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Borel extensions of Baire measures
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Abstract. We show that in a countably metacompact space, if a Baire measure admits
a Borel extension, then it admits a regular Borel extension. We also prove that under the
special axiom ♣ there is a Dowker space which is quasi-Mař́ık but not Mař́ık, answering
a question of H. Ohta and K. Tamano, and under P (c), that there is a Mař́ık Dowker
space, answering a question of W. Adamski. We answer further questions of H. Ohta and
K. Tamano by showing that the union of a Mař́ık space and a compact space is Mař́ık, that
under “c is real-valued measurable”, a Baire subset of a Mař́ık space need not be Mař́ık,
and finally, that the preimage of a Mař́ık space under an open perfect map is Mař́ık.

1. Introduction. The Borel sets are the σ-algebra generated by the
open sets of a topological space, and the Baire sets are the smallest σ-
algebra making all real-valued continuous functions measurable. The Borel
extension problem asks: Given a Baire measure, when can it be extended to
a Borel measure? Whenever one deals with Baire measures on a topological
space, it is assumed that the space is completely regular and Hausdorff, so
there are enough continuous functions to separate points and closed sets. In
1957 (see [Ma]), J. Mař́ık proved that all normal, countably paracompact
spaces have the following property: Every Baire measure extends to a regular
Borel measure. Spaces which have this property have come to be known as
Mař́ık spaces. We shall see later that if a normal space is not countably
paracompact, then anything can happen. While answering questions from
the survey paper [Wh1], H. Ohta and K. Tamano introduced in [OT] the
notion of quasi-Mař́ık spaces, the spaces for which every Baire measure has
a Borel extension, not necessarily regular. They noted that neglecting the
regularity of the extension allowed them to get much stronger results, and
wondered whether every quasi-Mař́ık space must be Mař́ık. We prove, in
Section 2, that this is the case if the space is countably metacompact. This
leads us, in order to search for an example of a quasi-Mař́ık space which
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is not Mař́ık, to the class of spaces that are not countably metacompact.
When normal, such spaces are called Dowker, and almost Dowker if they
are just regular.

Dowker spaces have been an object of continued interest among topol-
ogists. A standard hypothesis (which later on would turn out to be unnec-
essary) in certain homotopy extension theorems was that the product of
the space X with the closed unit interval be normal. H. Dowker showed
(in 1951, see [Do]) that for a normal space X, this happens iff X is count-
ably paracompact (countable paracompactness is equivalent, in the pres-
ence of normality, to countable metacompactness). So the question arose
as to whether there were normal not countably paracompact (i.e., Dowker)
spaces. The first example in ZFC of a Dowker space was given by Mary
Ellen Rudin in [Ru2] (she had previously shown, in 1955, that the existence
of a Suslin line implied the existence of a Dowker space). Despite the fact
that the original motivation for the study of Dowker spaces has disappeared,
efforts to construct Dowker spaces with prescribed characteristics continue
to this day.

With respect to the question of H. Ohta and K. Tamano mentioned
above, we shall show, using a Dowker space obtained from the special ax-
iom ♣, that there is a quasi-Mař́ık space which is not Mař́ık. Furthermore,
W. Adamski has asked whether there is a Dowker space which is Mař́ık. We
answer positively, under the axiom P (c). We also note (Remarks 2.4) that
assuming ♣, a conjecture of A. W. Hager, G. D. Reynolds and M. D. Rice
(see [HRR]) is false (they suggest that if a space X has no closed discrete
subset of measurable power and satisfies Bo(X) = Ba(X), then X is real-
compact). Likewise, a question of R. B. Kirk (in [Ki], p. 338) receives a
negative answer. He asks whether the condition “every Baire measure has a
unique regular Borel extension” implies that the space is measure compact.

In Section 3 we further investigate the topological properties of Mař́ık
and quasi-Mař́ık spaces, and answer the following questions of H. Ohta and
K. Tamano: Must the union of a Mař́ık space and a compact space be Mař́ık?
(the answer is yes); must a Baire subset of a Mař́ık space be Mař́ık? (under
“c is real valued measurable”, no); must the preimage of a Mař́ık space under
an open perfect map be Mař́ık? (yes; in particular, the product of a compact
space with a Mař́ık space is Mař́ık).

2. Extension of measures. Let X be a completely regular Hausdorff
space (only such spaces will be considered here) and let Z(X) be the col-
lection of zero sets of continuous real-valued functions defined on X. The
smallest σ-algebra making all such functions measurable is called the Baire
sets. It coincides with σ(Z(X)), the σ-algebra generated by Z(X). By a
measure, we mean a countably additive finite measure. A measure defined
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on σ(Z(X)) is called a Baire measure. If a topological fact is mentioned
without a specific reference, then it can be found in [Eng]. A topological
space X is countably metacompact if every countable open cover of X has
a point-finite open refinement, and countably paracompact if every count-
able open cover of X has a locally finite open refinement. By [Ish], X is
countably metacompact iff for every sequence {Cn} of closed sets satisfying
Cn ↓ ∅ (i.e., Cn+1 ⊂ Cn and

⋂
n Cn = ∅), there is a sequence {On} of open

sets such that for every n, Cn ⊂ On, and On ↓ ∅, while X is countably para-
compact iff for every sequence {Cn} of closed sets satisfying Cn ↓ ∅, there is
a sequence {On} of open sets such that for every n, Cn ⊂ On, and On ↓ ∅.
When X is normal, countable metacompactness is equivalent to countable
paracompactness. A topological space is Mař́ık if every Baire measure has a
regular Borel extension, and quasi-Mař́ık if every Baire measure has a Borel
extension.

We begin with a result which shows why the notion of countable meta-
compactness is relevant to the topic of Mař́ık and quasi-Mař́ık spaces.

2.1. Theorem. A countably metacompact quasi-Mař́ık space is Mař́ık.

P r o o f. Let X be a countably metacompact quasi-Mař́ık space, and let
µ be a Baire measure on X. Let τ be any Borel extension of µ, and let
A be the algebra on X generated by the open sets. By Corollary 2.12 of
[Lem] there exists a finitely additive regular measure ν on A with ν(X) =
τ(X) and ν ≥ τ on the closed subsets of X (the existence of such a ν
follows by a typical Zorn Lemma argument. More general results in this
line are Proposition 3.4 of [Pa] and Theorem 2.2 of [Ad1].) Furthermore,
for every sequence {Cn} of closed sets with Cn ↓ ∅ there exists, by the
countable metacompactness of X, a sequence {On} of open sets with Cn ⊂
On, and On ↓ ∅. Thus limn ν(Cn) ≤ limn ν(On) ≤ limn τ(On) = 0 since τ
is countably additive. By the regularity of ν, the same conclusion holds for
arbitrary decreasing sequences {An} of sets in A with An ↓ ∅: to see this, fix
ε > 0, and select for each n a closed Cn ⊂ An such that ν(An \Cn) < 2−nε;
since

⋂n
i=1 Ci ↓ ∅, we have limn ν(

⋂n
i=1 Ci) = 0 and thus limn ν(An) ≤ ε.

It follows from Carathéodory’s Extension Theorem (or from Theorem 1 of
[T]) that ν extends to a regular Borel (countably additive) measure, which
we also denote by ν.

To see that ν extends µ, it is enough to show (by the regularity of Baire
measures) that for every zero set Z, µ(Z) = ν(Z). So fix a zero set Z1. Since ν
dominates a Borel extension of µ on the closed sets, we have µ(Z1) ≤ ν(Z1).
Suppose that µ(Z1) < ν(Z1). Choose ε > 0 with ν(Z1) − µ(Z1) > ε. Then
we can find a zero set Z2 ⊂ X \ Z1 such that µ(Z1) + µ(Z2) > µ(X) − ε.
But now ν(Z1) + ν(Z2) > µ(Z1) + ε+ µ(Z2) > µ(X) = ν(X), contradicting
the additivity of ν.
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A set Y ⊂ X is said to be Baire embedded in X if for every A ∈ Ba(Y )
there exists a B ∈ Ba(X) such that A = B ∩ Y . Theorem 2.1 allows one
to strengthen previously known results if the space X is countably meta-
compact. For instance, in [OT] H. Ohta and K. Tamano give the following
definition: A set S ⊂ X is a generalized Baire subset of X if for every open
set O containing S, there exists a set B ∈ Ba(X) with S ⊂ B ⊂ O. Us-
ing this notion, they show that if X =

⋃
nXn, where each Xn is a Mař́ık,

Baire embedded, generalized Baire subset of X, then X is a Mař́ık space
(Theorem 4.9 of [OT]). They also point out (Remark 4.12(2)) that if the as-
sumption that each Xn is a generalized Baire subset of X is removed, then
their proof shows that X is still quasi-Mař́ık. Now it is easy to check that
to obtain this conclusion, it is enough that each Xn be quasi-Mař́ık rather
than Mař́ık. So from their proof and Theorem 2.1 one gets the following

2.2. Theorem. Let X =
⋃
nXn, where each Xn is quasi-Mař́ık and Baire

embedded in X. If X is countably metacompact , then it is Mař́ık.

Of course, the usefulness of Theorem 2.1 (and the type of argument out-
lined above) will depend on how common or rare countably metacompact
spaces turn out to be. A topological space is Dowker if it is normal but not
countably paracompact, and almost Dowker if it is regular but not count-
ably metacompact. For a long time there has been, up to small modifications,
only one known example in ZFC of a Dowker space, namely M. E. Rudin’s
(see [Ru2]); recently two new Dowker spaces have been announced: see [Sz].
Almost Dowker spaces were introduced by B. M. Scott in [S]. They ap-
pear to be far more abundant than Dowker spaces, particularly among large
products, as is pointed out at the end of our paper.

Next we give an example of a quasi-Mař́ık normal space that is not Mař́ık,
under the special set-theoretic hypothesis ♣. In the version from [Ru1], ♣
states that for every limit ordinal α < ω1 there is a sequence Sα (order
isomorphic with ω), cofinal in α, such that every uncountable subset of ω1

contains some Sα. We shall use the Dowker space appearing in [Ru1], 3.1(i),
pp. 768–769, which is based on constructions due to A. J. Ostaszewski and
P. de Caux. We briefly describe this space (for more details, see [Ru1]).
Assume ♣, and partition each Sα into infinite (disjoint) subsets {Sαijn :
i, j, n ∈ ω}. Define U to be an open subset of the space X = ω1 × ω iff for
every (α + j, n) ∈ U (where α is a limit ordinal and j, n ∈ ω) and every
i ≤ n, there is a cofinite subset Si of Sαijn such that {(β, i) : i ∈ Si} ⊂ U .
This space is hereditarily normal and zero-dimensional. Furthermore, if we
set Fn :=

⋃
j≥n ω1 × {j}, then each Fn is closed, and given any open set U

with Fn ⊂ U , U is cocountable (so X is not countably metacompact). To
prove that U is cocountable one uses the fact that the closed subsets of each
ω1 × {n} with the subspace topology are either countable or cocountable.
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Since this will be useful later (for it implies that the Baire and the Borel
subsets of ω1×{n} are the same), we go into more detail here. Suppose that C
is closed and uncountable in ω1×{n}. By ♣ some Sα satisfies Sα×{n} ⊂ C.
Then the closure of Sα × {n} in ω1 × {n} contains the set {(β, n) : β ≥ α}
(just note that for all j ∈ ω, we have (α+j, n) ∈ Sα × {n}, hence (α+ω, n) ∈
Sα × {n}, and repeat the argument), so C is cocountable.

2.3. Theorem. Assume ♣. Then there exists a normal quasi-Mař́ık space
which is not Mař́ık.

P r o o f. Consider the space X = ω1 × ω with the Dowker topology de-
scribed above. For each n ∈ ω, Ba(ω1 × {n}) is the σ-algebra of countable
and cocountable sets, and furthermore, Ba(ω1 × {n}) = Bo(ω1 × {n}). To
see this, recall that every open set in ω1×{n} is either countable or cocount-
able. Since the collection of countable and cocountable sets of ω1 × {n} is
a σ-algebra which contains the open sets, it contains all the Borel sets. On
the other hand, initial segments of ω1 × {n} are open, and since they are
countable, they can be expressed as a countable union of cozero sets, so they
are cozero. It follows that every singleton is Baire, since it is the difference
of two cozero sets. Hence, every countable subset of ω1 × {n} is Baire.

The same reasoning shows that if D is a countable subset of ω1, then
D × ω is Baire in X. Therefore each set ω1 × {n} is Baire embedded in
X: For any countable subset A = {(αk, n) : k ∈ ω} ⊂ ω1 × {n}, we have
A = ({αk : k ∈ ω} × ω) ∩ ω1 × {n}. Now {αk : k ∈ ω} × ω is a Baire subset
of ω1 × ω, so the claim follows.

By Theorem 4.9 and Remark 4.12(2) of [OT], if X =
⋃
nXn, where each

Xn is Mař́ık and Baire embedded in X, then X is quasi-Mař́ık. Letting Xn

be ω1×{n}, we find that X =
⋃
n ω1×{n} is quasi-Mař́ık, for each ω1×{n} is

Baire embedded in X and trivially Mař́ık (as Ba(ω1×{n}) = Bo(ω1×{n})).
Finally, in order to prove that X is not Mař́ık, we define a Baire measure

ν on X by declaring ν(B) = 1 if B ∩ω1 ×{0} is cocountable, and ν(B) = 0
if B ∩ ω1 × {0} is countable. Let µ be any Borel extension of ν, and set
Fn :=

⋃
j≥n ω1 × {j}. Then limµ(Fn) = 0, but any open set O containing

any Fn is cocountable, so µ(O) = 1 and therefore µ is not regular.

2.4. R e m a r k s. In [HRR], p. 140, it is conjectured that if a space X has
no closed discrete subset of measurable power and satisfies Bo(X) = Ba(X),
then X is realcompact. However, the subset ω1 × {0} of the Dowker space
X considered above (or the Ostaszewski line, see [Ost]) has nonmeasurable
cardinality and satisfies Bo(ω1 × {0}) = Ba(ω1 × {0}), so under ♣ the
conjecture is false. This remark appears not to have been made before.

R. B. Kirk has asked ([Ki], p. 338) whether the condition that every
Baire measure on a space X have a unique regular Borel extension entails
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that X is measure compact. The same example as before (X = ω1 × {0})
shows that the answer is no: Since Bo(X) = Ba(X), trivially every Baire
measure has a unique regular Borel extension, but the space is not even
realcompact.

The fact that there are Dowker non-Mař́ık spaces is well known, and
we have shown that a Dowker space can be quasi-Mař́ık while failing to
be Mař́ık. Going further in this direction (see [Ad2], Remark 2.4.c, p. 89)
W. Adamski has asked whether a Dowker space can be Mař́ık. Under the
special set-theoretic assumption P (c) there exists a Dowker space where
every Baire measure is discrete (Theorem 2.5 below), so it is trivially Mař́ık.
This also shows that countable metacompactness is not a necessary condition
for a quasi-Mař́ık space to be Mař́ık. The letter c stands for the cardinality
of the continuum, and P (c) denotes the following statement: Let A be any
collection of fewer than c subsets of the natural numbers, such that whenever
F ⊂ A is finite,

⋂
F is infinite. Then there exists an infinite set B ⊂ N with

B \A finite for every A ∈ A. A generalized Luzin subset of the Cantor space
2ω is a subset of 2ω with cardinality c and such that its intersection with
any set of the first category has cardinality less than c. The existence of a
generalized Luzin set follows from P (c) (see [Be], pp. 152–153). Recall that
a Borel measure is continuous if every point has measure zero, and discrete
if there is a countable set with full measure. Every Borel measure can be
decomposed into a continuous and a discrete part.

2.5. Theorem. Assume P (c). Then there exists a Dowker space which
admits only discrete Baire measures.

P r o o f. By [Be], P (c) entails that there is a Dowker space (X, τ) such
that X is contained in a generalized Luzin subset L of 2ω, and the topology τ
refines the euclidean (or product) topology e. Now on (X, e) the Baire and
the Borel sets coincide. Therefore any Baire measure µ on (X, τ) defines
by restriction a Baire measure (and hence a Borel measure) on (X, e). We
extend this measure to 2ω by setting ν(B) := µ(B ∩X) for every Borel set
B ⊂ 2ω. Write ν = νc + νd, where νc and νd are respectively the continuous
and discrete parts of ν. There exists an Fσ subset F of 2ω such that F
is of the first category and ν(F ) = ν(2ω). Martin’s Axiom for σ-centered
posets (MA(σ-centered), see [F1] or [W] for the definition) implies that the
union of less than c closed sets of measure zero has outer measure zero, for
every continuous Borel measure on 2ω (Corollary 22-H of [F1]). Since P (c)
is equivalent to MA(σ-centered) (by [Be]), and L is generalized Luzin, it
follows that the cardinality of L ∩ F is less than c and thus the νc-outer
measure of L ∩ F is zero. But ν assigns full outer measure to L, so νc is
identically zero and ν purely discrete. Therefore so is µ.
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2.6. R e m a r k. A Baire measure µ is τ -smooth (or τ -additive) if for every
collection of cozero sets C = {Oα}, closed under finite unions and such that⋃ C = X, we have µ(X) = supα µ(Oα). If we replace X by an arbitrary
cozero set, the definition so obtained is equivalent to the previous one. A
space X is measure compact if every Baire measure on X is τ -smooth, and
strongly measure compact if every Baire measure ν on X is tight, i.e., for
every ε > 0 there exists a compact setK with ν(K) > ν(X)−ε. Problem 9.10
of [Wh1] asks whether there is a measure compact space where the closed sets
are not sequentially dominated by the cozero sets (this condition is stronger
than countable metacompactness). H. Ohta and K. Tamano have answered
this affirmatively in [OT] by giving three different examples. These spaces
are nonnormal; one of them is locally compact and does not require any
set-theoretic assumptions beyond ZFC. With stronger assumptions (ZFC +
P (c)), Bell’s Dowker space provides an example which is strongly measure
compact and normal.

3. Topological properties of Mař́ık and quasi-Mař́ık spaces. It is
often of interest to know how properties of a space behave under different
topological operations. Regarding unions, for instance, it is known that the
union of a measure compact space with a compact space is measure compact,
while the union of a realcompact space and a compact space is realcompact.
In this context, H. Ohta and K. Tamano show that the union of two Mař́ık
spaces need not be quasi-Mař́ık, even if one is a cozero set and the other
a zero set ([OT], Remark 4.12(1)). They also ask (Question 4.13) whether
the union of a Mař́ık space with a compact space is Mař́ık. We answer this
affirmatively (Corollary 3.4), and show that the corresponding statement is
again true for quasi-Mař́ık spaces. The next lemma is obvious.

3.1. Lemma. A Baire embedded , Baire subset of a quasi-Mař́ık space is
quasi-Mař́ık.

This lemma fails if the condition that the subspace be a Baire subset is
omitted. To see that a Baire embedded subset of a Mař́ık space need not be
quasi-Mař́ık, consider a non-quasi-Mař́ık set in its Stone–Čech compactifi-
cation.

Recall that a Borel measure ν is τ -smooth if for every collection of open
sets C = {Oα}, closed under finite unions, µ(

⋃ C) = supαµ(Oα). It is well
known that every τ -smooth Baire measure µ (see Remark 2.6 for the defini-
tion) has a unique τ -smooth Borel extension ν. Furthermore, every τ -smooth
Borel measure on a regular space is regular.

3.2. Theorem. Let X = Y ∪ L, where Y is Mař́ık (respectively quasi-
Mař́ık) and L is Lindelöf. If for every zero subset Z of X disjoint from L
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there exists another zero set S with L ⊂ S and S ∩ Z = ∅, then X is Mař́ık
(respectively quasi-Mař́ık).

P r o o f. Let Y be Mař́ık and let X = Y ∪L, where L is a Lindelöf set such
that for every zero subset Z with L∩Z = ∅, there exists another zero set S
with L ⊂ S and S∩Z = ∅. Given a Baire measure µ on X, we can decompose
µ into a purely countably additive part and a τ -smooth part (Theorem 4.3
of [Kn]). Since the τ -smooth part always extends to a regular (τ -smooth)
Borel measure, we may assume that µ is purely countably additive, i.e., the
only τ -smooth minorant of µ is the zero measure. Define a Baire measure
ν on X by setting ν(B) = µ∗(L ∩ B) for B ∈ Ba(X). Given any collection
{Oα} of cozero sets with

⋃
αOα = X, there is a countable subcollection

{On : n ∈ N} which covers L, whence ν(X) = ν(
⋃
nOn). Therefore ν is

τ -smooth, and since it is also a minorant of µ, it must be identically zero.
It follows that the µ-outer measure of L is zero. Now for each n ∈ N select
a cozero set On such that L ⊂ On and µ(On) < 1/n. By assumption, given
n ∈ N we can choose a cozero set Un with Oc

n ⊂ Un and L ∩ Un = ∅. Then
O :=

⋃
n Un is a cozero subset of X with µ(O) = µ(X) and O ∩ L = ∅.

Since O is Baire embedded in X, it follows that µO(O ∩B) := µ(B) defines
a Baire measure on O. But O is a cozero subset of the Mař́ık space Y , so
it is Mař́ık (Corollary 4.3 of [OT]). Let νO be a regular Borel extension
of µO. Setting ν(B) := νO(O ∩ B) for all B ∈ Bo(X), we obtain a Borel
extension of µ. To see that ν is regular, fix ε > 0 and select a Borel set
B ⊂ X. Then B = (B ∩ O) ∪ (B ∩ Oc). Let V ⊂ O be an open set such
that B ∩ O ⊂ V and νO(V ) − ε/2 < νO(B ∩ O). Select a cozero subset
W of X with Oc ⊂ W and µ(W ) < ε/2. Then we have B ⊂ V ∪W and
ν(V ∪W ) − ε ≤ ν(V ) + ν(W ) − ε = νO(V ) + µ(W ) − ε < ν(B), so ν is
regular.

The quasi-Mař́ık case is proven in the same fashion, save that we use our
Lemma 3.1 instead of Corollary 4.3 from [OT].

3.3. R e m a r k. If Y ⊂ X and ν is a regular Borel measure on Y , it does
not automatically follow that the extension to a Borel measure on X given
by νX(B) := ν(Y ∩B) for all B ∈ Bo(X) is regular. Consider, for instance,
the Dieudonné measure on ω1 and its extension to ω1 + 1.

3.4. Corollary. The union of a Mař́ık space with a compact space is
Mař́ık. Likewise, the union of a quasi-Mař́ık space with a compact space is
quasi-Mař́ık.

P r o o f. Let K be compact, and let X = Y ∪K, where Y is either Mař́ık
or quasi-Mař́ık. Let Z be a zero subset of X with K∩Z = ∅. For each x ∈ K
select a continuous function fx : X → [0, 1] satisfying f−1

x ({0}) = Z and
fx(x) = 1. Then the open cover {f−1

x ((1/2, 1]) : x ∈ K} ofK has a finite sub-
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cover {f−1
i ((1/2, 1]) : i = 1, . . . , n}. But now the zero set

⋃n
i=1 f

−1
i ([1/2, 1])

contains K and is disjoint from Z, so the conclusions follow from the previ-
ous theorem.

3.5. R e m a r k s. The proof of Theorem 3.2 can be easily modified to
cover the case where L, instead of Lindelöf, is measure compact and Baire
embedded in X. If X is already known to be quasi-Mař́ık, then it is enough
that L be quasi-Mař́ık and Y be Fσ in X to conclude that X is Mař́ık
(Theorem 3.6 below).

If L is a Lindelöf closed subset of X, and Y is discrete (thus trivially
Mař́ık), then a stronger conclusion holds: X is not just Mař́ık but paracom-
pact (see [Ka], p. 1251). On the other hand, if L is simply Lindelöf, with no
additional conditions, the result fails: Mrówka’s space Ψ (see [GJ], 5I, p. 79)
is the union of two discrete spaces, one of cardinality less than or equal to c,
and the other countable (hence Lindelöf and σ-compact). As noted in [Ad3]
and [OT], under the assumption that c is not real-valued measurable Ψ is not
quasi-Mař́ık, for all its subsets are Borel, but the space is not realcompact.

3.6. Theorem. Let Y be Mař́ık and let M be measure compact. If X =
Y ∪M is quasi-Mař́ık and Y is Fσ in X, then X is Mař́ık.

P r o o f. Let µ be a Baire measure on X. As in the proof of Theorem 3.2,
we may assume that µ is purely countably additive. Let ν be a Borel ex-
tension of µ. We obtain a Borel measure νM on M by setting νM (B) =
ν∗(M ∩ B) for B ∈ Bo(M). The restriction of νM to Ba(M) is τ -smooth,
and hence so is the Baire measure ν̂ on X given by ν̂(B) = νM (B∩M). But
ν̂ is a minorant of µ, so it is identically zero. Thus there is a Borel subset E
of X with ν(E) = ν(X) and E ⊂ Y \M . Define now a Baire measure γ on
Y as follows: For B ∈ Ba(Y ), γ(B) = ν(E ∩ B). Since Y is Mař́ık, γ has a
regular Borel extension which we also denote by γ. The Borel measure on X
defined by γX(B) = γ(Y ∩B), for every Borel set B ⊂ X, is an extension of
µ, since if H ∈ Ba(X), then µ(H) = ν(H) = ν(E∩H) = γ(Y ∩H) = γX(H).
Finally, it is easy to see that γX must be regular, for Y is Fσ in X and γ is
regular on Y .

As noted before, H. Ohta and K. Tamano have shown (in [OT], Theo-
rem 4.1) that a generalized Baire subset of a Mař́ık space is Mař́ık provided
that it is Baire embedded. They also ask whether this condition can be re-
moved (Remark 4.4-2, p. 409 of [OT]). If we assume that c is real-valued
measurable, then there exists a Baire (and not just generalized Baire) subset
of a Mař́ık space which is not quasi-Mař́ık (Theorem 3.8 below).

The symbol R2 will be used to denote the plane with the euclidean topol-
ogy, and R2

` for the plane with the Sorgenfrey topology (i.e., the topology
generated by the semiopen rectangles [a, b)× [c, d)). Under the assumption
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that c is not real-valued measurable, the Sorgenfrey plane is a typical ex-
ample of a non-quasi-Mař́ık space. However, if the opposite assumption is
made, then it is Mař́ık, as will be shown next.

3.7. Theorem. Assume that c is real-valued measurable. Then R2
` is

Mař́ık.

P r o o f. Let µ be a Baire measure on R2
` . We may, without loss of gen-

erality, assume that µ is continuous and µ(R2
`) = 1. Then µ is a continuous

Borel probability measure on R2, since Bo(R2) = Ba(R2
`), by Theorem 2.1 of

[Ba]. Hence there exists a measure preserving homeomorphism h : E → P,
where E is a Gδ subset of the euclidean plane with µ(E) = 1, and P is
the irrational numbers in [0, 1] with Lebesgue measure λ (see [Ox], Theo-
rem 2). The assumption that c is real-valued measurable is equivalent to the
hypothesis that Lebesgue measure can be extended to all subsets of P (by
[U], or Theorem 1D(e) of [F2]). Let ν denote such an extension. Then νh−1

induces a Borel measure on R2
` which extends µ, so R2

` is quasi-Mař́ık. But
R2
` is countably metacompact (see [SS], Example 84 and p. 190), whence it

is Mař́ık, by Theorem 2.1.

In order to answer the question of H. Ohta and K. Tamano regarding
whether or not the condition “Baire embedded” can be omitted from their
Theorem 4.1, the idea is to use the previous result as follows: Assume that c
is real-valued measurable. For convenience, we shall consider the unit square
[0, 1]2 with the Sorgenfrey topology, rather than the Sorgenfrey plane. Let λ
be Lebesgue linear measure on the negative diagonal D, and let E be non-
measurable of least possible cardinality. Then ν(B) := λ∗(E ∩B) is a Baire
measure on the square. Let µ be any Borel extension of ν. Theorem 14.7(ii)
of [Ku] entails that µ(E) = 0. If we modify the topology on D so that it is
coarse enough for ν to be a Baire measure on D, but rich enough so that all
sets in D are Borel and E is Baire, then ν will have no Borel extension. To
achieve this result we add new points and change the basic neighborhoods
of points in E. There are several ways of doing so, for example, by using a
Cantor tree type of construction, or by considering two Sorgenfrey squares,
perpendicular along their negative diagonals. We have chosen a third way,
refining the topology of the unit cube [0, 1]3 in euclidean space. We use the
vector notation x to denote points from [0, 1]3.

3.8. Theorem. Assume that c is real-valued measurable. Then there ex-
ists a Baire subset of a Mař́ık space which is not quasi-Mař́ık.

P r o o f. Let ([0, 1]3, T1) be the unit cube with the euclidean topology.
On the set [0, 1]3 we define a second, finer topology T2 by declaring the
“upper part” U = [0, 1] × [0, 1] × (0, 1] and the “bottom” B = [0, 1] ×
[0, 1] × {0} clopen, and giving to the points in U the euclidean topol-
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ogy, while the points in B have the Sorgenfrey plane topology (generated
by the sets [a, b) × [c, d) × {0}). Note that since the Baire sets of the
Sorgenfrey plane coincide with the Borel sets of the euclidean plane, the
Baire sets of ([0, 1]3, T2) and the Borel sets of ([0, 1]3, T1) are also iden-
tical. But Ba([0, 1]3, T1) = Bo([0, 1]3, T1), so given any (completely regu-
lar) intermediate topology T3, finer than the euclidean topology but coarser
than T2, we have Ba([0, 1]3, T3) = Bo([0, 1]3, T1). Now ([0, 1]3, T2) is Mař́ık,
for it is the topological sum of two Mař́ık spaces, namely T (which has
the euclidean topology) and B (by Theorem 3.7, using the assumption
that c is real-valued measurable; in this regard there is no difference be-
tween the Sorgenfrey plane and the Sorgenfrey unit square). It follows that
([0, 1]3, T3) is also Mař́ık. Denote by D the “negative diagonal” of B, i.e.,
D := {(x, 1 − x, 0) : x ∈ [0, 1]}. Next we construct a completely regular
topology T3 on [0, 1]3 with T1 ⊂ T3 ⊂ T2, such that the Baire subset T ∪D
fails to be quasi-Mař́ık.

Let E ⊂ D be a nonmeasurable subset (with respect to linear Lebesgue
measure) of least possible cardinality. To define T3, we give to the points in
T the euclidean topology, and to the points in B \ E the Sorgenfrey plane
topology (so the basic neighborhoods of the points in the complement of
E are the same as in T2). Finally, we assign to the points in E a three-
dimensional variation of Nemytskĭı’s tangent disc topology (see Example
82 of [SS]). Denote by V (x, n) the euclidean open ball contained in T , of
radius 1/n and tangent to B at the point x, and by S(x, n) the set [x, x +
1/n) × [y, y + 1/n) × {0}, where x = (x, y, 0). For each x ∈ E, the basic
neighborhoods of x are the sets V (x, n) ∪ S(x, n). Clearly, T1 ⊂ T3 ⊂ T2.
To check that ([0, 1]3, T3) is completely regular, suppose that C is closed
and x 6∈ C. If x ∈ T , then there is a euclidean open ball centered at x
which misses C, so any continuous real-valued function which is zero at x
and one off the ball will separate x and C. Likewise, if x ∈ B \ E, there
exists an n ∈ N such that S(x, n) ∩ C = ∅. Then the function which takes
the value zero on S(x, n) and one elsewhere is continuous and separates
x and C. Finally, if x = (x0, 1 − x0, 0) ∈ E, there exists an n ∈ N such
that (V (x, n) ∪ S(x, n)) ∩ C = ∅. Let f = 1 off V (x, n) ∪ S(x, n), zero on
S(x, n) and f(x, y, z) = n[(x− x0)2 + (y+ x0 − 1)2 + z2]/(2z) for (x, y, z) ∈
V (x, n). Then f is continuous and separates x and C. Therefore ([0, 1]3, T3)
is completely regular.

Note that T ∪D is the union of a cozero set and a zero set in ([0, 1]3, T1),
hence also Baire in ([0, 1]3, T3). Next we determine what are the Baire sets
of T ∪D with the subspace topology from ([0, 1]3, T3). The Baire subsets of
T are the euclidean Borel sets, and D \ E has the discrete topology, so all
its subsets are Baire. As for E, it is a zero subset of T ∪D. Furthermore, if
Z is a zero subset of E, then Z is a Borel subset of E with the euclidean
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topology. The proof of this fact is essentially the same as the one given for
the Sorgenfrey plane in Lemma 4.2 of [Mo]. It is presented next for the
reader’s convenience. Let f : T ∪D → [0, 1] be a continuous function such
that f−1({0}) = Z. Define Wm,n := {x ∈ Z : V (x,m) ⊂ f−1([0, 1/n))}.
Note that

⋃
mWm,n = Z for all positive n ∈ N. Furthermore, Z =

E \ ⋃n{f > 1/n}. Let Cm,n be the euclidean closure of Wm,n in E. Then
Cm,n ∩ {f > 1/n} = ∅. For suppose that there exists a positive n ∈ N for
which this intersection is nonempty. Pick y ∈ Cm,n ∩ {f > 1/n}. Choose
p ∈ N with V (y, p) ⊂ {f > 1/n}. Since both p and m are fixed natural
numbers, we can select xk ∈ Wm,n close enough to y (in the euclidean
topology) so that V (y, p) ∩ V (xk,m) 6= ∅. But this contradicts the fact
that V (xk,m) ⊂ Wm,n ⊂ {f < 1/n} and V (y, p) ⊂ {f > 1/n}. Thus
(
⋂
n

⋃
m Cm,n) ∩ (

⋃
n{f > 1/n}) = ∅. Since

Z =
(⋂

n

⋃
m

Wm,n

)
⊂
(⋂

n

⋃
m

Cm,n

)
⊂ E \

⋃
n

{f > 1/n} = Z,

and
⋂
n

⋃
m Cm,n is a euclidean Borel subset of E, so is Z. Thus, the same

happens with all the Baire subsets of E.
Finally, we show that T ∪D is not quasi-Mař́ık. For every B ∈ Ba(T ∪D),

let ν(B) := λ∗(E ∩ B), where λ is the linear Lebesgue measure on D. By
the previous argument E ∩ B is a euclidean Borel subset of E, so ν is a
well-defined Baire measure on T ∪ D. Now the subspace topology of D is
discrete, and ν(E) > 0. By Theorem 14.7(ii) of [Ku], the cardinality of E is
not real-valued measurable. Therefore, ν has no extension to Bo(T ∪D).

3.9. R e m a r k. While Kunen’s theorem (asserting that Lebesgue mea-
sure cannot be extended in a nontrivial way to all subsets of E if E is
nonmeasurable of least possible cardinality) remains unpublished, there are
stronger results in the literature. For instance E. Grzegorek shows in [Grz],
Corollary 2, that there exist two subsets A and B of the real line, one of uni-
versal measure zero and the other nonmeasurable, with the same cardinality.
It is easy to see (and also well known) why this implies Kunen’s result: Just
note that if Lebesgue measure could be extended in a nontrivial way to all
subsets of a nonmeasurable set D with cardinality less than or equal to the
cardinality of a set A of universal measure zero, then any injection from
D into A would produce a nontrivial continuous Borel measure on A, and
we would have a contradiction. Thus, a nonmeasurable D of least possible
cardinality cannot be real-valued measurable.

Next we consider the behavior under quasiperfect maps of the Mař́ık
property. A continuous onto map f : X → Y is perfect if it is closed and all
its fibers are compact (i.e., f−1(y) is compact for every y ∈ Y ), and quasiper-
fect if it is closed and all its fibers are countably compact. Every space X
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is the image under a perfect irreducible map of an extremally disconnected
space E(X), called the absolute of X. In [Wh2], R. F. Wheeler asked whether
it is true that X is Mař́ık iff E(X) is Mař́ık. H. Ohta and K. Tamano gave
negative answers to both implications (Examples 3.6 and 3.7 of [OT]; the
second example uses the special assumption that the cardinal c of the contin-
uum is not real-valued measurable). So the Mař́ık property is not preserved
by perfect maps in either direction. However, if the perfect map is also open,
then the image of a Mař́ık space is Mař́ık (Corollary 4.16 of [OT]). H. Ohta
and K. Tamano asked whether the preimage under an open perfect map of
a Mař́ık space must also be Mař́ık. Next we show that this is the case.

We shall use the following theorem (whose proof can be found in [BB],
Theorem 3.6.1): Let A1 and A2 be two algebras of sets on X, and let µ1 and
µ2 be finite, finitely additive measures defined on A1 and A2 respectively.
Let B be any algebra containing both A1 and A2. A necessary and sufficient
condition for the existence on B of a finite, finitely additive measure which
is a common extension of µ1 and µ2 is the following: Whenever A1 ∈ A1

and A2 ∈ A2, if A1 ⊂ A2, we have µ1(A1) ≤ µ2(A2), while if A2 ⊂ A1, then
µ1(A1) ≥ µ2(A2).

The next result is a special case of Lemma 3.4 of [Fro].

3.10. Lemma. Let f be an open quasiperfect map from X onto Y. If Z is
a zero subset of X , then f(Z) is a zero subset of Y.

The following lemma is well known and easy to prove.

3.11. Lemma. Let f be a quasiperfect map from X onto Y. If {Fn} is a
sequence of closed subsets of X such that Fn ↓ ∅, then {f(Fn)} is a sequence
of closed subsets of X with f(Fn) ↓ ∅.

One direction of the following theorem is Corollary 4.16 of [OT] (though
there it is stated for perfect rather than quasiperfect maps) so we only need
to prove the other implication.

3.12. Theorem. Let f be an open quasiperfect map from X onto Y. Then
X is Mař́ık iff Y is Mař́ık.

P r o o f. Let f be an open and quasiperfect map from X onto the Mař́ık
space Y , and let ν be a Baire measure on X. Let µ be any regular Borel
extension of the Baire measure ν(f−1(·)) on Y . Denote by A(F(X)) the
algebra generated by the closed sets of X, i.e., the Borel algebra of X. Then
Ba(X) ∩ A(F(X)) and {f−1(B) : B ∈ Bo(X)} ∩ A(F(X)) are subalgebras
of A(F(X)), ν is (by restriction) a measure on Ba(X) ∩ A(F(X)), and
µf (·) := µ(f(·)) is a measure on {f−1(B) : B ∈ Bo(X)} ∩ A(F(X)). Let
A1 ∈ Ba(X) ∩ A(F(X)) and A2 ∈ {f−1(B) : B ∈ Bo(X)} ∩ A(F(X)).
Suppose A1 ⊂ A2. By Lemma 3.10, if Z is a zero subset of X, then f(Z) is a
zero subset of Y . Now A2 = f−1(B) for some B ∈ Bo(X), so if Z ⊂ A1, then
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f(Z) ⊂ B and f−1(f(Z)) ⊂ f−1(B). Taking suprema over all Z ∈ Z(X)
with Z ⊂ A1, we obtain

ν(A1) = sup ν(Z) ≤ sup ν(f−1(f(Z))) = supµf (f−1(f(Z))) ≤ µf (A2).

Suppose next that A2 = f−1(B) ⊂ A1. Let O be a cozero subset of X with
A1 ⊂ O. Then f(Oc) is a zero subset of Y , disjoint from B. Hence ν(X) =
µ(Y ) ≥ µ(B)+µ(f(Oc)) = µf (f−1(B))+ν(f−1(f(Oc))) ≥ µf (A2)+ν(Oc).
Therefore µf (A2) ≤ ν(X) − ν(Oc) = ν(O). By the regularity of ν it fol-
lows that µf (A2) ≤ ν(A1). The result mentioned above (Theorem 3.6.1 of
[BB]) entails that there is a common extension ψ of ν and µf to A(F(X)).
The rest of the argument follows the same lines as the proof of Theo-
rem 2.1: There exists a finitely additive regular measure φ on A(F(X))
with φ(X) = ψ(X) and φ ≥ ψ on the closed subsets of X. As in The-
orem 2.1, using the regularity of ν we conclude that φ extends ν (to be
precise, it extends ν restricted to Ba(X) ∩ A(F(X))), and an identical
argument, using closed sets instead of zero sets, shows that φ is also an
extension of µf on {f−1(B) : B ∈ Bo(X)} ∩ A(F(X)). But now, for
every sequence {Fn} of closed sets with Fn ⊂ X and Fn ↓ ∅, we have
{f(Fn)} ↓ ∅ (Lemma 3.11), so from the countable additivity of µ it follows
that limn φ(Fn) ≤ limn φ(f−1(f(Fn))) = limn µ(f(Fn)) = 0. The regularity
of φ entails the same conclusion for arbitrary decreasing sequences of sets in
A(F(X)) with empty intersection, so there exists a regular Borel (countably
additive) measure extending φ.

H. Ohta and K. Tamano have proven (Theorem 4.17 of [OT]) that the
preimage X under a quasiperfect map of a Baire separated, Mař́ık space
Y is Mař́ık, and hence that the product of a compact space with a Baire
separated, Mař́ık space is Mař́ık (Corollary 4.19 of [OT]). The result given
above entails that the Baire separation of Y can be replaced by the condition
that the map be open, thus answering in the affirmative Questions 4.20
of [OT].

3.13. Corollary. Let f be an open perfect map from X onto Y. If Y
is Mař́ık , then so is X. In particular , the product of a Mař́ık space with a
compact space is Mař́ık.

P r o o f. Recall that if one of the factors in a product is compact, then
the projection onto the other is perfect and open. So the product of a Mař́ık
space with a compact space is Mař́ık.

If the product is Baire separated, the compactness of one of the factors
can be relaxed to strong measure compactness. Given a Baire measure ν on
A ⊂ X, its natural extension νX to Ba(X) is defined by νX(B) := ν(B ∩A)
for every B ∈ Ba(X). If A is Baire embedded in X and µX is a Baire measure
on X, its natural restriction µ to Ba(A) is defined as follows: µ(B) = µ∗X(B)
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for all B ∈ Ba(A), where µ∗X is the outer measure generated by µ. Note that
if µX(X) = µ∗X(A), then µ(B) = µX(B1), where B1 is any Baire subset
of X which satisfies B = B1 ∩ A. The measure µ is well defined, since if
B1, B2 ∈ Ba(X) with B = B1 ∩ A = B2 ∩ A, then B1 4 B2 ⊂ Ac, so
µX(B1 4 B2) = 0. The definition of natural extensions and restrictions for
regular Borel measures is entirely analogous.

3.14. Proposition. Let X × Y be a Baire separated space, where X is
Mař́ık and Y is strongly measure compact. Then X × Y is Mař́ık.

P r o o f. By Lemma 4.5 of [OT], the Baire separation of X × Y entails
that its Fσ subsets are Baire embedded and generalized Baire in X × Y .
Let ν be a Baire measure on X × Y . For each n ∈ N, select a compact set
Kn ⊂ Y such that Kn−1 ⊂ Kn and ν∗(π−1

Y (Kn)) > ν(X × Y )− 1/n, where
πY is the projection from X × Y onto Y . Note that

⋃
nX × Kn is Fσ in

X × Y , so it is Baire embedded and generalized Baire in X × Y . Clearly,
each X ×Kn is also Baire embedded and generalized Baire in

⋃
nX ×Kn.

Furthermore, each set X×Kn is Mař́ık (Corollary 3.13), whence
⋃
nX×Kn

is Mař́ık by Theorem 4.9 of [OT]. Let B ∈ Ba(
⋃
nX × Kn). For each n

select Bn ∈ Ba(X × Y ) with Bn ∩ (X ×Kn) = B ∩ (X ×Kn). It is easy to
check, using the fact that {X ×Kn} is an increasing sequence of sets, that
(
⋂∞
n=1

⋃∞
k=nBk) ∩ (

⋃
nX ×Kn) = B. Since

⋂∞
n=1

⋃∞
k=nBk ∈ Ba(X × Y ),

it follows that
⋃
nX × Kn is Baire embedded in X × Y . Denote by φ the

natural restriction of ν to
⋃
nX×Kn, and let µ be a regular Borel extension

of φ. Then the natural extension µX×Y of µ to X × Y is an extension of ν,
and since

⋃
nX ×Kn is Fσ in X × Y , it follows that µX×Y is regular.

If a continuous onto map is open and has compact fibers, but is not
closed, then the preimage of a Mař́ık space may fail to be Mař́ık. To see
this, consider Nemytskĭı’s tangent disc topology (see Example 82 of [SS]) on
the unit square [0, 1]2. The projection onto the first coordinate is continuous,
open, and has compact fibers. Since the subspace [0, 1]×{0} has the discrete
topology, trivially it is Mař́ık. For the same reasons as in Lemma 4.2 of [Mo]
(or in the proof of our Theorem 3.8), linear Lebesgue measure on [0, 1]×{0}
defines a Baire measure λ on the Nemytskĭı square [0, 1]2. Assuming that c is
not real-valued measurable, λ has no Borel extension. A small modification
of this example allows us to do away with the previous set-theoretic assump-
tion: Rather than [0, 1]2, use E × [0, 1], where E ⊂ [0, 1] is nonmeasurable
(with respect to Lebesgue measure) of least possible cardinality. Then apply
the result of Kunen mentioned above (Theorem 14.7(ii) of [Ku]).

There remain several open questions from [OT] which are unanswered
here. In this author’s opinion the most interesting ones are whether Nλ is
Mař́ık for every cardinal λ (it is quasi-Mař́ık by Cor. 2.12 of [OT]) and



290 J. M. Aldaz

whether the realcompactification of a Mař́ık space must be Mař́ık (Ques-
tions 2.13 and 2.14, p. 401 of [OT]). Under Martin’s Axiom plus the negation
of the Continuum Hypothesis, D. H. Fremlin has proven (in [F3]) that for
every λ < c, Nλ is measure compact and hence Mař́ık. But E. K. van Douwen
showed ([vD], Theorem 13.7, p. 109) that Nλ is not countably metacompact
when λ is uncountable (I am indebted to Professor H. Ohta for pointing out
this reference). This leaves Nλ with λ ≥ c as a possible example in ZFC
of a quasi-Mař́ık space which is not Mař́ık. As noted in [OT], showing that
Nλ is not Mař́ık for some λ ≥ c would also provide an example of a Mař́ık
space without a Mař́ık realcompactification. Van Douwen’s proof showing
that countable metacompactness fails for Nω1 is rather indirect, so we give
below a direct proof due to M. E. Rudin. It is presented here with her kind
permission.

Let us fix some notation. By λ we denote a cardinal. If g is a partial
function on λ (i.e., defined on a subset of λ), with values in N, then [g]
denotes the set {f ∈ Nλ : f(α) = g(α) for every α ∈ Dom g}. Given a set
A, we write cardA for its cardinality. The family of all sets [g], where g is
a finite partial function, forms a base for the topology of Nλ. We follow the
convention of identifying an ordinal with the set of all its predecessors.

3.15. Theorem. The space Nω1 is almost Dowker.

P r o o f. Since Nω1 is completely regular, it is enough to show that it is
not countably metacompact. Set Fn := {f ∈ Nω1 : card{f(α) = i} ≤ 1
for i ≤ n}. Then {Fn} is a decreasing sequence of closed sets with empty
intersection. Let {On} be a sequence of open sets with Fn ⊂ On. We shall
see that

⋂
nOn 6= ∅. Denote by G the set of all finite partial functions from

ω1 into N. Pick any injective function h0 ∈ G. Select, for every α < ω1, an
f1
α ∈ F1 such that f1

α is an extension of h0, and the restriction of f1
α to α

is injective. Choose next g1
α ∈ G with h0 ⊂ g1

α and f1
α ∈ [g1

α] ⊂ O1. By
the ∆-system lemma there exists an uncountable subset Λ of ω1 such that
{Dom g1

α : α ∈ Λ} forms a ∆-system, i.e., there exists a fixed set r (the
root) such that given two different functions g1

α and g1
β with α, β ∈ Λ, we

have Dom g1
α ∩ Dom g1

β = r. Furthermore, there is an uncountable Λ1 ⊂ Λ

such that for all α, β ∈ Λ1, we have g1
α = g1

β on r (otherwise, Λ would be
countable). Let H1 be the set {g1

α : α ∈ Λ1}. Then H1 is a ∆-system, with
root, say, h1. Note that h0 ⊂ h1. Also, h1 is injective, since for any α ∈ Λ1

with α > max Domh1, the function f1
α extends h1 and is injective below

α. Inductively we produce for each n ∈ N a ∆-system Hn with an injective
root hn which extends hn−1, and such that if w ∈ Hn, then [w] ⊂ On. Let
γ0 = sup{⋃n Domhn}. Since γ0 is countable, and every α ∈ γ0 \ Domh1

belongs to the domain of at most one element of H1, it follows that there
exists a g1 ∈ H1 such that if α ∈ Dom g1 \ Domh1, then α > γ0. Let
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γ1 = sup{(⋃n Domhn) ∪ (Dom g1)} and choose g2 ∈ H2 with α > γ1 for all
α ∈ Dom g2 \ Domh2. Repeating this process, we obtain a sequence {gn}
such that

⋃
n gn is a well-defined partial function. Since [gn] ⊂ On, it follows

that ∅ 6= [
⋃
n gn] ⊂ ⋂nOn.

In [St], A. H. Stone proved that a cartesian product of metric spaces is
normal iff it is paracompact iff all but countably many of the factors are
compact. K. Nagami [Na] showed that “paracompact” could be replaced by
“countably paracompact”. By van Douwen’s result, we have

3.16. Corollary. A cartesian product of metric spaces is countably
metacompact iff all but countably many of the factors are compact.

P r o o f. One direction is immediate from Stone’s Theorem, since para-
compactness is a stronger condition than countable metacompactness. For
the other, note that if uncountably many factors are not compact, then
Nω1 embeds as a closed subset in the product. Since a closed subset of a
countably metacompact set is countably metacompact, the result follows.

Thus we see that for products of metric spaces, the notions of para-
compactness, metacompactness, countable paracompactness and countable
metacompactness are all equivalent, since the stronger and the weaker con-
ditions coincide.

Note also that for any uncountable product of topological (not necessarily
metric) spaces, if N embeds as a closed discrete subset in uncountably many
of the factors, then the product is not countably metacompact. The reason,
as before, is that in this case Nω1 embeds as a closed subset of the product.

3.17. R e m a r k. It is still unknown whether realcompact Dowker spaces
exist in ZFC (Question 4, p. 185 of [Ru2]). We see, however, that realcompact
almost Dowker spaces abound. Let λ be uncountable. Given Rλ, we see that
Σ := {f ∈ Rλ : card{f(α) 6= 0} ≤ ω} is a Σ-product of Rλ. As H. Ohta
and K. Tamano point out in the proof of Corollary 2.12 of [OT], this Σ is
a normal, countably paracompact space whose realcompactification is Rλ.
Hence, the realcompactification of a normal, countably paracompact space
can be almost Dowker.
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