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A functional S-dual in a strong shape category

by

Friedrich W. B a u e r (Frankfurt a.M.)

Abstract. In the S-category P (with compact-open strong shape mappings, cf. §1,
instead of continuous mappings, and arbitrary finite-dimensional separable metrizable
spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The
S-dual DX, X = (X,n) ∈ P, turns out to be of the same weak homotopy type as an
appropriately defined functional dual (S0)X (Corollary 4.9). Sometimes the functional
object XY is of the same weak homotopy type as the “real” function space XY (§5).

0. Introduction. S-duality occurs in the S-category P, having pairs
X = (X,n), X a separable metrizable finite-dimensional space, n ∈ Z, as
objects, with stable homotopy classes of so-called coss-morphisms (= strong
shape morphisms with compact-open carrier, cf. [1, §2], [2, §1]) as mor-
phisms. The main result is the existence of an S-dual DX, displaying all
properties to be expected from classical S-duality (cf. [1, Theorem 4.3], [2,
Theorem 2.1]).

One of the basic achievements of classical S-duality lies in the possibility
of exhibiting DX, up to weak homotopy equivalence, as a functional object
F (X,S0) ([4, Theorem 3.8] and [7]).

In the present strong-shape-theoretic approach to S-duality (which can
be administered to any X ⊂ Sn, not only to finite polyhedra) we have, in
order to detect functional objects, to follow the same lines which led to “vir-
tual spaces” X ∧ Y in [2, §1] (which are only under additional assumptions
equivalent to the ∧-product X ∧ Y ) and establish “virtual function spaces”
XY (§3). It turns out (§5) that they are sometimes of the same weak ho-
motopy type as the function spaces XY . In general they are, like X ∧ Y in
[2, §1], new objects, which are defined by introducing new coss-morphisms
Z → XY (§2, §3).
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The stable functional object YZ, Y = (Y,m), Z = (Z, n), resp. YZ

can be defined as (Y Z ,m − n) resp. (Y Z , m − n). Although YZ is not an
object of the original P (because Y Z is generally neither separable metric
nor finite-dimensional) it can nevertheless be realized as an object of an
amended S-category. As a result there is no need to deal with the more
involved theory of spectra.

In §1 we recall some facts from [1], [2] without proofs and set up the
notations and conventions used in the sequel. While the next section has only
auxiliary character, we introduce in §3 functional objects (in an amended
category coss) and verify a very general exponential law (Theorem 3.4).

The concept of a weak homotopy equivalence, introduced in Defini-
tion 4.1, is more restrictive than usual: It turns out that real spaces (as
opposed to virtual spaces) are of the same homotopy type iff they are of the
same weak homotopy type.

Theorem 4.8 and Corollary 4.9 confirm the existence of a weak homotopy
equivalence between the S-dual DZ of an object Z = (Z,m) ∈ P and the
functional object (S0)Z.

As pointed out already, we set up in §5 a relationship between the virtual
space Y Z and the real space Y Z (although not an object of Met, the cate-
gory of separable metrizable spaces). In particular, the classical presentation
of an S-dual of a finite polyhedron by means of function spaces (Theorem 4.8
of [4]) is confirmed in our framework (Corollary 5.4).

We resume all notations and results of [1] and [2] without further men-
tion. Details of constructions and proofs (e.g. those of new coss-morphisms)
will be omitted whenever they coincide with those in [1], [2] concerning re-
lated concepts or assertions.

1. Preliminaries. In [1, §2], we introduced the concept of coss-
morphisms (= compact-open strong shape morphisms or strong shape mor-
phisms with compact-open support) α : X → Y between spaces X,Y ∈Met
(= category of separable metrizable spaces and (based or unbased) continu-
ous mappings). Such an α assigns, roughly speaking, to each compact subset
X ′ ⊂ X a strong shape morphism X ′ → Y ′ ⊂ Y with Y ′ compact, and α
is supposed to behave on ANRs Q ⊃ Y like an ordinary (stable) shape
morphism. So coss(X, Y ) appears as some kind of double limit (cf. Defini-
tion 2.1 of [1]).

In a next step we used these coss-morphisms to set up the S-category
P with pairs X = (X,n), X ∈Met, n ∈ Z, as objects and stable homotopy
classes of coss-morphisms as morphisms. This allowed us to establish for
each X = (X,n) ∈ P, X finite-dimensional in Met, an S-dual DX satisfying
D2X ≈ X and {X,Y}c ≈ {DY, DX}c.



A functional S-dual 263

In [2, §2] we amended the category coss by adding new morphisms X →
X∧Z and X∧Y → Z, where Y ∧Z and X∧Y appear either as pairs of spaces
in Met or alternatively as new objects (so-called “virtual spaces”). Under
certain assumptions, these virtual spaces are associated with ∧-products
Y ∧ Z and X ∧ Y (cf. [2, Proposition 1.2]).

For all details we refer to [1] and [2] without further explanation.
In the present paper we need 1) in addition to separable metric spaces

Y, Z their function spaces Y Z , 2) new objects Y Z which can again be
regarded either simply as pairs of spaces or alternatively as new virtual
spaces. They are determined by means of new coss-morphisms (cf. §3)
X → Y Z , X, Y, Z ∈Met. Again under certain assumptions, they are asso-
ciated with the “real” function space Y Z (§5).

In order to ensure the validity of the classical exponential law ([5,
Ch. XII]) we have to restrict the class of ANRs to locally compact ANRs,
calling these spaces l-ANRs (or simply “good spaces” or “good spaces in
Met”). This is not very restrictive, because according to [1, Lemma 2.6] we
are allowed to confine ourselves anyway to open subsets of some Sn or some
Hilbert cube (which are always locally compact). All ANRs P appearing as
exponents in some XP are always assumed to be l-ANRs.

In addition, we still have arbitrary ANRs, e.g. those of the form PZ , P
any ANR, Z ∈Met compact. Even for P ∈ l-ANR, Z ∈Met compact, PZ

is in general neither in Met nor locally compact. These ANRs (which are
not necessarily l-ANRs) are needed for establishing strong shape morphisms
a : X → Y Z :

Recall (e.g. [3]) that a strong shape morphism f : A→ B, A,B compact
metric, is a 2-functor f : PB → PA between two 2-categories associated
with the respective spaces. The objects of PA are continuous mappings
g : A → P ∈ ANR, the 1-morphisms (r, ω) : g1 → g2, where gi : A → Pi,
are pairs with r : P1 → P2 continuous and ω : rg1 ' g2 a homotopy, while
the 2-morphisms are pairs (ω, ξ) with ω a homotopy and ξ a 2-homotopy.

Although this is needed only for compacta or good spaces, the category
PA can be established for any space A. There exists a well-developed, but
much more involved theory of strong shape for arbitrary spaces, which works
with ∞-categories (or some simplicial equivalent) PA and ∞-functors (cf.
[6] for further references), but we do not need this theory in the course of
this paper.

In order to establish a : X → Y Z for X compact or good, and Y, Z
compacta, we simply employ the 2-subcategory (PY )Z ⊂ PY Z consisting
of all objects gZ : Y Z → PZ , g ∈ PY , and correspondingly for the 1- and
2-morphisms (i.e. the image category of the functor ( )Z : PY → PY Z ).

If X is a good space, we have in PX an initial object 1 : X → X.
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This is the only point where one needs some information about strong
shape morphisms. Although in §3 we define coss-morphisms X → Y Z for
any X,Y, Z ∈ Met we do not need strong shape theory for spaces other
than compacta and good spaces.

2. Functional objects in a strong shape category. For Y, Z ∈Met,
Y Z denotes the function space with the compact-open topology. In analogy
to the construction of Y ∧Z in [2, §1] the virtual function space Y Z is defined
by setting up new shape morphisms a : X → Y Z , X ∈Met. This will be
finally accomplished in §3. In this section we deal with the special case of X
compact or good (i.e. l-ANR) while Y, Z ∈Met either compact; or Y good
and Z compact; or Y and Z good.

In all these cases a morphism a : X → Y Z is a 2-functor (PY )Z → PX

such that a(gZ) : X → PZ for P ∈ ANR and (g : Y → P ) ∈ ob PY , and
correspondingly for 1- and 2-morphisms.

Observe that PZ with Z compact is an ANR (although not necessarily
an l-ANR).

If Z is compact and Y good, we have g = 1Y : Y → Y and therefore
a(1Y Z) : X → Y Z .

It is possible to define homotopy classes of individual mappings a so
defined. In order to set up stable homotopy classes we define

Σ(Y Z) = (ΣY )Z

and introduce for each a : X → Y Z a mapping Σa : ΣX → Σ(Y Z) in the
following way:

For (g : ΣY → P ) ∈ PΣY we have (g̃ : Y → ΩP ) ∈ PY , a(g̃) :
X → (ΩP )Z and by taking adjoints we obtain successively X ∧ Z → ΩP ,
ΣX ∧ Z → P and finally the required (Σa)(g) : ΣX → PZ .

Now we can stabilize and denote by {X,Y Z} the set of stable homotopy
classes {a} of mappings a : X → Y Z , whenever these are defined.

Suspension induces now an isomorphism

Σ? : {X,Y Z} ≈→ {ΣX, (ΣY )Z},
provided both sides are defined.

In addition to strong shape morphisms a : X → Y Z we need 1) the
induced morphisms

Y Z
fZ−→ Y Z1

for strong shape morphisms f : Y → Y1, defined as a functorial (in X)
mapping

{X,Y Z} → {X,Y Z1 }
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by setting

(fZa)(g′Z : Y Z1 → PZ) = a(f(g′)Z);

and 2) the induced morphisms

Y Z1
Y f−→ Y Z

for Y good and f : Z → Z1 continuous. Again

{X,Y Z1} → {X,Y Z}
is defined by setting

(Y fa)(g) = P fa(g), (g : Y → P ) ∈ PY .

We have:

Lemma 2.1. 1) If f : X → Y Z is continuous, Z compact or good , and Y
compact or good , then f induces a strong shape morphism f : X → Y Z .

2) If f : X → Y Z is a strong shape morphism with Y good and Z compact ,
then f(1Y ) : X → Y Z determines f up to homotopy.

P r o o f. The first part is obvious. The second follows by standard argu-
ments in strong shape theory (cf. [3]) because Y Z is an ANR.

To establish an exponential law for coss-morphisms and arbitrary spaces
in Met (Theorem 3.4) we need a very modest exponential law for strong
shape morphisms:

Lemma 2.2. Suppose that either 1) X,Y, Z are compact or 2) X,Y, Z are
good (implying in particular that Z is locally compact). Then there exists a
natural bijection

(1) {X,Y Z} ≈ {X ∧ Z, Y }.
P r o o f. In both cases the classical exponential law applies and we obtain

a bijection between

X Y Z

PZ
a(gZ)

BBBBBBÃÃ
gZ

²²
and

X ∧ Z Y

P

a(gZ)′

GGGGGGG##
g

²²

with a ∈ {X,Y Z} and (. . .)′ denoting the adjoint of (. . .). This estab-
lishes a bijection between individual strong shape morphisms X → Y Z

and X ∧Z → Y , which, carrying over to stable homotopy classes, furnishes
a bijection (1).

As a first application we notice:
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Corollary 2.3. Under the same assumptions as in 2.2, {X,Y Z} carries
a natural abelian group structure.

P r o o f. The structure is inherited from {X ∧ Z, Y }, which carries such
a structure in both relevant cases.

Corollary 2.4. The bijection (1) is an isomorphism of abelian groups.

3. The exponential law. Analogously to Y ∧ Z we now define new
coss-morphisms α : X → Y Z for any X,Y, Z ∈Met. To this end we resume
the notations of [2, §1] concerning the mappings a : X ′ → X, b : Y ′ → Y ,
c : Z ′ → Z, r : X → P , s : Y → Q, t : Z → R, t̃ : Z ′ → R̃ and ã : X ′ → P̃ ,
with X ′, Y ′, Z ′ compact and P,Q,R, P̃ , R̃ good.

We consider stably homotopy commutative diagrams σ:

(1)

X P QR̃

X ′ Y ′Z′ QZ′

P̃ QR

r // f1 //

Qt̃

²²
a

OO

ã

²²

f // e //

f2 //

Qtc

OO
(e = sbZ

′
)

More precisely, all arrows represent either elements in some {. . . , . . .}, in-
duced mappings (as defined in §2) or stable homotopy classes of continuous
mappings. This concept is of course associated with that of Definition 1.1
in [2]. We denote by T (a, c, t) the class of all such diagrams with fixed a, c, t
(of course for given X,Y, Z). In the same way as in [2, §1] or in [1, §2] we
establish an equivalence relation between elements in T (a, c, t), denoting the
set of all equivalence classes by T [a, c, t].

An α : X → Y Z is (as in [2, §1]) an assignment which assigns to each
triple (a, c, t) a class [σ] = α(a, c, t) ∈ T [a, c, t] such that obvious compati-
bility conditions are satisfied. These compatibility conditions are, of course,
associated with those leading to X ∧ Z → Y in [2, Definition 1.1].

We summarize, using the customary lim notation:

Definition 3.1. For any X,Y, Z in Met we set

coss(X,Y Z) = lim←− lim−→T (a, c, t) = {X,Y Z}c.
We have induced mappings:

1) Let β ∈ {Y, Y1}c be a coss-morphism between spaces (cf. [1, §2]).
Then we define βZ : Y Z → Y Z1 , Z ∈Met, such that for any α ∈ {X,Y Z}c
there is a βZα ∈ {X,Y Z1 }c, in a functorial way:
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Suppose that σ = β(b, t1) ∈∈ T [b, t1]

Y ′ Y ′1

Y Y1

Q Q1

²²

f //

²²

²² ²²g //

represents β. Then in the preceding section we have defined

Y ′Z′
f
Z′

−→ Y ′1Z
′ , QR

gR−→ QR1 , QR̃
gR̃−→ QR̃1 ,

and consequently for given α : X → Y Z ,

X ′ → Y ′Z → Y Z
′

1 , P̃ → QR → QR1 , P → QR̃ → QR̃1 ,

furnishing us with a representative βZα : X → Y Z1 .
2) Let f : Z → Z1 be continuous. Then for given compact c : Z ′ → Z we

find a Z ′1 = fc(Z ′) and an (f | c(Z ′)) = f ′ : Z ′ → Z ′1. On the other hand,
for t1 : Z1 → R1 we find an extension f1 : R → R1 of t1f over some good
R ⊃ Z up to homotopy (cf. [1, 2.5]).

In the same way we proceed with t̃1 : Z ′1 → R̃1, getting an f1 : R̃→ R̃1.
As a result we obtain

Y f : Y Z1 → Y Z

such that for any α ∈ {X,Y Z1}c we detect a Y fα ∈ {X,Y Z}c in a functorial
way.

3) Let γ : X1 → X be a coss-morphism between spaces. Then we have
in an obvious way a composition

X1
γ→ X

β→ Y Z .

All these morphisms between spaces (the old coss-morphisms) and be-
tween new objects Y Z form a category.

In §5 we will investigate under what circumstances Y Z and Y Z are of
the same weak homotopy type. This has to be properly defined because in
general Y Z is not an object of Met. Here we can already make the following
observation:

Lemma 3.2. If Z = {1, 2, . . . , n} is a finite space, then there exists a
bijection

{X,Y Z}c ≈
{
X,

n∑
1

Y
}
c

where
∑n

1 Y is the free union of n copies of Y.
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P r o o f. Because Z is good and compact, we are always allowed to work
with Z = Z ′ = R = R̃, so that Y ′Z

′
= Y ′Z =

∑n
1 Y
′ and QR = QR̃ =

∑n
1 Q.

Let α : X → Y Z be a coss-morphism. Then we have X ′ → Y ′Z
′

=
∑n

1 Y
′,

P̃ → ∑n
1 Q and P → ∑n

1 Q as representatives of α, allowing us to set
P = P̃ . As a result, α is described by diagrams

X ′
∑n

1 Y
′

X
∑n

1 Y

P
∑n

1 Q

²²

//

²²

²² ²²
//

hence by a coss-morphism X →∑n
1 Y establishing the assignment

{X,Y Z}c →
{
X,

n∑
1

Y
}
c
.

This assignment can be easily inverted.

This can be expressed by saying that in this case the virtual space Y Z

is a real space
∑n

1 Y in coss.

Definition 3.3. The suspension of a functional object is defined by

Σ(Y Z) = (ΣY )Z .

The exponential law in the category coss is the following

Theorem 3.4. For any three spaces X,Y, Z ∈Met there exists a natural
isomorphism

η : {X ∧ Z, Y }c ≈ {X,Y Z}c.
P r o o f. A morphism α : X ∧ Z → Y determines α(a, c, t), i.e. coss-

morphisms f : X ′ ∧ Z ′ → Y ′, f1 : P ∧ R̃ → Q and f2 : P̃ ∧ R → Q
satisfying certain compatibility conditions embodied in [2, Definition 1.1].
On the other hand, we can apply 2.1.1) and 2.2 obtaining the associated
adjoints

f ′ : X ′ → Y ′Z′ , f ′1 : P → QR̃, f ′2 : P̃ → QR,

where the last two mappings are simply continuous mappings into QR̃ resp.
QR, satisfying (1).

All l-ANRs are supposed to be locally compact, hence the exponential
law (Lemma 2.2) applies.
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This establishes an assignment

η : {X ∧ Z, Y }c → {X,Y Z}c,
which is of course natural (with respect to coss-morphisms between spaces
X → X ′1, Y → Y1, and continuous Z → Z1). We obtain an inverse η−1 by
reversing the procedure leading to η. This completes the proof.

As a first application we can use [2, Proposition 1.7] in order to establish
a stability property of the new {. . . , . . .}c sets:

Corollary 3.5. There exists a natural isomorphism

{ΣX,Σ(Y Z)}c ≈ {X,Y Z}c.
P r o o f. We have the following chain of natural equivalences and identi-

ties:
{ΣX,Σ(Y Z)}c ≈ {ΣX, (ΣY )Z}c ≈ {ΣX ∧ Z,ΣY }c

≈ {X ∧ Z, Y }c ≈ {X,ZY }c.
Since {X ∧ Z, Y }c always carries a natural abelian group structure (cf.

[2, Proposition 1.8]) the same holds for {X,Y Z}c and we have

Corollary 3.6. {X,Y Z}c carries a natural abelian group structure such
that η in 3.4 becomes a natural isomorphism.

R e m a r k s. 1) If X,Y, Z satisfy the requirements of §2, then

{X,Y Z}c = {X,Y Z}.
2) Definition 3.3 is the reason that, in contrast to function spaces Y Z ,

there is no difference between Σ(Y Z) and (ΣY )Z .
3) Another version of virtual function spaces together with an expo-

nential law has (in a different context and for different purposes) been the
subject of [8].

4. Weak homotopy equivalences. Suppose A and B are spaces or
virtual spaces. Then we define:

Definition 4.1. A and B are of the same weak homotopy type (in
symbols: A ' B) whenever there exists a natural equivalence

(1) ω : {X,A}c ≈ {X,B}c, X ∈Met.

Naturality means that ω commutes with all homomorphisms induced by
coss-morphisms between spaces X.

If A or B is a space, we can say more:

Lemma 4.2. Suppose 1) A is a space, and 2) A and B are of the same
weak homotopy type. Then there exists a coss-morphism α : A → B such
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that
α∗ : {X,B}c ≈→ {X,A}c

is an isomorphism for all spaces X, hence ω−1 in (1) is induced by a coss-
morphism.

P r o o f. The classical argument of the Yoneda lemma applies: We insert
X = A and detect

α = ω(1A) : A→ B.

The verification that α∗ = ω−1 is now standard.

If A and B are spaces, then weak and ordinary homotopy types coincide:

Lemma 4.3. If A and B are both spaces, then A and B are of the same
weak homotopy type whenever they are of the same homotopy type (i.e. iff
there exist coss-morphisms α : A → B and β : B → A such that αβ = 1B
and βα = 1A).

P r o o f. A ' B implies the existence of α and β because of 4.2. The
other direction is trivial.

Lemma 4.4. Being of the same weak homotopy type is an equivalence
relation.

The proof is immediate.

Lemma 4.5. There exists a weak homotopy equivalence

Y Z ' Σ(Y ΣZ).

P r o o f. There are natural equivalences (applying [2, 1.7])

{X,Σ(Y ΣZ)}c ≈ {X, (ΣY )ΣZ}c ≈ {X ∧ΣZ,ΣY }c
≈ {ΣX ∧ Z,ΣY }c ≈ {X ∧ Z, Y }c ≈ {X,Y Z}c.

This enables us to define functional objects in the S-category P (cf. [1,
§4]) by setting

(2) (Y,m)(Z,n) = (Y Z ,m− n).

This is in accordance with the convention (cf. [1, §4(1)])

(ΣX,m) = (X,m+ 1).

By a space X ∈ P we mean an X = (X,n), X ∈ Met. Moreover, we
retain the convention to write X for (X, 0).

We can now extend Definition 4.1 over the category P:

Definition 4.1′. Two objects A,B ∈ P are of the same weak homotopy
type (A ' B) whenever there exists a natural (in X) equivalence

(1′) ω : {X,A}c ≈ {X,B}c, X ∈ P a space.
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Moreover, the exponential law 3.4 extends over P:

Proposition 4.6. For any three spaces X,Y,Z ∈ P we have a natural
equivalence

η : {X ∧Y,Z}c ≈ {X,ZY}c.
Lemma 4.5 implies

Lemma 4.5′. Let X,Y,Z be spaces. Then we have a weak homotopy
equivalence

Σ−1(YZ) ' YΣZ.

Returning to spaces in Met we have:

Theorem 4.7. Let Y ∈ Met be any space and n an integer such that
DnY is geometrically defined. Then DnY and SnY are of the same weak
homotopy type.

P r o o f. From 3.4 and [2, Theorem 2.1] we deduce natural equivalences

{X ∧ Y, Sn}c ≈ {X,SnY }c,
{X ∧ Y, Sn}c ≈ {X,DY ∧ Sn}c ≈ {X,DnY }c

(observe that we have DnY = Σn(D0Y ) because of [1, §4(2)]), so that
SnY ' DnY follows.

In the category P we can say a little more:

Theorem 4.8. For any two Y,Z ∈ P, where Y = (Y,m), Z = (Z, n)
(i.e. Y,Z are “spaces”), we have a weak homotopy equivalence

YZ ' DZ ∧Y.

P r o o f. As in the proof of 4.7 we have

{X ∧ Z,Y}c ≈ {X,YZ}c, {X ∧ Z,Y}c ≈ {X, DZ ∧Y}c,
implying the assertion in view of Definition 4.1′.

The dual DY of any object in P can be expressed, up to weak homotopy
equivalence, by a functional object:

Corollary 4.9. For any space Y ∈ P we have

DY ' (S0)Y.

R e m a r k s. 1) If we agree (as in the remark at the end of [2, §1]) to
consider X ∧ Y as a virtual space, then [2, 1.2(4)] means that under certain
conditions X ∧ Y and X ∧ Y (i.e. a real and a virtual space) are of the
same weak homotopy type. We are going to implement the same kind of
procedure to the virtual space Y Z in the following section.

2) Because of 4.5 and (2) we get along with the much less involved
S-category P rather than a category of spectra (cf. [4]).
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5. The relationship between Y Z and Y Z . While Y Z is a virtual space
in coss, Y Z is a real space, which is in general not an object of Met, hence
not contained in coss. Therefore, in order to compare these two objects, we
have to implement concepts which are not inherent in the category coss.

Denote by {X,Y Z} the set of all stable homotopy classes of continuous
mappings, carrying in a well-known way an abelian group structure. Here
stable has to be interpreted in the sense of §2, §3: a1 : ΣkX → (ΣkY )Z

and a2 : ΣlX → (ΣlY )Z are stably homotopic (i.e. equivalent) whenever
a′1 : ΣkX ∧ Z → ΣkY and a′2 : ΣlX ∧ Z → ΣlY are stably homotopic
(in the usual sense). Since ΣY Z and (ΣY )Z are not homotopy equivalent,
this is not the same as the ordinary concept of stable homotopy if function
spaces as targets are involved.

Theorem 5.1. 1) If Y is good and Z compact , then for compact X there
exists a natural isomorphism of abelian groups

(1) ω : {X,Y Z}c ' {X,Y Z}.
2) If in addition Z is also good , then we find a natural isomorphism ω

for any X ∈Met.

Naturality means of course that ω commutes with homomorphisms in-
duced by coss-morphisms α : X → X1 between spaces.

P r o o f. Firstly, for any X, good Y and compact Z we establish a natural
homomorphism

ω : {X,Y Z}c → {X,Y Z}
and investigate under what additional assumptions ω becomes an isomor-
phism.

Let α : X → Y Z be given, and a : X ′ → X and b : Y ′ → Y be
continuous, with X ′, Y ′ compact. Then we find a strong shape morphism
X ′ → Y ′Z as well as continuous mappings

P → Y R̃, P̃ → Y R,

observing that we can assume Z = Z ′, Q = Y and R = R̃. So we detect a
continuous map

X
a→ Y R̃ = Y R

Y t→ Y Z .

This yields a natural homomorphism

ω : {X,Y Z}c → {X,Y Z}.
Suppose now that f : X → Y Z is continuous and a : X ′ → X with X ′

compact as before. Then we have the adjoint (fa)′ : X ′ ∧ Z → Y and good
P̃ , R over which (fa)′ extends:

f̃ ′ : P̃ ∧R→ Y
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hence

f̃ : P̃ → Y R.

Moreover, since X ′ ∧ Z is compact, there exists a compact subset Y ′ ⊂ Y
through which (fa)′ factorizes. The adjoint is a continuous map X ′ → Y ′Z ,
giving rise to a strong shape morphism X ′ → Y ′Z .

1) Now suppose that X is compact. Then we can argue about X∧Z → Y
as we did for X ′ ∧ Z → Y and find some good P,R and a P ∧ R → Y and
its adjoint P → Y R = Y R̃.

2) If X is arbitrary but Z good, we are allowed to set R = R̃ = Z and,
because Y Z is good, extend f over some good P up to homotopy (cf. [1,
2.5]), establishing an f̃ : P → Y Z = Y R̃.

This provides us in both cases with a µ(f) = α : X → Y Z such that
ω(α) = {f} and µω(α) = α holds.

Theorem 5.1. allows of course a reformulation in the S-category P and
in the S-category P′ (using continuous instead of coss-morphisms).

Recall that X = (X,m) is called compact (good) whenever X is compact
(good).

Corollary 5.2. There exist natural isomorphisms

(2) ω{X,YZ}c ≈ {X,YZ}
1) for Y good , Z compact (fixed) and X compact (variable);
2) for Z good and compact , Y good and arbitrary space X ∈ P.

Here we have set, in analogy to §4(2),

YZ = (Y Z ,m− n),

for Y = (Y,m), Z = (Z, n); and P′(. . . , . . .) = {. . . , . . .}.
Let A = (A,m), B = (B,n) be in P (A, B spaces, but not necessarily

in Met, i.e. A could be a function space). We say that A and B are of the
same generalized weak homotopy type whenever there exists a chain of weak
homotopy equivalences in the sense of 5.1 or of Definition 4.1 connecting A
and B. Recall that we write A for the pair (A, 0).

Corollary 5.3. If Y is good and Z good and compact , then the spaces
Y Z and DZ ∧ Y are of the same generalized weak homotopy type.

P r o o f. According to Theorem 4.8 we have a weak homotopy equivalence

Y Z ' DZ ∧ Y ;

however, Y Z ' Y Z (see 5.2.2)) and DZ ∧ Y = DZ ∧ Y because of [2, 1.2]
(and by the related implication for P instead of coss), observing that DZ
is (up to isomorphism) good and compact.
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Corollary 5.4. For Y good and compact we have a generalized weak
homotopy equivalence

(3) DY ' (S0)Y .

R e m a r k s. 1) Theorem 5.1.2) is a substitute for the assertion “Y Z

and Y Z are of the same weak homotopy type” (meaningless in view of
Definition 4.1).

2) Corollary 5.4 expresses the well-known fact from classical S-duality:
The S-dual of a good and compact space Y (e.g. of a finite polyhedron) is
of the same weak homotopy type as the “functional dual” (cf. for example
[4, Theorem 3.8].) Here “weak homotopy type” has to be interpreted in
our sense, but a concrete mapping (in P) inducing this equivalence in the
classical way can easily be provided.
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