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Choice principles in Węglorz’ models

by

N. B r u n n e r (Wien), P. H o w a r d (Ypsilanti, Mich.)
and J. E. R u b i n (West Lafayette, Ind.)

Abstract. Węglorz’ models are models for set theory without the axiom of choice.
Each one is determined by an atomic Boolean algebra. Here the algebraic properties of
the Boolean algebra are compared to the set theoretic properties of the model.

1. Introduction. We investigate a class of permutation models Wfin
B

(where B is an atomic Boolean algebra) due to B. Węglorz [28]. The aim of
[28] has been the proof that in the absence of the axiom of choice (AC) the
atomicity of the powerset algebras is the only restriction on the structure of
these Boolean algebras.

Subsequently M. Boffa [2] has applied Wfin
B to constructions of models

of second order Peano arithmetic and of fragments of Quine’s NF . Boffa’s
main results depend on the additional requirement that the atomic Boolean
algebra B ⊆ P(A) is structured : Each infinite b ∈ B can be split into two
infinite elements of B. An equivalent condition is: B/Ifinite has no atoms;
Ifinite is the ideal which is generated by the atoms of B. The purpose of the
present paper is a characterization of this property in terms of the internal
structure of Wfin

B and related models. (See, for example, Theorems 3 and 5
below.)

1.1. The model . In the following definition of a slight generalization of the
modelWfin

B we shall use the notation of [16] and [7]. First one defines, within
the class V of the pure sets of ZFC , a model V (X) of ZFA + AC whose set
of atoms (objects without elements) is a copy of X ∈ V . Each permutation
π ∈ S(X) (the symmetric group) extends to an ∈-automorphism of V (X).
A Fraenkel–Mostowski model M ⊆ V (X) is generated by the topological
group G < S(X) if for every m in V (X), m ∈ M if and only if for every
x ∈ TrCl({m}), the stabilizer of x, stab(x) = {π ∈ G : π(x) = x}, is open
in G. (TrCl(x) is the transitive closure of x.)
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We may represent B as a subalgebra of P(A), where A is the set of the
atoms. [Then Ifinite = [A]<ω is the set of all finite subsets of A.] Moreover, in
the following construction we shall identify A with the atoms (in the sense
of set theory) of the model. Since a model satisfies AC if the set of the atoms
is finite, we shall only consider infinite Boolean algebras B.

We use the following terminology: Aut(B) is the group of all automor-
phisms of B; it is a subgroup of the symmetric group S(A). Sfinite(A) is the
group of all finite permutations of A (i.e., each permutation only moves a
finite number of elements); it is a subgroup of Aut(B). We shall define a
group topology on a group Γ of automorphisms by means of a filterbase F
which generates a normal filter of groups (i.e. a neighbourhoodbase of the
identity of a T2 group topology; cf. [20]).

Definition 1. B is an atomic Boolean algebra whose set of atoms is A
and Γ is a group of permutations on A such that Γ < Aut(B). Then the
model WΓ

B ⊆ V (A) is generated by the group Γ whose group topology is
induced by the filterbase F = {stab(b) : b ∈ B}.

If x ∈ WΓ
B , then for some finite D ⊆ B we have stab(x) ⊇ fix(D) =⋂{stab(d) : d ∈ D}. We may assume that D is a subalgebra of B (in

particular, A ∈ D). Then the atoms of D form a finite ordered partition
Π = 〈P1, . . . , Pm〉 of A into elements of B and

fix(D) = {π ∈ Γ : (∀1 ≤ i ≤ m)(∀p ∈ Pi)(π(p) ∈ Pi)} = stab(Π).

We will refer to such a partition as a support of x. By refining Π we may
assume that each Pi is either infinite or a singleton.

1.2. Examples. In the trivial case Γ = 1 the model WΓ
B = V (B) satisfies

AC. Węglorz’ original model is Wfin
B =WΓ

B with Γ = Sfinite(A). Its variant
WAut
B is defined in terms of the larger group Γ = Aut(B). It has been in-

vestigated in physics (cf. [8]). Węglorz’ construction will provide the means
for the unified treatment of independence proofs about atomic Boolean al-
gebras. In Table 1 we survey sample properties of the algebra P = P(A) in
typical models WΓ

B . (The notation will be explained later in the paper. The
numbering of the models is provisional only. + means that an assertion is
true in the model, − that it is false.)
N1 = V (ω) =WΓ

B with B = P(ω) and Γ = 1 represents the ZFC theory
of P(ω).
N2 = WΓ

B is the ordered Mostowski model, where B ⊆ P(Q) is the
algebra which is generated by the open intervals and the finite sets (this
is not the interval algebra) and Γ = Aut(Q, <) consists of the increasing
bijections. This model is atypical, insofar as it does not satisfy
Sfinite(Q) < Γ .



Choice principles in Węglorz’ models 99

Table 1

Statements Models

N1 N2 N3 N4 N5 N6

P is structured + + − + + +
|P| ≥ ℵ1 + − − − − −
P ⊕ P is σ-complete − + + + + +
P is (completely, 2)-distributive + + − − − −
P is compact + + + + + +
∃ non-principal prime ideal on P + + + − + −
∃ non-principal σ-measure on P − + + + + −

N3 =WΓ
B is the basic Fraenkel model, where B is the algebra of the finite

and cofinite subsets of ω and Γ = Sfinite. The algebra B is not structured.
N4 = WΓ

B , where B is the countable structured algebra which is gen-
erated by the arithmetic sequences and the finite subsets of Z and Γ is
generated by the translations and the finite permutations.
N5 =WΓ

B , where B = P(ω) and Γ = Sfinite(ω).

N6 =WΓ
B , where B = P(ω) and Γ = S(ω).

Unless stated otherwise, we shall assume Sfinite(A) < Γ in order to ex-
clude the following complication: Although Węglorz’ model appears to be a
rather limited construction, in a certain sense it is very general.

Let us recall from [6] that finite support models are the most general
models in the following sense: Each Boolean combination of Jech–Sochor-
bounded statements which is true in some permutation model is true in
some finite support model. Here M ⊆ V (X) is a finite support model if its
generating group G < S(X) carries the topology of pointwise convergence
with respect to the discrete topology onX; i.e. the topology is induced by the
filterbase F = {fix(e) : e ⊆ X finite}. Such a model may be identified with
the following WΓ

B . In V (X) we set B = BM = PM(A), the powerset (in the
sense of the model) of the atoms, and Γ = ΓM = G. Then M =WΓ

B , since
both models are constructed within V (X) by means of the same group with
the same group action and the same topologies. [If e = {e1, . . . , en} ⊆ X is
finite, then the open group fix(e) < G is open in Γ , since fix(e) = fix(Π) for
the support Π = 〈{e1}, . . . , {en}, X \ e〉. Conversely, if Π = 〈P1, . . . , Pm〉 is
a support and Pi ∈ B, then by the definition of B there are finite sets ei ⊆ X
such that stab(Pi) ⊇ fix(ei) and the open group fix(Π) < Γ is open in G,
since fix(Π) ⊇ ⋂1≤i≤m stab(Pi) ⊇

⋂
1≤i≤m fix(ei).]

Following a suggestion by the referee we shall compare the models WΓ
B

which satisfy Sfinite(A) < Γ with the following restricted class of finite sup-
port models.

The structure X has an ℵ0-categorical theory Th(X ) if each infinite
countable model of Th(X ) is isomorphic to X . The standard examples
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are X1 = ℵ0, a countable set without any structure, and the rationals
X2 = (Q, <).

Definition 2. We assume that X is a first order structure on the count-
able set X in a countable language with an ℵ0-categorical theory. The topol-
ogy of the automorphism group G = Aut(X ) < S(X) is generated by the
groups fix(e) for e ⊆ X finite. Then M(X ) ⊆ V (X) is the permutation
model which is generated by G (and the action id).

We let A be the structure which X induces on the set of atoms. By
the definition of the model, A ∈ M(X ). Therefore each subset of A which
in A is definable from finitely many parameters in A is an element of the
model. For ℵ0-categorical structures there are no other subsets of A in the
sense of M; cf. [7], proof of Theorem 16. We therefore may identify M(X )
with the following model WΓ

B : B = PM(X) is the algebra of the sets which
are definable from finitely many parameters in X, and Γ = Aut(X ). If
X = X1, this is the basic Fraenkel model, and if X = X2, then WΓ

B is the
ordered Mostowski model; cf. [20] and [16]. The latter model does not satisfy
Sfinite(A) < Γ .

1.3. Acknowledgements. The authors would like to thank the referee for
several helpful suggestions. The first author remembers enlightening discus-
sions with Professor W. A. F. Ruppert.

2. Peculiarities of B. In this section we investigate B from the point
of view of the universe WΓ

B and derive arithmetical properties of this alge-
bra which contradict the axiom of choice. If B is the algebra of the finite
and cofinite subsets of ω and Sfinite < Γ , then WΓ

B coincides with the basic
Fraenkel model (cf. [7], [16]). For this particular model the algebraic struc-
ture of B is analyzed by Hodges [14], ring 3. To be accurate, the model of
[14] is the ZF model which results from an application of the Jech–Sochor
transfer theorem to the model of Definition 3 below (cf. [8]).

Definition 3. B is a Boolean algebra and Γ < Aut(B) is a subgroup of
S(B). The model MΓ

B ⊆ V (B) is generated by the group Γ whose topology
is induced by the filterbase F = {stab(b) : b ∈ B}.

The models MΓ
B and WΓ

B differ by the sets of their atoms. From the
point of view of the real world, the atoms of MΓ

B are a copy of the algebra
B, while the atoms of WΓ

B are a copy of the atoms of B. This entails the
following technical difference: The model MΓ

B is defined in terms of “finite
supports”.

If Γ = Aut(B), thenMΓ
B =MAut

B . In [14], ring 2, there is an application
of MAut

B to a non-atomic algebra. If B is atomic with the set A of atoms
and Γ = Sfinite(A), then we setMΓ

B =Mfin
B . As follows from [7], Subsection
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3.1, if B is atomic, then the model MΓ
B is isomorphic to V (B), when this

structure is constructed within WΓ
B . Therefore the results of this paper,

with the exception of Lemma 1, are immediately extended from WΓ
B to the

corresponding MΓ
B .

Węglorz’ result is a special case of the following lemma. [The proof of [28]
uses only permutations with finite supports and generalizes immediately.]
Lemma 1 appears to be the characteristic property of Węglorz’ construction.
If M is a finite support model, B = BM and Γ = ΓM, then WΓ

B satisfies
the conclusion by its definition, but not necessarily the premise.

Lemma 1 ([28]). If Sfinite(A) < Γ , then WΓ
B |= P(A) = B.

As an immediate application let us consider the following assertion.

(1) If A is infinite, then P(A) is structured.

The failure of (1) is related to a “defect” in the definition of finiteness
(cf. [16], p. 52). For apply WΓ

B to an algebra B which is not structured, e.g.
the algebra of the finite and cofinite subsets of ω, and consider an atom
B/Ifinite of B/Ifinite. Then by Lemma 1 inWΓ

B it is an atom of P(A)/Ifinite.
Therefore in WΓ

B the infinite set B ⊆ A is amorphous. [Each infinite subset
of B is cofinite in B.]

It follows from Lemma 1 that in the sense of the models each atomic
B becomes a complete algebra [existence of least upper and greatest lower
bounds]. Therefore B satisfies the countable separation property . [Countable
sets X,Y ⊆ B such that x ≤ y whenever x ∈ X and y ∈ Y may be
separated by some b ∈ B; i.e. x ≤ b ≤ y for x ∈ X, y ∈ Y .] In ZFC the
following assertion (2) is true ([18], p. 79). In Wfin

B it is false in view of the
following Lemma 2, when applied to a counterexample C of the separation
property. (In view of [18], p. 177, the countable atomless algebra C is such
a counterexample; then we may let B ⊆ P(Z) be the atomic algebra which
is generated by the arithmetic sequences and the finite sets.)

(2) The countable separation property is preserved by quotients.

Lemma 2. For each Boolean algebra C ∈ V there is an atomic Boolean
algebra B ∈ V such that in Wfin

B the algebra P(A)/Ifinite is isomorphic to C.

P r o o f. In V we may apply AC to represent C as a quotient B/Ifinite

for some atomic algebra B ([18], p. 85). In Wfin
B the set P(A)/Ifinite is

wellorderable, since no equivalence class can be moved by finite permu-
tations π ∈ Sfinite(A). Therefore this algebra is isomorphic to C in the sense
of the model.

For WΓ
B this isomorphism may exist in V only. The quotient algebra is

therefore elementarily equivalent to C.
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A set is Dedekind-finite if it does not contain a countably infinite subset.
The existence of infinite Dedekind-finite sets contradicts the countable ax-
iom of choice. Dedekind-finite Boolean algebras are σ-complete [complete-
ness with respect to countable sets] and they violate the following ZFC
result (cf. [18], p. 40 and Koppelberg’s theorem on p. 177).

(3) If B is a σ-complete Booolean algebra, then its cardinality is at
least ℵ1.

Lemma 3 ([8]). If Sfinite(A) < Γ , then WΓ
B |= B is Dedekind-finite.

Lemma 3 also applies to the finite support models of Definition 2. [The
proof of Plotkin’s Theorem 16 in [7] is modified as follows: On X each
definable quasi-wellordering relation ≺ defines a finite partition of X into
sets of equivalent elements, whence in M(X ) = WΓ

B the powerset BM =
P(A) is Dedekind-finite.]

We conclude that Ifinite is a σ-ideal [the span ∨X of countable sets
X ⊆ Ifinite exists and ∨X ∈ Ifinite] in B. Lemmas 2 (applied to C which is
not σ-complete) and 3 imply that there are modelsWfin

B where the following
ZFC assertion (the easy part of a theorem due to von Neumann, Loomis
and Sikorski) is false ([25], p. 74). By contrast, no AC is needed in the proof
that a retract of a complete Boolean algebra is complete ([18], p. 71).

(4) The quotient of a σ-complete Boolean algebra modulo a σ-ideal is
σ-complete.

In ZFC the free product of Boolean algebras is defined as the algebra
of the clopen subsets of the topological product of their Stone spaces. For
families of set algebras Ci ⊆ P(Xi), where i ∈ I, we may apply a remark of
[18], p. 159, to avoid Stone’s representation theorem. We define the direct
sum

⊕
i∈I Ci as the subalgebra of P(

∏
i∈I Xi) which is generated by the Ci-

rectangles. [Rectangles are products
∏
i∈I Yi of Yi ∈ Ci, where with finitely

many exceptions Yi = Xi.] Then in ZFC the direct sum coincides with the
free product. Lemma 3 together with Theorem 1 (about ∆4) of [26] imply
that in WΓ

B the algebra B⊕B ⊆ P(A×A) is Dedekind-finite. Therefore the
following theorem depends on AC (cf. [18], p. 172).

(5) If B is an infinite Boolean algebra, then B⊕ B is not σ-complete.

By the proof of (5) in [18], p. 163, if B is an infinite atomic Boolean
algebra, then AC is not needed in order to verify that B⊕B is not complete.
[The span ∨{a× a : a an atom of B} does not exist.] A modification of Wfin

B
shows, however, that the following assertion depends on AC.

(6) If B1 and B2 are infinite atomic Boolean algebras, then B1 ⊕ B2 is
not complete.
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Definition 4. If B1 ⊆ P(A1) and B2 ⊆ P(A2) are atomic Boolean
algebras with disjoint sets of atoms {{a} : a ∈ Ai}, then WB1,B2 ⊆ V (A1 ∪
A2) is generated by the group Sfinite(A1 ∪ A2) whose group topology is
induced by the filterbase F = {stab(b) : b ∈ B1 ∪ B2}.

Lemma 4. WB1,B2 |= P(Ai) = Bi and WB1,B2 |= P(A1 ×A2) = B1 ⊕ B2.

P r o o f. The stabilizer stab(Ai) is open, since Ai = 1Bi ∈ Bi ∈ WB1,B2 .
Therefore in WB1,B2 the set A of the atoms is partitioned into A = A1 ∪A2.
The proof of Lemma 1 (in [28]) shows that WB1,B2 |= P(Ai) = Bi. The
assertion about the free product is verified by a similar argument.

We consider an element S ∈ P(A1×A2)∩WB1,B2 . Then for some finite set
D ⊆ B1 ∪B2 we have stab(S) ⊇ fix(D). We may assume that D = D1 ∪D2 is
the union of finite subalgebras Di of Bi. Their atoms form finite partitions
Πi = 〈P i1, . . . , P imi〉 of Ai. If we consider an element r = (p1, p2) of the
rectangle R = P 1

j1 × P 2
j2 , then the orbit

orbfix(D)(r) = {〈π1(p1), π2(p2)〉 : πi ∈ Sfinite(P iji)} = R.

Hence S is the union of the finitely many rectangles of the partition which
intersect S. By its definition, this union is an element of B1 ⊕ B2.

We next investigate distributive laws and construct counterexamples to
Tarski’s reformulation (7) of AC (cf. [23], p. 18).

(7) P(A) is completely distributive.

Lemma 5. If Sfinite(A) < Γ , then WΓ
B |= B is not (completely, 2)-

distributive.

P r o o f. We first observe that there is no choice function on [A]2. Sup-
pose that Π is a support of a choice function f and P is an infinite equiv-
alence class of Π. Let us consider a two-element set {a, b} ∈ [P ]2 and the
transposition π = (a; b). Then (πf)(π{a, b}) = π(f({a, b})) 6= f({a, b})
by the definition of f as a choice function and π as a transposition. But
(πf)(π{a, b}) = f({a, b}), since π ∈ stab(Π) ∩ stab({a, b}), a contradiction.

That B is not (completely, 2)-distributive follows from a proof in [23], p.
18: Fix a0 ∈ A and consider the sets SF = {{a, a0}, {b, a0}} ∈ [B]2, where
F = {a, b} ∈ F = [A \ {a0}]2. The distributive law is formulated in terms
of the set C of functions f : F → [A]2 ⊆ B such that f(F ) ∈ SF . It asserts
that for all functions F 7→ SF where |SF | ≤ 2,

⋂

F∈F

⋃

x∈SF
x =

⋃

f∈C

⋂

F∈F
f(F ).

Since
⋂
F∈F

⋃
SF 6= ∅, there exists some f ∈ C which defines a choice

function {g({a, b})} = f({a, b}) \ {a0} on [A \ {a0}]2.
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As follows from the above proof, if Sfinite(A) < Γ , then in WΓ
B the

ordering principle [each set is the domain of a linear ordering relation] is
false. On the other hand, the ordered Mostowski model is known to satisfy
this principle ([20]) and therefore the powerset algebras are (completely, 2)-
distributive.

For Wfin
B the failure of the ordering theorem may be explained in terms

of the following principle which in the presence of the axiom of foundation
is equivalent to AC. Halpern’s [13] proof of the next lemma in the special
case of the basic Fraenkel model (B is the algebra of the finite and cofinite
sets) extends immediately to the general situation.

Lemma 6 ([13]). Wfin
B |= Each linearly orderable set is wellorderable.

In order to prove an analogy of Lemma 6 for a model WAut
B we need

the following lemma about reflections [permutations % on a set A for which
%2 = 1A, the identity]. Degen [9] has considered (i) as a weak axiom of
choice.

Lemma 7. If ψ is a permutation of a non-empty set A then there are two
reflections %1 and %2 satisfying

(i) ψ = %2 ◦ %1 and
(ii) for all B ⊆ A, if ψ(B) = B then %1(B) = B and %2(B) = B.

P r o o f o f (i). Assume ψ is a permutation of A. Write ψ =
∏
i∈K ci as a

product of disjoint cycles. Each ci can be written as a product of reflections
ci = %2,i ◦ %1,i as follows.

If ci has odd length, then

ci = (a−n; a−(n−1); . . . ; a−1; a0; a1; . . . ; an),

%1,i = (a−1; a1)(a−2; a2) . . . (a−n; an),

%2,i = (a0; a1)(a−1; a2) . . . (a−(n−1); an).

If ci has even length, then

ci = (a−(n−1); a−(n−2); . . . ; a−1; a0; a1; . . . ; an),

%1,i = (a−1; a1)(a−2; a2) . . . (a−(n−1); an−1),

%2,i = (a0; a1)(a−1; a2) . . . (a−(n−1); an).

If ci is infinite, then

ci = (. . . ; a−2; a−1; a0; a1; a2; . . .),

%1,i =
∞∏
n=1

(a−n; an),

%2,i =
∞∏
n=0

(a−n; an+1).



Choice principles in Węglorz’ models 105

Then, if %1 =
∏
i∈K %1,i and %2 =

∏
i∈K %2,i, we have %2

1 = 1A, %2
2 = 1A and

ψ = %2 ◦ %1.

P r o o f o f (ii). We first note that if η is a permutation whose expression
as a product of disjoint cycles is η =

∏
j∈J σj and B ⊆ dom(η) then the

following is true:

(∗) η(B) = B ⇔ (∀j ∈ J)({x : σj(x) 6= x} ⊆ B
or {x : σj(x) 6= x} ∩B = ∅).

Now assume that B ⊆ A and that ψ(B) = B. By (∗) for each i ∈ K,
either {a ∈ A : ci(a) 6= a} ⊆ B or {a ∈ A : ci(a) 6= a} ∩ B = ∅. When
%1 is written as a product of disjoint cycles each cycle is a transposition
(a; b) which is a cycle of %1,i for some i ∈ K. Hence by the definition of %1,i,
{a, b} ⊆ {a ∈ A : ci(a) 6= a}. Therefore {a, b} ⊆ B (if {a ∈ A : ci(a) 6= a} ⊆
B) or {a, b} ∩ B = ∅ (if {a ∈ A : ci(a) 6= a} ∩ B = ∅). It follows from (∗)
that %1(B) = B. Similarly, %2(B) = B.

Theorem 1. If B = P(ω), then

WAut
B |= Every linearly orderable set is well orderable.

P r o o f. LetX be linearly orderable inWAut
B and assume that the ordered

partition Π = 〈P1, . . . , Pm〉 is a support of a linear ordering < on X. We
shall show that if ψ ∈ stab(Π), then ψ fixes X pointwise and hence Π is a
support of a well ordering of X.

Assume ψ ∈ stab(Π). By Lemma 7, ψ = %2 ◦ %1 where %1 and %2 are
reflections and (by part (ii)) %1 and %2 are in stab(Π). The permutations %1

and %2 are therefore order automorphisms of (X,<). Since no order auto-
morphism of a linearly ordered set can have a finite cycle of length greater
than 1, we conclude that for all x ∈ X, %1(x) = %2(x) = x and therefore
also ψ(x) = x.

The following topological version of (7) due to Strauss (cf. [17], p. 285)
depends on AC, too.

(8) If B is a compact zero-dimensional Hausdorff topological Boolean
algebra, then B is completely distributive.

In view of Lemma 1, B = P(A) carries the product topology of 2A.
It is zero-dimensional (i.e. the clopen sets form a base) and T2 [consider
the rectangles which form a base for the open sets] and with this topology
B is a topological Boolean algebra [i.e. complementation, union and inter-
section are continuous; this can be seen by expressing these properties in
terms of the topological group (Z/2Z)A]. Compactness is non-trivial. As fol-
lows from the failure of the axiom of choice for families of two-element sets
(Lemma 5), P(A × A) is not compact (cf. [4], p. 123). By contrast, in the
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ordered Mostowski model which does not satisfy Sfinite(A) < Γ this space
is compact, too.

Theorem 2. If Sfinite(A) < Γ and X ∈ WΓ
B is a compact Hausdorff

space which is wellorderable as a set , then WΓ
B |= XA is compact.

P r o o f. As in [4] it suffices to consider only spaces of the form X = 2α,
where α is an ordinal number. [Each wellorderable space is a continuous
image of a closed subspace of such an X.] Given an open covering O of XA

we shall construct a finite refinement. Let Π = 〈P1, . . . , Pm〉 be a support
of O. If we are given finite sets Λ ⊆ α and E ⊆ A such that E ∩ Pi 6= ∅ for
each equivalence class Pi of Π, then we set, for each φ ∈ 2Λ×{P1,...,Pm},

U(Λ,E, φ) = {f ∈ XA = 2α×A :

(∀λ ∈ Λ)(∀x ∈ E ∩ Pi)(f(λ, x) = φ(λ, Pi))}.
S t e p 1: There exist integers 1 ≤ ki ≤ |Pi| and a finite set Λ ⊆ α

such that for all φ ∈ 2Λ×{P1,...,Pm} and each finite E ⊆ A the following
implication is true:

(|E ∩ P1| = k1 ∧ . . . ∧ |E ∩ Pm| = km)⇒ (∃O ∈ O)(U(Λ,E, φ) ⊆ O).

For the proof we define an open covering of Y = 2α×{P1,...,Pm}. No choice
principle is needed in the proof that this space is compact; cf. [19]. Given
O ∈ O we set

R(Λ,E,O) = {φ ∈ 2α×{P1,...,Pm} : U(Λ,E, φ/(Λ× {P1, . . . , Pm})) ⊆ O}.
R(Λ,E,O) is open: for if φ ∈ R(Λ,E,O) and ψ/(Λ × {P1, . . . , Pm}) =
φ/(Λ× {P1, . . . , Pm}), then ψ ∈ R(Λ,E,O).

The sets R(Λ,E,O) cover Y, where E ⊆ A and Λ ⊆ α are finite, E
meets each equivalence class of Π and O ∈ O. For given φ ∈ Y we define
the following f ∈ XA: If x ∈ Pi, then we set f(λ, x) = φ(λ, Pi). Since O
covers XA, we have f ∈ O for some O ∈ O. As O is open, there are finite
sets Λ ⊆ α and E ⊆ A such that g ∈ O if g/(Λ×E) = f/(Λ×E). We may
enlarge E so as to ensure E ∩ Pi 6= ∅ for each equivalence class Pi of Π.
Then U(Λ,E, φ) ⊆ O and φ ∈ R(Λ,E,O).

Since Y is compact, it is covered by finitely many R(Λj , Ej , Oj). We
set Λ =

⋃
j Λi and ki = |Pi ∩ (

⋃
j Ej)| and verify the claim of Step 1.

Suppose that φ ∈ 2Λ×{P1,...,Pm} and let ψ be an arbitrary continuation
of φ to Y = 2α×{P1,...,Pm}. If E ⊆ A satisfies |E ∩ Pi| = ki, then we
let πi ∈ Sfinite(Pi) be permutations such that πi”((

⋃
j Ej) ∩ Pi) = E ∩ Pi.

So π =
∏
i πi ∈ stab(Π) satisfies π”

⋃
j Ej = E. There is some j such

that ψ ∈ R(Λj , Ej , Oj). Hence U(Λ,
⋃
j Ej , φ) ⊆ U(Λj , Ej , φ) ⊆ Oj and

U(Λ,E, φ) = πU(Λ,
⋃
j Ej , φ) ⊆ πOj ∈ O.
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This concludes Step 1 and shows that

V = {U(Λ,E, φ) : φ ∈ 2Λ×{P1,...,Pm} and (∀i)(|E ∩ Pi| = ki)}
is a refinement of O.

S t e p 2: We construct a finite subcover of V.
Assume that Pi is infinite for 1 ≤ i ≤ n and |Pi| = ki = 1 for n < i ≤ m.

For 1 ≤ i ≤ n we choose finite subsets Qi ⊆ Pi such that |Qi| > ki · 2|Λ| and
set Q =

⋃
1≤i≤nQi ∪

⋃
i>n Pi. Then the following finite subfamily Vfin of V

covers the space XA:

Vfin = {U(Λ,E, φ) : φ ∈ 2Λ×{P1,...,Pm}, E ⊆ Q and (∀i)(|E ∩ Pi| = ki)}.
For consider f ∈ XA and define a sequence Ei ⊆ Pi ∩Q as follows.

(i) If i > n, then Pi = {x} and for λ ∈ Λ we have f(λ, x) = φ(λ, Pi); we
set Ei = Pi.

(ii) If i ≤ n, then Q ∩ Pi = Qi ⊆
⋃
χ∈2Λ{x : (∀λ ∈ Λ)(f(λ, x) = χ(λ))}.

The pigeon-hole principle implies that for some χ and different x1, . . . , xki
in Qi we have (∀λ ∈ Λ)(f(λ, x1) = . . . = f(λ, xki) (= χ(λ))). We set Ei =
{x1, . . . , xki}.

We conclude that f ∈ U(Λ,
⋃
iEi, φ) ∈ Vfin.

As in [4] this theorem may be improved by means of Ramsey theory:
X[A]n is compact. The premise Sfinite(A) < Γ is not optimal. For if B =
P(ω), then the compactness of B inWΓ

B may be verified directly and without
restrictions on Γ < Aut(B): The topological spaces B in V and B in WΓ

B
consist of the same points, but in WΓ

B there are fewer open coverings. A
similar argument proves that B is a Baire space in this model. On the other
hand, if B is the algebra of the finite and cofinite subsets of ω and Sfinite < Γ ,
then in the basic Fraenkel model WΓ

B the space B is of the first category.
[The families of the sets of cardinality n and of the sets whose complements
are of cardinality n are closed and nowhere dense.]

The following assertion (9) concerns a “defect” in a topological definition
of finiteness due to J. Aczél [1]; cf. (13) below.

(9) Each infinite set A carries a Hausdorff topology A with infinitely
many non-isolated points.

If Sfinite(A) < Γ , then inWΓ
B for each T2 topology A on A the set of the

isolated points is cofinite. For if Π is a support of A, then each of its infinite
equivalence classes Pi consists of isolated points. [If the points p1 6= p2

of Pi are contained in the disjoint open neighbourhoods pj 3 Uj ∈ A, then
π = (a1; a2) ∈ stab(Π) satisfies π(U2) = (U2∪{a1})\{a2} ∈ A and therefore
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{a1} = U1 ∩ π(U2) ∈ A.] Hence each non-isolated point is contained in one
of the finitely many one-element classes of Π. By contrast, in the ordered
Mostowski model the atoms carry a dense-in-itself Hausdorff topology.

3. Maximal ideals. In this section we imitate a classical permutation
argument due to Feferman (cf. [11], p. 343, and [27]) which will prove the
independence of weakenings of the Boolean prime ideal theorem (10) by
means of the counterexample B ∈ WΓ

B .

(10) Each non-principal ideal of B is contained in a maximal non-prin-
cipal ideal.

The ordered Mostowski model is known to satisfy (10); cf. [15]. In Wfin
B ,

(10) fails in view of the remark subsequent to Lemma 5 [the Boolean prime
ideal theorem implies the ordering theorem]. However, B ∈ Wfin

B satisfies
(10). [For consider a non-principal ideal I ∈ Wfin

B of B = P(A). Its image
I/Ifinite under the quotient map is an ideal in the quotient algebra. The
latter is wellorderable as a set by Lemma 2, whence the quotient ideal is
contained in a maximal ideal whose preimage is a maximal ideal which
extends I.]

Theorem 3. If B is a countable atomic algebra, then the following as-
sertions are equivalent.

(i) B is structured ;
(ii) WAut

B |= Each prime ideal of B is principal.

P r o o f. For “(i)→(ii)” we first observe that, if C is a countable structured
algebra and B ⊆ P(Z) is the algebra which is generated by the arithmetic
sequences and the finite sets, then both the quotient algebras B/Ifinite and
C/Ifinite are countable and atomless and therefore isomorphic (cf. [14], p.
224). Hence by a theorem of Vaught, the countable atomic algebras B and
C are also isomorphic (cf. [22], p. 1105). Therefore it suffices to consider the
algebra B. We shall use the following notation: S(a, b) = {az + b : z ∈ Z},
where a > 0 and b are integers, is an infinite arithmetic sequence. The group
Γ < Aut(B) is generated by the finite permutations and the translations
Tc(x) = x+ c, where c ∈ Z.

We suppose dually that inWAut
B there is a non-principal prime filter U of

P(A) = B; then A ∈ U , and {a} 6∈ U for all a ∈ A. We let Π be a support of
U and C be the atomic subalgebra of B which is generated by Π. By refining
Π, we may assume the existence of a finite set E = {e1, . . . , em} ⊆ Z and
of an even a > 0 in Z, where |ei| < a/2, such that Π is of the form

Π = 〈{e1}, . . . , {em}, S(a, 0) \ E, . . . , S(a, a− 1) \ E〉.
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Claim. For each automorphism φ of C/Ifinite there exist a finite subal-
gebra D ⊆ B, an isomorphism Φ : D/Ifinite → C/Ifinite, and a permutation
π ∈ Γ ∩ fix(C) such that

(L) φ ◦ Φ(d/Ifinite) = Φ(π(d)/Ifinite) whenever d ∈ D.
By this weak “lifting” condition we mean that the automorphism φ of

C/Ifinite may be imitated by some π ∈ fix(C). We note that the restriction
of φ to the atoms of C/Ifinite is a permutation of some finite order n which
we may represent by f ∈ S({0, 1, . . . , a− 1}) as follows:

φ(S(a, k)/Ifinite) = S(a, f(k))/Ifinite.

We first define a copy D ⊆ B of the algebra C/Ifinite and the isomorphism
Φ. On the atoms we set

Φ(Dk/Ifinite) = S(a, k)/Ifinite,

where Dk is an atom of D. For 0 ≤ k < a it is defined by means of the
following partition of A:

Dk =
n−1⋃

i=0

S(na, ia+ f [−i](k)),

where for z ∈ Z the mapping f [z] is the zth iterate of f [f [0](x) = x, f [1] = f
and f [−1] is the inverse mapping]. D is the subalgebra of B which is generated
by these atoms.

Now we define π. The translation Ta leaves C invariant and it satis-
fies (L):

Ta”(Dk) =
n−1⋃

i=0

S(na, (i+ 1)a+ f [−i](k))

=
n−1⋃

i=0

S(na, ia+ f [1−i](k) = Df(k).

In order to construct a π ∈ stab(Ψ) it suffices to remove the finitely many
deviations of Ta from stab(Ψ) by means of a finite permutation η ∈ Sfinite(Z)
(this does not influence (L)); i.e. π = η ◦ Ta, where η is a product of trans-
positions

η = (e1; e1 + a) ◦ . . . ◦ (em; em + a).
It is easy to verify that π(ei) = ei, since always ei + a 6= ej . [For otherwise
0 < a = |ei − ej | ≤ |ei| + |ej | < 2(a/2).] Therefore also π(S(a, i) \ E) =
S(a, i) \ E and π ∈ stab(Π) = fix(C).

This completes the proof of the claim.

We apply the claim and consider the automorphism φ of C/Ifinite which
is induced by the following product of disjoint transpositions of atoms of
C/Ifinite:
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φ =
a/2−1∏

k=0

τk where τk = (S(a, k)/Ifinite;S(a, k + a/2)/Ifinite).

As in the proof of the claim we set Φ(Db/Ifinite) = S(a, b)/Ifinite. We now
consider the following sets Si ∈ D ⊆ B:

S1 =
a/2−1⋃

k=0

Dk and S2 =
a⋃

k=a/2

Dk.

Then in D/Ifinite ⊆ B/Ifinite the equivalence classes Si/Ifinite form a parti-
tion of unity such that for the permutation π (whose existence is assured by
the claim) we have

π(S1)/Ifinite = Φ−1
(( a/2−1⋃

k=0

S(A, k + a/2)
)
/Ifinite

)
= S2/Ifinite and

π(S2)/Ifinite = . . . = S1/Ifinite.

In terms of the algebra P(A) = B this means that the symmetric differences
S24π(S1) and S14π(S2) are finite. As A\(S1∪S2) is finite, some Si is in the
prime filter U , say S1 ∈ U . Then also S2 ∈ U , since π ∈ stab(Π) ⊆ stab(U)
and π(S1) ∈ U differs from S2 by just a finite set not in U [which is non-
principal]. We thereby derive the contradiction that U contains the finite set
S1 ∩ S2.

For the proof of “(ii)→(i)” we consider an atomic algebra B ⊆ P(A) such
that B/Ifinite is an atom in B/Ifinite. By the discussion following the asser-
tion (1), independently of Γ in WΓ

B the set B ⊆ A of atoms is amorphous
and we may define a non-principal maximal ideal I on A: For S ⊆ A we set
S ∈ I if S ∩B is finite.

We conclude that, if B is the countable structured atomic algebra, then
in WAut

B the following choice principle (11) fails. On the other hand, if B is
the algebra of the finite and cofinite subsets of ω, then the basic Fraenkel
model WAut

B satisfies (11) by [13] who calls it SPI.

(11) Each infinite set A carries a non-principal ultrafilter.

In the above model WAut
B the failure of (10) is combined with a strong

version of the premise of the usual Zorn lemma proof of (10): each family of
ideals of B which is wellordered by ⊆ has a maximal element.

Lemma 8. If B is the countable structured atomic Boolean algebra, then
in WAut

B the set of the ideals of B is Dedekind-finite.

P r o o f. As was observed in the proof of Theorem 3, B is isomorphic to
the algebra of B ⊆ P(Z) which is generated by the arithmetic sequences
and the finite sets. Let us consider a support Π and an ideal I which is
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supported by Π. As in the proof of Theorem 3 we may assume Π consists of
finitely many one-element sets {a}, where a ∈ E, and arithmetic sequences
S(a, b) \ E, where 0 ≤ b < a. If Pi = S(a, b) \ E is an infinite equivalence
class of Π, we investigate the ideal in the algebra B|Pi of [25], p. 30. In view
of Lemma 1 we have B|Pi = P(Pi). Then I ∩ (B|Pi) is one of the following
ideals:

• zero ideal I ∩ (B|Pi) = {∅},
• finite-subsets ideal I ∩ (B|Pi) = [Pi]<ω or
• degenerate case I ∩ (B|Pi) = B|Pi.

For if s ∈ S ∈ I ∩ (B|Pi), then by the argument in [14], pp. 225–226, the
ideal I ∩ (B|Pi) contains the finite-subsets ideal. If some S ∈ I ∩ (B|Pi) is
infinite, then S ⊇ S(ka, b + ha) \ F for some h ∈ Z, k ∈ Z \ {0} and a
finite F . We combine the k translations Tja ∈ Aut(B), where 0 ≤ j < k,
with finite permutations to define πj ∈ stab(Π). Then there are finitely
many permutations πk+j ∈ Sfinite(Pi) ⊆ stab(Π), where j ≥ 0, such that⋃
l≥0 πl(S) = Pi, and we conclude that Pi ∈ I ∩ (B|Pi).

If Pi is a singleton set, then only the first and the third cases are possi-
ble. As in [14] it follows that there are only finitely many [namely 2m − 1]
ideals which are supported by Π. Hence the set of all ideals is Dedekind-
finite.

The above argument is valid forWAut
B with B = P(ω), too. [14] has shown

that, if B is the algebra of the finite and cofinite subsets of ω, then the basic
Fraenkel model Wfin

B satisfies the conclusion of Lemma 8. By contrast, if
B = P(ω) and 〈Si : i ∈ ω〉 is an infinite partition of ω into infinite pieces,
then in Wfin

B there is a strictly increasing infinite sequence of ideals, namely
n 7→ In = {y ⊆ A : y \⋃i≤n Sn is finite}, which is supported by Π = 〈A〉.

We conclude from Theorem 3 that the following assertion (about injective
cardinalities) depends on AC (cf. [12], p. 104).

(12) If B is an infinite Boolean algebra and β(B) is the set of its maximal
ideals, then |B| ≤ |β(B)|.

For if B ⊆ P(Z) is generated by the arithmetic sequences and finite
sets of integers, then in WAut

B each maximal ideal I is generated by an
atom {a} ∈ B, i.e. I = {b ⊆ A : a 6∈ b}, whence by Cantor’s theorem
|β(B)| = |A| < |P(A)| = |B|.

β(B) carries the Stone topology which is generated by the subbase {r(b) :
b ∈ B} of open sets r(b) = {I ∈ β(B) : b 6∈ I}. As follows from [12],
p. 101, AC is not needed in the proof of the following assertion: r is an
isomorphism between B and the algebra of the compact open subsets of the
Stone space β(B). The compactness of β(B) is known to be equivalent to
(10), the Boolean prime ideal theorem; cf. [15]. As follows from Theorem 3,
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in WAut
B the Stone space of the arithmetic sequences algebra is A with

the discrete topology. By Lemma 3 it is sequentially compact and countably
compact. Hence even the following assertion depends on AC. (In Feferman’s
model [11] there are infinite discrete Stone spaces which, however, are not
countably compact.)

(13) If β(B) is countably compact and discrete, then B is finite.

The existence of non-principal two-valued measures on P(A) ∈ WΓ
B is

equivalent to the existence of maximal ideals of B ∈ WΓ
B . It does not follow

from the existence of non-principal probability measures. For if B ⊆ P(Z)
is the algebra which is generated by the arithmetic sequences and the fi-
nite sets and Γ is generated by the translations and the finite permu-
tations, then the permutations in Γ do not change the density δ(S) =
limn→∞ (S ∩ [−n, n])/(2n+ 1), whose restriction to B is therefore an ele-
ment of WΓ

B . Hence in WΓ
B it is a non-trivial non-principal measure on

B = P(A) and it is countably additive in view of Lemma 3. By the proof
of Theorem 3 there are, however, no non-principal two-valued measures on
P(A) ∈ WΓ

B . We next consider Pincus’ strengthening of Feferman’s argu-
ment (cf. [21]).

Theorem 4. If B = P(ω), then in WAut
B each bounded complex-valued

finitely additive measure m on P(A) is concentrated on a finite set.

P r o o f. We first consider the case where m is a real-valued non-principal
measure on A which is supported by the partition Π = 〈P1, . . . , Pn〉 of A.
Then m is finitely additive on disjoint sets, m(A) 6= 0, and m({a}) = 0 for
all a ∈ A. It follows that there must be an i ≤ n such that Pi is infinite and
m(Pi) 6= 0. There exist pairwise disjoint infinite subsets, S1, S2, and S3, of
Pi such that Pi = S1 ∪ S2 ∪ S3. Suppose σ1, σ2 ∈ stab(Π) are such that

(a1) σ1(S1) = S2 ∪ S3 and σ1(S2 ∪ S3) = S1 and
(b1) σ2(S1) = S2, σ2(S2) = S3, and σ2(S3) = S1.

Then we would have

(a2) m(S1) = m(S2 ∪ S3) = m(S2) +m(S3), by (a1), and
(b2) m(S1) = m(S2) = m(S3), by (b1).

Consequently, m(S1) = 2m(S1), which implies that m(S1) = 0 [since m(Si)
6= ±∞]. Thus, all m(Si) = 0, and m(Pi) = 0, which is a contradiction.

In the general case we let v be the total variation of m [cf. [10], p. 97;
v exists, since m is bounded]. It is a bounded, real-valued, positive finitely
additive measure on P(A) such that |m(S)| ≤ v(S). In particular, v is
monotonic. [If S ⊆ T , then v(S) ≤ v(S) + v(T \ S) = v(T ).]

We now define a function c : A→ R as follows: c(a) = v({a}) = |m({a})|.
It is in `1(A), for if E ⊆ A is finite, then

∑
a∈E |c(a)| = v(E) ≤ v(A) <∞.
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We set E0 = {a ∈ A : c(a) 6= 0}; as [A]<ω is Dedekind-finite (Lemma 3), E0

is finite ([5], p. 3). Next we define a set function µ on P(A):

µ(S) = v(S)−
∑

a∈E0∩S
c(a) = v(S)− v(E0 ∩ S).

It is finitely additive, positive (since v is monotonic) and non-principal; if
E ⊆ A is finite, then µ(E) =

∑
a∈E\E0

c(a) = 0. It follows that µ = 0
and therefore v(S) = v(S ∩ E0). Hence also m(S \ E0) = 0 and m(S) =∑
a∈S∩E0

m({a}).
Theorem 4 implies that the Hahn–Banach theorem fails in WAut

B ; there
is no non-zero continuous linear functional on the space `∞(A)/c0(A) (cf.
the proof of Lemma 9; our notation in choiceless Banach-space theory fol-
lows [5]). While for 1 < p < ∞ the spectral theory of linear operators on
reflexive and locally sequentially compact [the closed unit ball is sequentially
compact] spaces `p(D) is similar to the `p(ω)-theory (cf. [5]), not much is
known for `∞(A). Even the non-reflexivity varies with the model; i.e. the
assertion (14) depends on AC (cf. [10], p. 339). Recall that a Banach space
X [a sequentially complete normed vector space] is reflexive if the canonical
isometry χ : X → X?? is onto the second dual; χ(x)(φ) = φ(x) for x ∈ X
and φ ∈ X?. By Lemma 3 and Lemma 3.2 of [5] the spaces `∞(A) ∈ WΓ

B
are locally sequentially compact.

(14) If `∞(A) is reflexive and locally sequentially compact, then A is
finite.

Lemma 9. If B = P(ω) then WAut
B |= `∞(A) is reflexive.

P r o o f. If a ∈ A and f ∈ `∞(A) is a bounded complex-valued function
on A, then eva(f) = f(a) is the evaluation functional.

We show first that each bounded linear functional φ : `∞(A) → C is a
linear combination of evaluation functionals.

To this end we define a bounded additive set function µ on P(A), namely
µ(S) = φ(1S), where 1S is the characteristic function of S ⊆ A. By Theo-
rem 4 this measure is concentrated on a finite set E0. Next we compute φ(f)
for f ∈ `∞(A). By Lemma 3 the powerset of A is Dedekind-finite. Therefore
f is finitely valued [C is wellorderable in all permutation models; cf. [3],
p. 13], whence for some finite partition Π of A and some fi ∈ C we have
f =

∑
i fi1Pi . Then eva(f) = fi, whenever a ∈ Pi and we may conclude

that

φ(f) =
∑

i

fiµ(Pi) =
∑

i

fi
∑

a∈Pi∩E0

µ({a}) =
∑

a∈E0

eva(f)µ({a});

hence φ =
∑
a∈E0

da eva for da = µ({a}) ∈ C.
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As an application of that observation let us consider any bounded linear
functional L : `∞(A)? → C in the second dual. We set f(a) = L(eva) and
verify that χ(f) = L.

Since |f(a)| ≤ ‖L‖ · ‖eva‖ and ‖eva‖ ≤ 1 we have f ∈ `∞(A). Since
χ(f)(eva) = eva(f) = f(a) = L(eva) and the evaluation functionals span
the dual `∞(A)?, for all φ ∈ `∞(A)? we have χ(f)(φ) = L(φ).

The same proof shows that in WAut
B the space `1(A) is reflexive. [If

L =
∑
i ci evai ∈ `1(A)?? = `∞(A)?, then L = χ(

∑
i cieai), where ea ∈

`1(A) is an element of the canonical unit vector base.] If B is the algebra
of the finite and cofinite sets, then in the basic Fraenkel model WAut

B the
space `∞(A) is not reflexive [there is an additional functional ev∞(f) = c if
{a ∈ A : f(a) = c} is infinite, and L ∈ `∞(A)?? is in the range of χ iff for
infinitely many a ∈ A we have L(eva) = L(ev∞)]. Since in this model (by
[3]) each infinite set contains a copy of ω or of A \ F for some finite F ⊂ A,
the model satisfies (14). However, the following topological variant of (14)
is violated for `∞(A) in all modelsWΓ

B which satisfy Sfinite(A) < Γ (cf. [10],
p. 339).

(15) If the closed unit ball of `∞(A) is weakly compact and sequentially
compact, then A is finite.

The closed unit ball B of `∞(A) in the weak topology is the product
space B = {z ∈ C : |z| ≤ 1}A. Since C is wellorderable in all permutation
models, the product space is compact in view of Theorem 2.

In [8], Subsection 6.3, the model MAut
B of Definition 3 has been given

the following empirical interpretation: B is the algebra of perceivable objects
and the model consists of those empirical concepts which are not empiri-
cally meaningless for syntactical reasons. (The investigation of the countable
structured algebra which is generated by the arithmetic sequences and the
finite sets has been motivated by the algebra of the regular languages over
a one-element alphabet which in turn corresponds to the algebra of events
which are perceivable by nerve nets.) Independence proofs such as Theo-
rem 4 therefore have an empirical interpretation. We consider the following
special case of a theorem due to Schmeidler [24] about cooperative games
as an example.

(16) Convex two-valued continuous games v : P(A) → R+ have a non-
empty core.

The set function v is the worth function of a convex game if v(∅) = 0
and for all coalitions S, T the following inequality is true: v(S) + v(T ) ≤
v(S ∪ T ) + v(S ∩ T ). Continuity asserts that for each increasing sequence
〈Si : i ∈ ω〉 of coalitions v(

⋃
i Si) = limi v(Si). (This condition is not needed

in [24].) The core of v consists of the finitely additive measures m : P(A)→
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R (the payoffs of the game) such that m(A) = v(A) and m(S) ≥ v(S) for
all S ∈ P(A).

If B = P(ω), then in MAut
B the following set function is a convex game

which is continuous by Lemma 3: w(S) = 0 if S is not cofinite, and w(S) = 1,
otherwise. If m is in the core of w, then m is positive and non-principal.
Hence by Theorem 4 the core is empty. In V (B) the core is non-empty
by AC. Therefore in view of the above interpretation of the model these
solutions of the game are not empirically meaningful, even if all possible
coalitions are perceivable.

4. Amorphous sets. The following result is a variant of Mostowski’s
[20] intersection lemma for the ordered Mostowski model.

Lemma 10. If B1 and B2 are finite subalgebras of B, then the subgroup
fix(B1 ∩ B2) of Sfinite(A) is generated by fix(B1) ∪ fix(B2).

P r o o f. Since it is obvious that the supposed generators are elements of
the group, we just need to verify that each permutation π ∈ fix(B1 ∩ B2)
⊆ Sfinite(A) is composed of finitely many generators. We may, moreover,
restrict our attention to transpositions π = (a; b), where a and b are elements
of an atom P of B1 ∩ B2. We let Cij be the atoms of Bi which are subsets
of P ; then P =

⋃
j C

i
j . The fact that the partition of A into the atoms of

B1 ∩ B2 is the join (in the partition lattice Part(A); cf. [12], p. 192) of the
partitions of A into the atoms of Bi has the following reformulation.

Any two elements a ∈ P and b ∈ P are connected by a finite chain
〈Cm〉nm=1 such that each Cm is either the atom C1

jm
of B1 or the atom C2

jm
of B2 for some jm and such that a ∈ C0, b ∈ Cn and Cm ∩ Cm+1 6= ∅ for
m < n.

We let n(a, b) ≥ 1 be the minimal length of such a chain and prove the
lemma about {a, b} ⊆ P by induction on n(a, b); i.e. there exist permutations
πi ∈ fix(B1) ∪ fix(B2) such that π = (a; b) = π1 ◦ . . . ◦ πk.

If n(a, b) = 1, then {a, b} ⊆ C0 and C0 ∈ Bi, whence π1 = (a; b) ∈ fix(Bi).
If the assertion is true for all 1 ≤ n(x, y) < n(a, b), then we choose c ∈ P
such that n(a, c) = n(a, b) − 1 and n(c, b) = 1. Then (a; c) and (b; c) are
composed of permutations in fix(B1) ∪ fix(B2), whence the same is true for
π = (a; b) = (b; c) ◦ (a; c) ◦ (b; c).

It follows that for each x ∈ Wfin
B there exists a least subalgebra supp(x) =

C of B such that stab(x) ⊇ fix(C), namely

supp(x) =
⋂
{D ⊆ B : D is finite and fix(D) ⊆ stab(x)}.

If π ∈ Sfinite(A), then supp(πx) = π” supp(x). Therefore each π ∈
stab(x) is an automorphism of C. If the infinite set P ∈ C is an atom
of C (an “infinite atom”), then π”P = P . [π”P is an atom of C. Since P
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is infinite and π moves only finitely many elements, P ∩ π”P 6= ∅.] Hence,
when considered as an automorphism of C, the mapping π ∈ stab(x) does
not move infinite atoms P of C = supp(x).

The intersection lemma may be viewed as a weak choice principle. This
is illustrated by the variant Mfin

B of Wfin
B where B is the set of the atoms

(cf. Definition 3). As B is Dedekind-finite by Lemma 3, we may apply The-
orem 4.3 of [3] and conclude that Mfin

B satisfies the axiom of choice for
wellorderable families of non-empty wellorderable sets and the following par-
tial choice principle: Each infinite family of wellorderable sets has an infinite
subfamily which admits a choice function.

Theorem 5. An atomic algebra B is structured if and only if

Wfin
B |= There are no infinite amorphous sets.

P r o o f. If B is not structured, then by the discussion following the as-
sertion (1), there exists an amorphous subset of A. For the proof of the
converse, we assume that X is infinite and C = supp(X). We construct two
infinite disjoint subsets Xi of X.

Let us consider two cases.

C a s e 1: There exists a D ⊇ C such that for infinitely many x, say
for x ∈ Y ⊆ X, the “D-orbits” orbfix(D)(x) are finite. In this case Y is the
union of a wellorderable family F of pairwise disjoint finite sets. If F1 and
F2 partition this family into two infinite parts, then X is the disjoint union
of the infinite sets Xi =

⋃Fi and of X \ Y .

C a s e 2: For all finite algebras D ⊇ C and all but finitely many x ∈
X the D-orbits of x are infinite. Suppose that the C-orbit of x ∈ X is
infinite. We consider the subalgebra D = [supp(x) ∪ C] of P(A) = B which
is generated by supp(x) ∪ C and verify the claim.

Claim. There exists an infinite atom Q of C which properly contains an
atom P of D.

We first observe that each π ∈ fix(C) is a composite π = πC1 ◦ . . . ◦ πCm
of mutually commuting permutations πCi ∈ Sfinite(Ci), where the Ci’s are
the atoms of C. If the claim is false and each infinite atom of C is an atom
of D, then πCi(x) = x for all infinite Ci and the C-orbit of x reduces to
the finite set {φ(x) : φ ∈ Sfinite(

⋃{Ci : Ci finite})}, a contradiction which
proves the claim.

As Q is partitioned into finitely many D-atoms, we may assume that P
is infinite. B is structured, whence P is the union of two disjoint infinite
elements Pi of B. We now choose a ∈ Q \ P and bi ∈ Pi in order to define
πi = (a; bi) ∈ fix(C) and yi = πi(x) ∈ X. Since the groups Gi = Sfinite(Pi)
are sets in the model Wfin

B , so are
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Xi = orbGi(yi) ⊆ orbfix(C)(yi) ⊆ X.
X1 and X2 are disjoint. If g1(y1) = g2(y2), where gi ∈ Gi, then φx = x,

where φ = π−1
2 ◦ g−1

2 ◦ g1 ◦ π1 ∈ fix(C). Therefore φ” supp(x) = supp(φx) =
supp(x); i.e. φ is an automorphism of D and C which does not move the
infinite atoms P and Q. We now derive a contradiction: a ∈ Q \ P , but
φ(a) = (g2 ◦ π2)−1(c1) = c1 ∈ P , where c1 = g1 ◦ π1(a) = g1(b1) ∈ P1.

Xi is infinite. If in the case i = 1, g(y1) = h(y1) for some g, h ∈ G1, then
φ(x) = x for φ = π−1

2 ◦h−1◦g◦π1 ∈ fix(C), whence as an automorphism of the
Boolean algebras D and C the mapping φ does not move the atoms P and Q.
This condition implies φ(a) = π−1

1 (c) ∈ Q \ P , where c = h−1 ◦ g ◦ π1(a) =
h−1 ◦ g(b1) ∈ P1. Therefore c = b1 [since π1(c) 6∈ P1] and g(b1) = h(b1).
It follows that there is a surjective function of X1 onto the infinite set
P1 = orbG1(b1), namely the set

Φ = {〈g(y1), g(b1)〉 : g ∈ G1}.
Φ ∈ Wfin

B , because G1 ∈ Wfin
B .

Theorem 6. If B = P(ω), then inWAut
B there are no infinite amorphous

sets.

P r o o f. Assume that X ∈ WAut
B is infinite and that the ordered partition

Π = 〈P1, . . . , Pm〉 of A is a support of X. We will show that there are infinite
disjoint subsets Xi ∈ WAut

B of X.
If every element of X has support Π then X is well orderable in WAut

B
and the proof is easy. We therefore assume that y ∈ X and there is a
φ ∈ stab(Π) such that φ(y) 6= y.

S t e p 1: We show that we may assume that y has a support

Ψ = 〈Q1, Q2, Q3, . . . , Qn0 , Qn0+1, . . . , Qn〉
where

a. n0 ≥ 3 and Q3 is infinite.
b. For 1 ≤ j ≤ n0, Qj ⊆ P1 and for n0 < j ≤ n, Qj ∩ P1 = ∅.
c. φ(Q1) = Q2, φ(Q2) = Q1, and for every a ∈ A \ (Q1 ∪Q2), φ(a) = a.

First, we recall the assumption that each Pi is either infinite or a single-
ton.

Secondly, by writing φ = φ1 ◦ . . . ◦ φm where φi(a) = a for a ∈ A \ Pi
and replacing φ by one of the φi, we may assume that there is an i ≤ m
such that φ(a) = a for a ∈ A \ Pi. [If (

∏m
i=1 φi)(y) 6= y then for some i,

φi(y) 6= y.] Further it is no loss of generality to assume that i = 1.
Let Ψ = 〈Q1, . . . , Qn〉 be a support of y. By replacing each Qj with the

two sets Qj ∩P1 and Qj \P1 (if necessary) and reordering the Qj ’s we may
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assume that there is an n0 ≤ n such that Qj ⊆ P1 for j ≤ n0 and Qj∩P1 = ∅
for j > n0.

As in the proof of Theorem 1 (using Lemma 7) we may assume that φ
is a reflection. By replacing Ψ by a partition whose cells are

{Qi ∩ φ(Qj) : 1 ≤ i, j ≤ n} \ {∅}
we may assume (since φ is a reflection) that

(∀1 ≤ i ≤ n)(∃1 ≤ j ≤ n)(φ(Qi) = Qj and φ(Qj) = Qi).

(By our simplifying assumptions so far, φ(Qj) = Qj for j > n0.)
We decompose φ into a product φ = γ1 ◦ . . . ◦ γm, where for each 1 ≤

r ≤ m there are i and j such that

γr(a) = a for a ∈ A \ (Qi ∪Qj), γr(Qi) = Qj and γr(Qj) = Qi.

Replacing φ by one of the γr, we may assume that

φ(a) = a for a ∈ A \ (Qi ∪Qj), φ(Qi) = Qj and φ(Qj) = Qi.

It is no loss of generality to assume that i = 1 and j = 2.
Finally, we may assume that for some 3 ≤ i ≤ n0 the set Qi is infinite.

Assuming that this is not the case and using the facts that Q1 ∪ Q2 ⊆ P1

and that P1 is infinite we conclude that Q1 and Q2 are infinite. Let C ′ be
any infinite subset of Q1 whose complement in Q1 is infinite. Note that Q2

is the disjoint union Q2 = φ(C ′) ∪ φ(Q1 \ C ′). Therefore

Ψ ′ = 〈C ′, φ(C ′), Q1 \ C ′, φ(Q1 \ C ′), Q3, . . . , Qn〉
is a refinement of Ψ which supports y. Define φ′ and φ′′ (both in stab(Π))
as follows:
φ′(a) = φ(a) if a ∈ C ′ ∪ φ(C ′), and . . . = a otherwise;

φ′′(a) = φ(a) if a ∈ (Q1 \ C ′) ∪ φ(Q1 \ C ′), and . . . = a otherwise.

Clearly φ = φ′ ◦ φ′′ and therefore one of φ′ or φ′′ moves y. Assume without
loss of generality that φ′(y) 6= y. We then replace Ψ with Ψ ′ and φ by φ′.

This completes Step 1.

S t e p 2: Use y to obtain infinite disjoint subsets X1 and X \X1 of X.
Our primary tool will be the following claim.

Claim. Assume that δ, λ ∈ stab(Π), that λ(a) = a for all a ∈ A \
(δ(Q1) ∪ δ(Q2)), that λ(δ(Q1)) = δ(Q2), and that λ(δ(Q2)) = δ(Q1). Then
λ(δ(y)) 6= δ(y).

By the hypotheses, δ−1λδ(Q1) = Q2 and δ−1λδ(Q2) = Q1 and for all
a ∈ A\(Q1∪Q2), δ−1λδ(a) = a. This means that δ−1λδ(Ψ) = φ(Ψ) and since
Ψ is a support of y, δ−1λδ(y) = φ(y) 6= y. It follows that λ(δ(y)) 6= δ(y),
proving the claim.
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Now by using permutations in stab(Π) which move Q1 and Q2 we can
obtain infinitely many “copies” of y, all of which are in X.

Partition Q3 into sets {Sj , Tj , Uj , Vj : j ∈ ω} so that

|Sj | = |Tj | = |Uj | = |Vj | = |Q1| (= |Q2|).
Let Q′3 and Q′′3 denote the sets

⋃
j∈ω(Sj∪Tj) and

⋃
j∈ω(Uj∪Vj) respectively.

Let τ ∈ stab(Π) satisfy

τ(a) = a for all a ∈ A \ (Q1 ∪Q2 ∪ S0 ∪ T0),

τ(Q1) = S0, τ(S0) = Q1, τ(Q2) = T0 and τ(T0) = Q2.

Let ν ∈ stab(Π) satisfy

ν(a) = a for all a ∈ A \ (Q1 ∪Q2 ∪ U0 ∪ V0),

ν(Q1) = U0, ν(U0) = Q1, ν(Q2) = V0 and ν(V0) = Q2.

For j ≥ 1, let σj ∈ stab(Π) satisfy

σj(a) = a for a ∈ A \ (S0 ∪ T0 ∪ Sj ∪ Tj),
σj(S0) = Sj , σj(Sj) = S0, σj(T0) = Tj and σj(Tj) = T0.

Similarly, for j ≥ 1, let γj ∈ stab(Π) satisfy

γj(a) = a for all a ∈ A \ (U0 ∪ V0 ∪ Uj ∪ Vj),
γj(U0) = Uj , γj(Uj) = U0, γj(V0) = Vj , and γj(Vj) = V0.

The partition

Π ′ = 〈Q1, Q2, Q
′
3, Q

′′
3 , . . . , Qn0 , P2, . . . , Pm〉

is a refinement of Π and therefore is a support of X. Hence the two sets

X1 = {ψ(τ(y)) : ψ ∈ stab(Π ′)} and X2 = {ψ(ν(y)) : ψ ∈ stab(Π ′)}
are subsets of X. Further, since Π ′ is a support of X1 and X2, these sets
are in WAut

B . We shall also prove the following:

(i) (∀j ∈ ω, j ≥ 1)(σj(τ(y)) ∈ X1 ∧ γj(ν(y)) ∈ X2);
(ii) (∀j ∈ ω, j ≥ 1)(σj(τ(y)) 6∈ X2 ∧ γj(ν(y)) 6∈ X1);

(iii) (∀j, r ∈ ω, j, r ≥ 1)(j 6= r → [σj(τ(y)) 6= σr(τ(y)) ∧ γj(ν(y)) 6=
γr(ν(y))]).

It will follow that X1 and X \X1 are infinite disjoint subsets of X and
the proof will be complete.

To prove (i) we observe that since σj and γj agree with the identity
permutation outside of Q′3 and Q′′3 respectively for j ≥ 1, they are both in
stab(Π ′).
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For (ii) we first note that since Ψ is a support of y, a support of ν(y) is
given by

ψ(ν(Ψ)) = 〈ν(Q1), ν(Q2), ν(Q3), . . . , ν(Qn)〉
= 〈U0, V0, [Q3 \ (U0 ∪ V0)] ∪ (Q1 ∪Q2), Q4, . . . , Qn〉.

Therefore if ψ fixes Π ′ then ψ(ν(y)) has support

ψ(ν(Ψ))ψ(ν(Ψ))

= 〈ψ(U0), ψ(V0), [ψ(Q3) \ ψ(U0 ∪ V0)] ∪ ψ(Q1 ∪Q2), ψ(Q4), . . . , ψ(Qn)〉
= 〈ψ(U0), ψ(V0), [Q3 \ ψ(U0 ∪ V0)] ∪ (Q1 ∪Q2), ψ(Q4), . . . , ψ(Qn)〉.

Since Q′3 ⊆ Q3 \ ψ(U0 ∪ V0) we may conclude that for any λ ∈ stab(Π),
if λ(a) = a for all a ∈ A \ Q′3 then λ(ψ(ν(Ψ))) = ψ(ν(Ψ)) and therefore
λ(ψ(ν(y))) = ψ(ν(y)). Hence such a λ fixes X2 pointwise. In particular, if
we choose λ so that λ(a) = a for all a ∈ A \ (Sj ∪ Tj), λ(Sj) = Tj and
λ(Tj) = Sj then λ fixes X2 pointwise and by the claim (with δ = σj ◦ τ)

λ(σj(τ(y))) 6= σj(τ(y)).

It follows that σj(τ(y)) 6∈ X2. A similar argument shows that γj(ν(y)) 6∈ X1.
The argument for (iii) is similar. We shall show

(∀j, r ≥ 1)(j 6= r → σj(τ(y)) 6= σr(τ(y)))

and leave the similar argument that γj(ν(y)) 6= γr(ν(y)) to the reader. First
note that σr(τ(y)) has support

σr(τ(Ψ)) = 〈Sr, Tr, [Q3 \ (Sr ∪ Tr)] ∪ (Q1 ∪Q2), Q4, . . . , Qn〉.
Call this support Ψ ′. Since Sj ∪Tj ⊆ Q3 \(Sr∪Tr) any λ satisfying λ(a) = a
for all a ∈ A\ (Sj ∪Tj) fixes Ψ ′ and therefore fixes σr(τ(y)). In particular, if
we choose λ for which λ(Sj) = Tj and λ(Tj) = Sj then λ fixes σr(τ(y)) and
by the claim (with δ = σj ◦ τ), λ(σj(τ(y))) 6= σj(τ(y)). We can therefore
conclude that σr(τ(y)) 6= σj(τ(y)).
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