q-condition on π to guarantee
that Sα(ν̄) ∩ ν is bounded in ν.

The previous is our first use of the Q-condition on π. In strong coding
we will use it to argue that if ν <1 ν and ν is admissible (i.e., Lν |= Σ1-
Replacement) then so is ν.

We now state Morass with Square. We have shown that the structure
defined above satisfies (a)–(f) in the list of properties below.

Morass with Square. There exist 〈Cα | α singular limit〉, 〈Sα | α ∈
S0〉, a binary relation <1 on S1 =

⋃{Sα | α ∈ S0} and 〈πν̄ν | ν <1 ν〉 such
that

(a) For α a singular limit, Cα is CUB in α, ordertype(Cα) < α, β ∈
LimCα → β singular, Cβ = Cα ∩ β.

(b) S0 ∩ κ is CUB in κ for every uncountable cardinal κ.
(c) For α ∈ S0, Sα is a closed subset of (α, α+). And:

(c1) α regular → Sα = S0 ∩ (α, α+).
(c2) α singular cardinal → Sα is a proper initial segment of S0 ∩

(α, α+).
(c3) α not a cardinal, α < β in S0 → ⋃

Sα < β.

Notation. (c) implies that ν ∈ S1 → there is a unique α with ν ∈ Sα;
denote this by α(ν). Write ν <0 ν

′ if ν < ν′, α(ν) = α(ν′). For α ∈ S0, α
not regular, let ν(α) denote max(Sα) < α+. If ν ∈ S1, ν not <0-maximal,
then ν+ denotes its <0-successor.

(d) <1 is a tree and if ν <1 ν then α(ν) < α(ν) and ν is <0-minimal,
successor, limit iff ν is <0-minimal, successor, limit.

(e) If ν <1 ν then π = πν̄ν : ν → ν is order-preserving, π−1[Sα(ν)] =
Sα(ν̄) ∩ ν, π(ν+

0 ) = π(ν0)+ when ν+
0 <0 ν. If ν0 <0 ν and ν0 = π(ν0) then

ν0 <1 ν0 and πν̄0ν0 = π¹ν0. If ν is <0-limit, λ =
⋃

Range(π) then ν <1 λ
and πν̄λ = π; and if ν =

⋃
Range(π), α = α(ν′0) for some ν′0 <1 πν̄ν(ν0) for

each ν0 < ν then α = α(ν′) for some ν′ <1 ν.
(f) ν <1 ν <1 ν → πν̄νπνν̄ = πνν . For ν ∈ S1, {α(ν) | ν <1 ν} is closed

in α(ν) and is unbounded if ν is not <0-maximal. If {α(ν) | ν <1 ν} is
unbounded in α(ν) then ν =

⋃{Range(πν̄ν) | ν <1 ν}.
Now let C ′α denote the limit points of Cα less than α, for α singular

limit.
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(g) Suppose ν is <1-limit and α(ν) singular. Then for α in a final seg-
ment of C ′α(ν) there exists να <1 ν with να ∈ Sα; and for ν <0-limit if
λα =

⋃
Range(πναν) then λα ∈ C ′ν ∪ {ν} and α < β ∈ C ′α(ν) → λα ∈

Range(πνβν) ∪ {ν}.
(h) Suppose ν is <1-minimal and <0-limit. Then for α in a final seg-

ment of C ′α(ν), ν(α) is <1-minimal, <0-limit and there is να <0 ν such that
ν(α) <1 να ∈ C ′ν , α < β → να ∈ Range(πν(β)νβ ), and β ∈ LimC ′α(ν) →
νβ =

⋃{να | α ∈ C ′β}.
(i) Suppose ν is a <1-successor and <0-limit. Let ν <∗1 ν express the

property that ν =<1-predecessor to ν. Then for a final segment of α ∈ C ′α(ν),
ν(α) is <1-successor and <0-limit and there exist να <0 ν as in (h) such
that in addition, ν = λ =

⋃
Range(πν̄ν)→ να = πν̄ν(να) where να <∗1 ν(α),

λ < ν → λ ∈ Range(πν(α)να), ν <∗1 ν(α).

P r o o f. (g) Suppose α ∈ C ′α(ν). Then for some k, α ∈ LimCkα(ν) and
therefore for some γ ≥ γ(α(ν)),

α =
⋃

(α(ν) ∩Hβ(α(ν))
n(α(ν)) (γ ∪ {p(α(ν)), α(ν)0 . . . α(ν)k−1}))

where β(α(ν)), n(α(ν)), p(α(ν)) = 〈q(α(ν)), α(ν)〉 and α(ν)i are defined as
in the proof of Square. (We have changed the notation α(µ) to γ(µ) so as to
avoid confusion.) The fact that ν is a <1-limit implies that (β(ν), n(ν)) <
(β(α(ν)), n(α(ν)). (I.e., either β(ν) < β(α(ν)) or β(ν) = β(α(ν)), n(ν) <
n(α(ν)). Note that as J̃ν |= There is a largest cardinal, β(ν) and n(ν) have
the same meaning in this section as they did in the proof of Square.) Thus for
sufficiently large α ∈ C ′α(ν) we see by Lemma 10 that α = α(ν)∩Hβ(ν)

n(ν) (α∪
{q(ν)}), where q(ν) is defined in this section. (We need only choose α large
enough so that Hβ(ν)

n(ν) (α∪{q(ν)}) ⊆ Hβ(α(ν))
n(α(ν))−1(α∪{p(α(ν))}).) To verify the

Q-condition we must argue as follows. Either α can be chosen large enough
so that Hβ(ν)

n(ν) (α∪{q(ν)})∩ν is cofinal in ν, in which case the Q-condition is

automatic, or we claim that the Q-condition implies that Hβ(ν)
n(ν) (α∪{q(ν)})

is Σ∗n(ν)+1-elementary in J̃β(ν). In the latter case the assumption that ν is a
<1-limit yields that in fact (β(ν), n(ν) + 1) < (β(α(ν)), n(α(ν))), and hence
H
β(ν)
n(ν) (α ∪ {q(ν)}) = H

β(ν)
n(ν)+1(α ∪ {q(ν)}) obeys the Q-condition.

To prove the above claim suppose ϕ(x) is Σ∗n(ν)+1 and note that ϕ(x)↔
∃γ < α(ν) ∃k ∈ ω (x ∈ y = h

β(ν)
n(ν)(k, 〈γ, q(ν)〉), y |= ϕ(x), y Σ∗n(ν)-elementary

in J̃β(ν)). To each σ < ω%
β(ν)
n(ν)−1 = % associate the least (γ(σ), k(σ)) such

that the above holds with hβ(ν)
n(ν) replaced by hβ(ν),σ

n(ν) and “y Σ∗n(ν)-elementary

in J̃β(ν)” replaced by “y = H
β(ν),σ
n(ν) (y).” Then ϕ(x) ↔ A = {σ | For some
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γ, k, σ is least so that (γ(σ), k(σ)) = (γ, k)} is bounded in % ↔ B =
{Hβ(ν),σ

n(ν) (α(ν) ∪ {q(ν)}) ∩ ν | σ ∈ A} is bounded in ν. So ν is equivalent
to the boundedness of a Σ∗n(ν) subset of ν, hence the Q-condition implies
Σ∗n(ν)+1-elementarity.

Thus we have να <1 ν where να = ordertype(ν∩Hβ(ν)
n(ν) (α∪{q(ν)}). Again

since (β(ν), n(ν)) < (β(α(ν)), n(α(ν))), if α < β in C ′α(ν) and H
β(ν)
n(ν) (α ∪

{q(ν)}) is bounded in ν then its supremum below ν belongs to H
β(ν)
n(ν) (β ∪

{q(ν)}) ⊇ H
β(ν)
n(ν)+1({α, q(ν)}) ∩ ν. So it only remains to show that λα =

⋃
(ν ∩Hβ(ν)

n(ν) (α ∪ {q(ν)})) ∈ C ′ν ∪ {ν}. Note that if p(ν) and ν0 are defined
as in the proof of Square then q(ν) as defined in this section belongs to
H
β(ν)
n(ν) ({p(ν), ν0}): q(ν) is just pβ(ν)

n(ν)−p
β(ν)
n(ν)−1−α(ν), and so by definition of

p(ν) we have q(ν)− ν in Hβ(ν)
n(ν) ({p(ν)}); but if q(ν) ∩ ν is nonempty then it

consists of a single ordinal δ, and δ is largest so that Hβ(ν)
n(ν) (δ∪{pβ(ν)

n −ν})∩
ν = δ. This is precisely the ordinal used to provide a lower bound on C0

ν in
the proof of Square. As C0

ν = {δ} in this case we get ν0 = δ. So if λα < ν for
sufficiently large α then Cν is a final segment of {⋃(Hβ(ν)

n(ν) (α∪{q(ν)})∩ν) |
α < α(ν)}. And the fact that (β(ν), n(ν)) < (β(α(ν)), n(α(ν))) implies that
λα ∈ C ′ν for sufficiently large α. Of course the alternative is that λα = ν for
sufficiently large α ∈ C ′α(ν) and so (g) is proved.

(h) There are two cases: either (β(ν), n(ν)) = (β(α(ν)), n(α(ν))) or
(β(ν), n(ν) + 1) = (β(α(ν)), n(α(ν))). In the latter case we must have
H
β(ν)
n(ν) (α ∪ {q(ν)}) ∩ ν bounded in ν for each α < α(ν), else we could

contradict the <1-minimality of ν by forming H
β(ν)
n(ν) (α0 ∪ {q(ν)}) where

α0 =
⋃

(α(ν) ∩Hβ(ν)
n(ν) (α ∪ {q(ν)})), Hβ(ν)

n(ν) (α ∪ {q(ν)}) ∩ ν unbounded in ν,
α < α(ν).

First we treat the former case. Suppose α ∈ C ′α(ν). Then for some k,
α ∈ Ckα(ν) and so for some γ (≥ γ(α(ν)) if k = 0),

α =
⋃

(α(ν) ∩Hβ(ν)
n(ν) (γ ∪ {p(α(ν)), α(ν)0 . . . α(ν)k−1}))

where p(α(ν)) = 〈q(α(ν)), α(ν)〉 and α(ν)i are defined as in the proof of
Square. (Again to avoid confusion we now write γ(µ) in place of α(µ).)
Note that q(α(ν)) is precisely the q(ν) as defined in this section. Write p for
{p(α(ν)), α(ν)0 . . . α(ν)k−1} and % for ω%β(ν)

n(ν)−1.

Now let να =
⋃

(ν ∩ Hβ(ν)
n(ν) (γ ∪ {p})) and σα =

⋃
(% ∩ Hβ(ν)

n(ν) (γ ∪ {p})).
Then as α > γ(α(ν)) we get να < ν and σα < %, and by Lemma 10, α =
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α(ν) ∩Hβ(ν),σα
n(ν) (α ∪ {p}). We get an embedding π : J̃β ' Hβ(ν),σα

n(ν) (α ∪ {p})
and π−1[να] = ν(α), β = β(ν(α)), n(ν) = n(ν(α)). In fact, ν(α) <1 να
as π maps ν(α) cofinally into να. It is not clear that ν(α) is <1-minimal
as it is possible that there exists ν <1 ν(α) with α(ν) ≤ γ(α) = γ(α(ν)).
(α(ν) > γ(α) is ruled out because of the definition of γ(α).) However, as
ν is <1-minimal the Q-condition must fail between H

β(ν)
n(ν) (γ(α) ∪ {q(ν)})

and J̃β(ν) so we may choose α large enough in C ′α(ν) so that this failure is

captured by Hβ(ν),σα
n(ν) (α ∪ {p}), and therefore ν(α) is <1-minimal.

To see that να ∈ C ′ν for sufficiently large α, the same analysis as in the
proof of (g) shows that if q(ν) ∩ ν 6= ∅ then C1

ν = {ν′ < ν | For some γ,
ν′ =

⋃
(ν∩Hβ(ν)

n(ν) (γ∪{q(ν)})}, and if q(ν)∩ν = ∅ then C0
ν is a final segment

of this set, beyond an ordinal ≤ γ(α(ν)). Thus it follows that either C1
ν or

C0
ν agrees with {να | α ∈ C0

α(ν)} for α ≥ γ(α(ν)). If C0
α(ν) is unbounded

in α(ν) then we are done because then C1
ν or C0

ν as above is unbounded
in ν. If not then we need only note that α(ν)0 ∈ H

β(ν)
n(ν) ({q(ν), ν∗}) and

ν∗ ∈ Hβ(ν)
n(ν) ({q(ν), α(ν)0}) where ν∗ =

⋃
C1
ν or

⋃
C0
ν as above. Thus {να |

α ∈ C1
α(ν)} agrees with C2

ν or C1
ν for α ≥ γ(α(ν)) and continuing in this

way we get να ∈ C ′ν for sufficiently large α.

The last part of (h) is clear from the definition of the να’s and the fact
that α < β → να < νβ .

Now we consider the case (β(ν), n(ν)+1) = (β(α(ν)), n(α(ν))) and recall
that Hβ(ν)

n(ν) (a ∪ {q(ν)}) ∩ ν is bounded in ν for each α < α(ν). Thus as in

the proof of (g), for α ∈ C ′α(ν) we have α = α(ν) ∩Hβ(ν)
n(ν) (α ∪ {q(ν)}) and

ν̂(α) <1 να where να =
⋃

(ν ∩Hβ(ν)
n(ν) (α∪{q(ν)})) and ν̂(α) = ordertype(ν ∩

H
β(ν)
n(ν) (α ∪ {q(ν)})). Also ν <1 ν̂(α) implies as in the proof of (g) that

π̃ν̄ν̂(α) is Σ∗n(ν)+1-elementary, hence α(ν) ≤ γ(α(ν)); but as in the first part
of the present proof, this is ruled out, for α sufficiently large. So for such
α ∈ C ′α(ν) we have ν̂(α) = ν(α) <1 ν(α) and ν(α) is <1-minimal. The proof
that να ∈ C ′ν for sufficiently large α is as in the proof of (g) and the last
part of (h) is clear from the definition of να and the fact that (β(α(ν)),
n(α(ν)) > (β(ν), n(ν)).

(i) As in (h) there are two cases: either (β(ν), n(ν)) = (β(α(ν)), n(α(ν)))
or (β(ν), n(ν) + 1) = (β(α(ν)), n(α(ν))) and α < α(ν)→ H

β(ν)
n(ν) (α∪{q(ν)})

∩ ν is bounded in ν.

We begin with the first case. As in (h), write α =
⋃

(α(ν)∩Hβ(ν)
n(ν) (γ∪{p}))

where γ ≥ γ(α(ν)) if Cα(ν) = C0
α(ν) and p = {p(α(ν)), α(ν)0 . . . α(ν)k−1}.
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Also let σα =
⋃

(% ∩Hβ(ν)
n(ν) (γ ∪ {p})) where % = ω%

β(ν)
n(ν)−1 and να =

⋃
(ν ∩

H
β(ν)
n(ν) (γ∪{p})). Then ν(α) <1 να and the να’s obey the property expressed

in (h). And there exists να ≤0 ν <
∗
1 ν such that να <1 ν(α) as we can take

να = ordertype(ν ∩Hβ(ν),σα
n(ν) (α(ν)∪{q(ν)})). As in (h) we can arrange that

να <
∗
1 ν(α) for sufficiently large α by capturing a witness to the failure of

the Q-condition between H
β(ν)
n(ν) (γ(α(ν)) ∪ {q(ν)}) and J̃β(ν). Note that in

fact k > 0 and we must have γ < α(ν) for sufficiently large α =
⋃

(α(ν) ∩
H
β(ν)
n(ν) (γ ∪ {p})) so we get να ∈ Range(πν̄ν) for να < λ =

⋃
Range(πν̄ν).

Similarly, λ ∈ Range(πν(α)να) when να > λ and we get να = ν.
Note that in the second case, πν̄ν is not cofinal. The argument now is

very similar to the second case of the proof of (h), arranging ν <∗1 ν(α) as
in the first case of the present proof.

Our version of Morass with Square originates in Friedman [87] and is
related to the concept of Morass with Linear Limits; see Donder [85].

The next principle arises in the proof of Jensen’s Coding Theorem in
the general case. It is similar in some respects to the Squared Scales of
Donder–Jensen–Stanley [85].

Again we first describe the object, obtained through use of the Fine
Structure Principle, which satisfies this principle before stating the principle

itself. Let T = {ν | ν is a limit ordinal, J̃ν |= there is a largest cardinal α(ν)
and the cardinality of ν equals α(ν)}. We do not require that α(ν) = card(ν)
is regular. Let β(ν) ≥ ν be the least limit ordinal such that for some n,
%
β(ν)
n = α(ν), let n(ν) be the least such n, and p(ν) = 〈pβ(ν)

n(ν), α(ν)〉. Also

β̂(ν) = β(ν) + ω = T -successor to ν.
Now for any k ≥ 0 in ω and infinite cardinal α < α(ν) let H(ν, k, α) =

H
β(ν)
n(ν)+k(α∪{p(ν)}) and H(ν, k, α) its transitive collapse. Then f(ν, k, α) =

α+ of H(ν, k, α). Note that f(ν, k, α) ∈ T and α(f(ν, k, α)) = α.
For ν ∈ T we let C̃ν ⊆ ν come from the Square Principle; then C̃ν is

CUB in ν, ordertype(C̃ν) ≤ α(ν) and ν ∈ Lim C̃ν → C̃ν̄ = C̃ν ∩ ν. We let
Cν = C̃ν if ordertype(C̃ν) < α(ν) and otherwise Cν = {ν < ν | For some
α < α(ν), ν =

⋃
(ν ∩Hβ(ν)

n(ν) (α ∪ {p(ν)}))}.
For ν ∈ T , k ≥ 0 in ω, and α(ν) an uncountable limit cardinal we define

a CUB Dν,k ≤ α(ν) as follows. If D = {α < α(ν) | α = α(ν)∩Hβ(ν)
n(ν)+k+1(α∪

{p(ν)})} is unbounded in α(ν) then set Dν,k = D. If Hβ(ν)
n(ν)+k+1(α∪{p(ν)})∩

α(ν) is unbounded in α(ν) for some α < α(ν) then we can choose Dν,k CUB
in α(ν) of ordertype < α(ν) so that Dν,k ∩ α is Σ∗n(ν)+k+1-definable over

H
β(ν)
n(ν)+k(α ∪ {p(ν)}) uniformly for α ∈ LimDν,k. Otherwise define Dν,k =
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{α0, α1, . . .} where α0 = 0 and αn+1 =
⋃

(α(ν) ∩Hβ(ν)
n(ν)+k+1(αn ∪ {p(ν)})).

Fine Scale Principle. There exist 〈f(ν, k, α) | ν ∈ T , k ∈ ω, α an
infinite cardinal < α(ν)〉, 〈Cν | ν ∈ T 〉, 〈Dν,k | ν ∈ T , α(ν) an uncountable
limit cardinal, k ∈ ω〉 such that

(a) ν ∈ T → ν is a limit ordinal and not a cardinal, and T ∩ α+ is CUB
in α+. α(ν) denotes the cardinality of ν.

(b) f(ν, k, α) ∈ T ∩ α+; Cν is CUB in ν, ordertype(Cν) ≤ α(ν); Dν,k

is CUB in α(ν). For α an uncountable limit cardinal and any f : α → α
such that f(α0) < α+

0 for every α0 < α, there is ν ∈ T ∩ α+ such that
f(α+

0 ) < f(ν, 0, α+
0 ) for sufficiently large α0 < α.

(c) For any ν ∈ T there is α0(ν) < α(ν) such that for α0(ν) ≤ α <
α(ν), α an infinite cardinal and ν ∈ LimCν :

(c1) f(ν, 0, α) =
⋃{f(ν, 0, α) | ν ∈ Cν ∩ ν},

(c2) {f(ν, 0, α) | ν ∈ Cν ∩ ν} ∈ J̃β where β = T -successor to
f(ν, 0, α).

(d) For any ν ∈ T and k ≥ 0 there is α0(ν, k) < α(ν) such that for
α0(ν, k) ≤ α0 < α(ν), α0 an infinite cardinal and α ∈ LimDν,k:

(d1) f(f(ν, k, α), 1, α0) =
⋃{f(f(ν, k, α), 1, α0) | α ∈ Dν,k ∩ α},

(d2) {f(f(ν, k, α), 1, α0) | α ∈ Dν,k ∩ α} ∈ J̃β where β = T -successor
to f(f(ν, k, α), 1, α0).

P r o o f. (c) Choose α0(ν) larger than ordertype(Cν) if the latter is less
than α(ν). In this case the properties follow from the Σ∗n(ν)-elementarity

of H(ν, 0, α) in J̃β(ν̄) and the Π∗n(ν)-definability of Cν̄ = Cν ∩ ν. In case
ordertype(Cν) = α(ν) note that f(ν, 0, α) = f(να, 0, α) where να ≤ ν are
in Cν and να = αth element of Cν . So the argument also works in this case.

(d) If ordertype(Dν,k) < α(ν) then choose α0(ν, k) larger than this order-
type. Note that Dν,k∩α is Σ∗n(ν)+k+1 or Π∗n(ν)+k+1-definable over H(ν, k, α)
when α < α(ν); so the result follows from the Σ∗n(ν)+k-elementarity of
H(ν, k, α) in H(ν, k, α) and the fact that n(f(ν, k, α)) = n(ν) + k. Also
in case ordertype(Dν,k) = α(ν) note that f(f(ν, k, α), 1, α0) is constant for
α ≥ α0th element of LimDν,k.

The key clause in the Fine Scale Principle is (d). It says that f(ν, k+1,−)
can be uniformly approximated by functions which differ from f(ν, k,−) only
on a proper initial segment of α(ν), in such a way that at limit stages α, the
αth approximation can easily recover the α-sequence of smaller approxima-
tions. This is a powerful tool for proving a statement for each f(ν, k,−), by
induction on (ν, k). In the case of Jensen coding, extendibility of conditions
can be proved in this way.
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We conclude with a discussion of gap 2 morasses. Again we begin with
a description of the intended object.

Let S0 = {α > ω | α is a limit ordinal, α is cardinal-correct}, S1 = {ν | ν
is a limit ordinal and for some α(ν) ∈ S0, Jν |= α(ν) is the largest cardinal
and α(ν) is regular}, S2 = {µ | µ is a limit ordinal, µ is not a cardinal
and for some ν(µ) ∈ S1, J̃µ |= ν(µ) is the largest cardinal}. Thus if µ ∈ S2

then J̃µ |= α(ν(µ)) is regular, ν(µ) = α(ν(µ))+ is the largest cardinal.
We write ν0 <0 ν1 if ν0 < ν1 and for some α, ν0 and ν1 both belong to
Sα = {ν | α(ν) = α}; also we write µ0 <0 µ1 if µ0 < µ1 and for some ν ∈ S1,
µ0 and µ1 both belong to Sν = {µ | ν(µ) = ν}. For α ∈ S0, ν(α) denotes
maxSα (when α is not regular) and for ν ∈ S1, µ(ν) denotes ν ∪ maxSν
(when ν is not regular).

Now the main definition. For ν ∈ S1, ν not regular, let β(ν) ≥ ν be
the least limit ordinal such that %β(ν)

n(ν) ≤ α(ν) for some least n(ν), and let

q(ν) = p
β(ν)
n(ν)−α(ν). (Thus q(ν) is least so that Hβ(ν)

n(ν) (α(ν)∪{q(ν)}) = J̃β(ν).)
The previous, as well as the definition of ν <1 ν are as in the gap 1 case:
ν <1 ν iff there exists π̃ν̄ν = π : J̃β(ν̄) → J̃β(ν) which is Σ∗n(ν)-elementary,
n(ν) = n(ν), π¹α(ν) = identity, π(α(ν)) = α(ν), π(q(ν)) = q(ν) and the
Q-condition is satisfied: whenever ϕ(x) is Σ∗n(ν) in parameters p ∈ J̃β(ν̄) then

{ν′ < ν | J̃β(ν̄) |= ϕ(ν′, p)} is bounded in ν iff {ν′ < ν | J̃β(ν) |= ϕ(ν′, π(p))}
is bounded in ν. We write πν̄ν for π¹µ(ν) ∪ ν. Now in addition, for µ ∈ S2,
define β(µ), n(µ), q(µ) in the same way, with α(ν) replaced by ν(µ). Also
define µ <1 µ in the same way, with α(ν), α(ν) replaced by ν(µ), ν(µ). We
write πµ̄µ for π¹µ.

Note that we defined πν̄ν for ν <1 ν in S1 to be π¹µ(ν) and not simply
π¹ν. This means that πν̄ν moves ordinals µ ∈ S2, µ < µ(ν), and raises inter-
esting questions about how the relation <1 on such ordinals is affected by ap-
plying πν̄ν . Thus our gap 2 morass properties pertain not only to the “gap 1”
relationships ν <1 ν and µ <1 µ but also to the way in which they interact.

Gap 2 Morass. There exist 〈Sα | α ∈ S0〉, 〈Sν | ν ∈ S1 =
⋃{Sα |

α ∈ S0}〉, a binary relation <1 on (S1×S1)∪ (S2×S2) where S2 =
⋃{Sν |

ν ∈ S1} and 〈πν̄ν | ν <1 ν in S1〉, 〈πµ̄µ | µ <1 µ in S2〉 such that:

(a) S0 ∩ κ is CUB in κ for each uncountable cardinal κ.
(b) For α ∈ S0, Sα is a closed subset of (α, α+] and for ν ∈ S1, Sν is a

closed subset of (ν, ν+). And:
(b1) α regular→ Sα = S0 ∩ (α, α+],
(b2) α singular cardinal → Sα is a proper initial segment of S0 ∩

(α, α+),
(b3) α < α′ in S0, α not a cardinal → ⋃

Sα < α′,
(b4) ν < ν′ in S1, ν not a cardinal → ⋃

Sν < ν′.
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Notation. For ν ∈ S1, α(ν) denotes the α such that ν ∈ Sα and for
µ ∈ S2, ν(µ) denotes the ν such that µ ∈ Sν . We write ν <0 ν

′ if ν < ν′

and α(ν) = α(ν′), and µ <0 µ
′ if µ < µ′ and ν(µ) = ν(µ′). If α ∈ S0 then

ν(α) = maxSα and if ν ∈ S1 is not a cardinal then µ(ν) = ν ∪maxSν . If ν
is not <0-maximal then ν+ denotes its <0-successor (similarly for µ ∈ S2).

(c) <1 is a tree and if ν <1 ν in S1 then α(ν) < α(ν) and ν is not
a cardinal. If µ <1 µ in S2 then ν(µ) < ν(µ). If ν <1 ν then µ is <0-
minimal, successor, limit iff µ is <0-minimal, successor, limit when µ < µ(ν),
µ = πν̄ν(µ) or when (µ, µ) = (µ(ν), µ(ν)). If µ <1 µ then µ is <0-minimal,
successor, limit iff µ is <0-minimal, successor, limit.

(d) If ν <1 ν then π = πν̄ν : µ(ν)→ µ(ν) is order-preserving, π−1[Sα(ν)]
= Sα(ν̄) ∩ ν, π−1[Sν ] = Sν̄ , π(µ+) = π(µ)+ whenever π(µ)+ < µ(ν). If
ν0 <0 ν and ν0 = π(ν0) then ν0 <1 ν0 and πν̄0ν0 = π¹µ(ν0). If ν is a
<0-limit and λ =

⋃
Range(π¹ν) then ν <1 λ and if µλ =

⋃
Range(πν̄λ) and

µ =
⋃

Range(πν̄ν) then µλ <1 µ and πν̄ν = πµλµ ◦πν̄λ. If
⋃

Range(π¹ν) = ν
and α = α(ν′0) for some ν′0 <1 πν̄ν(ν0) for each ν0 < ν then α = α(ν′) for
some ν′ <1 ν. Similarly for πµ̄µ when µ <1 µ, with µ(ν), µ(ν), α(ν), α(ν)
replaced by µ, µ, ν(µ), ν(µ) and πµλµ replaced by the identity.

(e) ν <1 ν <1 ν → πνν = πν̄ν ◦ πνν̄ . For ν ∈ S1, {α(ν) | ν <1 ν} is
closed in α(ν) and unbounded unless ν is <0-maximal. If {α(ν) | ν <1 ν}
is unbounded in α(ν) then µ(ν) =

⋃{Range(πν̄ν) | ν <1 ν}. Similarly for
µ ∈ S2, with α(ν), µ(ν) replaced by ν(µ), µ.

(f) Suppose ν <1 ν. Then ν < µ(ν) = µ iff ν < µ(ν) = µ. Suppose
now that ν < µ and ν < µ. Then µ is <1-minimal, successor, limit iff µ is
<1-minimal, successor, limit, as for µ0 < µ1 < µ, µ0 <1 µ1 iff πν̄ν(µ0) <1

πν̄ν(µ̄1), and in addition ν0 = ν(µ0) for some µ0 <1 µ iff πν̄ν(ν0) = ν(µ0)
for some µ0 <1 µ.

(g) Suppose ν <1 ν, ν < µ(ν) and µ = µ(ν) is a <1-successor. Let
µ0 <∗1 µ denote that µ0 is the <1-predecessor to µ. Then if µ0 <∗1 µ we
have πν̄ν(ν(µ0)) = ν(µ0). And πµ̄0µ̄ is cofinal iff πµ0µ is cofinal. If πµ̄0µ̄

is not cofinal and λ =
⋃

Range(πµ̄0µ̄) then πν̄ν(µ0) = µ0 and πν̄ν(λ) =⋃
Range(πµ0µ).
(h) Suppose ν < µ(ν) = µ and µ is not a <1-limit. Then πν̄ν is cofinal

iff πν̄ν¹ν is cofinal.
(i) Suppose ν < µ(ν) = µ and ν <1 ν. If µ0 <1 µ1 ≤ µ, µ0 <1

µ1 = πν̄ν(µ1) (or µ0 <1 µ(ν) if µ1 = µ) and ν(µ0) = πν̄ν(ν(µ0)) then
πµ0µ1(πν̄ν¹µ0) = πν̄νπµ̄0µ̄1 .

R e m a r k s. (a) Jensen points out that we cannot have perfect tree
preservation, which would say: µ0 <1 µ1 ↔ πν̄ν(µ0) <1 πν̄ν(µ1) for µ1 ≤
µ(ν). (We take πν̄ν(µ(ν)) to be µ(ν).) Thus in (g) we wrote only πν̄ν(ν(µ′)) =
ν(µ′) rather than πν̄ν(µ′) = µ′. So πν̄ν may send µ <∗1 µ(ν) to µ where
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ν(µ) = ν(µ′), µ′ <∗1 µ(ν), µ 6= µ′. If πµ̄µ(ν̄) is not cofinal, however, this will
not happen and we get µ = µ′.

(b) Though πν̄ν may fail to preserve the relation µ0 <1 µ1 when µ1 =
µ(ν) it does preserve the following relation a: µ0 a µ1 iff there are µ0 <

∗
1 µ0,

µ1 <
∗
1 µ1, µ0 <0 µ1 and µ0 <1 πµ1µ̄1

(µ0). Moreover, in case πµ1µ̄1
is cofinal

(the troublesome case for <1-preservation) then µ1 is the direct limit of
{µ0 | µ0 a µ1} via natural maps (if σ a τ then fστ is πσγ where σ <∗1 σ,
τ <∗1 τ and γ = πτ̄τ (σ)).

(c) Of course one could formulate “Gap 2 Morass with Square” but as
we know of no applications of this principle, we have elected not to do so
here for the sake of simplicity.

P r o o f. (a)–(e). This is just as in the gap 1 case, with one exception:
we must show that if ν is <0-limit, ν < µ(ν), ν <1 ν, πν̄ν¹ν not cofinal,
λ =

⋃
Range(πν̄ν¹ν), µλ =

⋃
Range(πν̄ν) and µ =

⋃
Range(πν̄ν) then

µλ <1 µ and πν̄ν = πµλµ ◦ πν̄λ. Consider Hλ = H
β(ν),σ
n(ν) (λ ∪ {q(ν)}) and

H = H
β(ν),σ
n(ν) (ν ∪ {q(ν)}) where σ =

⋃
(%β(ν)
n(ν)−1 ∩ H

β(ν)
n(ν) (α(ν) ∪ {q(ν)})).

Then Hλ is Σ∗n(ν)-elementary in H and after transitive collapse yields πµλµ.
And πν̄ν = πµλµ ◦ πν̄λ follows from the fact that πν̄ν , πν̄λ are obtained
respectively by collapsing the inclusion of Hβ(ν)

n(ν) (α(ν) ∪ {q(ν)}) in H, Hλ.
(f) The fact that µ > ν iff µ > ν is clear from Σ∗n(ν)-elementarity of

π̃ν̄ν . For the rest, first suppose that for some µ0 <1 µ, πµ0µ is cofinal. If µ
is a <1-successor then we can take µ0 <

∗
1 µ and then we have ν(µ0) ∈ q(ν)

and therefore ν(µ0) = π(ν0) for some ν0, where π = π̃ν̄ν . Then H
β(ν̄)
n(ν) (ν0 ∪

{q(ν)}) = H is cofinal in µ and H ∩ ν = ν0. So we get µ0 <∗1 µ and
ν(µ0) = ν0. If µ is a <1-limit then n(µ) < n(ν) and π is therefore Σ∗n(µ)+1-
elementary. Thus Range(π)∩{ν(µ0) | µ0 <1 µ} is unbounded in Range(π)∩ν
so µ is a <1-limit as all maps πµ0µ, µ0 <1 µ sufficiently large, are cofinal.

Second, suppose that there is no cofinal πµ0µ with µ0 <1 µ. If n(µ) <
n(ν) then for µ0 <1 µ we must have Σ∗n(µ)+1-elementarity for π̃µ0µ (see the
proof of (g) from the gap 1 case). Thus if µ is a <1-limit then n(ν) ≥ n(µ)+2
and we see that µ is a <1-limit as {ν(µ0) | µ0 <1 µ} is Π∗n(µ)+1. If µ is not
a <1-limit then max{ν(µ0) | µ0 <1 µ} belongs to Range(π) as it is either
in q(ν) or is 0. Thus µ is not a <1-limit and if µ0 <

∗
1 µ then ν(µ0) = ν(µ0)

where µ0 <
∗
1 µ. If µ is <1-minimal then so is µ. Finally, if n(µ) = n(ν) then

µ is not a <1-limit; if ν0 =
⋃{ν′ < ν | ν′ = ν ∩ Hβ(ν)

n(ν) (ν′ ∪ {q(µ)})} then

ν0 ∈ Range(π) but now since π is Q-elementary we get Hβ(ν)
n(ν) (ν0∪{q(µ)})∩µ

bounded below µ∗ =
⋃

(Range(π)∩ µ). It follows that µ0 <1 µ iff µ0 <1 µ
∗,

so µ is not a <1-limit and if µ0 <
∗
1 µ then ν(µ0) = π(ν(µ0)) where µ0 <

∗
1 µ.

If µ is <1-minimal then so is µ.
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Note that in the above argument we also verified the final statement of
(f). The remaining claim in (f) is clear by Σ1-elementarity.

(g) The argument in the proof of (f) showed that πν̄ν(ν(µ0)) = ν(µ0)
and πµ̄0µ cofinal iff πµ0µ cofinal. Finally, if λ =

⋃
Range(πµ0µ) < µ then we

get λ ∈ Range(πν̄ν) by the argument in (f), and hence µ0 ∈ Range(πν̄ν).
Then we must have π−1(µ0) = µ0.

(h) If µ is not a <1-limit then either n(µ) = n(ν) and the result follows
easily or Hβ(ν)

n(µ)(ν0 ∪ {q(µ)}) ∩ µ is bounded in µ for each ν0 < ν, which
means that X ∩ µ bounded in µ iff X ∩ ν bounded in ν for any X which is
Σ∗n(ν)-elementary in J̃β(ν).

(i) This is clear if µ1 < µ. Otherwise it follows immediately when
πν̄ν(µ0) = µ0 and otherwise by the fact that πµ̄0µ is given by Hβ(µ̄)

n(µ̄) (ν(µ0)∪
{q(µ)}), πµ0µ is given by Hβ(µ)

n(µ) (ν(µ0) ∪ {q(µ)}) and πν̄ν(ν(µ0)) = ν(µ0).
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