54 P. Vieten

[i3] R. Hughes and 8. Kantorovits, Spectral analysis of certain operator functions,
J. Operator Theory 22 (1989), 243-265.

[14] 8. Kantorovitz, Characterization of unbounded spectral operators with spectrum
in o half-line, Comment. Math. Helv. 56 (1981), 163-178.

[18] W. Ricker, Characterization of Stieltjes transforms of vector measures and an
epplication to spectral theory, Hokkaido Math. J. 13 (1984), 299-309.

[16] M. H. Schifer, A generalized moment problem, Math, Ann. 146 (1962), 326-330.

[17] P. Vieten, Holomorphie und Laplace Transformation banachraumwertiger Funk-
tionen, Shaker, Aachen, 1995.

(18] ]1394}7 Widder, The Laplace Transform, Princeton University Press, Princeton,

Fachbereich Mathematik

Unijversitit Kaiserslautern
Frwin-Schrédinger-Str.

67663 Kaiserslautern, Germany
Ermail: vieten@mathematik.uni-kl.de

Received November 6, 1995 (3560)
Revised version March 4, 1996

icm

STUDIA MATHEMATICA 122 (1) (1997)

Purely non-atomic weak [P spaces
by

DENNY H. LEUNG (Singapore)

Abstract. Let ({2, T, u) be a purely non-atomic measure space, and let 1 < p < co.
If LP°° (2, X, i) is isomorphic, as a Banach space, to P 5 ") for some purely
atomic measure space (§2', 5, p'}, then there is a measurable partition 2 = {2;U {23 such
that (£21, N 1, plgnn,) is countably generated and o-finite, and that ulo) =0orco
for every measurable o C {Z3. In particular, L#*°(£2, I, 11} is isomorphic fo i

1. Introduction. In [3], the author proved that the spaces L#>°[0, 1]
and LP*°{0, co) are both isomorphic to the atomic space £P:°°, Subsequently,
it was observed that if ({2, 2, u) is countably generated and o-finite, then
IP=°(£2, 5, 1) is isomorphic to either £7°° or £% [4, Theorem 7]. In the
present paper, we show that the isomorphism of atomic and non-atomic weak
L? gpaces does not hold beyond the countably generated, o-finite situation.

Before giving the precise statement of the main theorem, let us agree on
some terminology. Throughout this paper, every measure space under discus-
sion is assumed to be non-trivial in the sense that it contains a measurable
subset of finite non-zero measure. A measurable subset o of a measure space
(2,5, ) is an atom if u(o) > 0, and either p(o’) =0 or p(o \¢’) =0 for
cach measurable subset o' of o. A purely non-atomic measure space is one
which contains no atoms. We say that a collection S of measurable sets gen-
erates a measure space (2, X, u) if £ is the smallest o-algebra containing
9 as well as the p-null sets. A measure space ({2, L, u) is purely atomic if
it is generated by the collection of all of its atoms; it is countably generated
if there is a sequence {oy,) in ¥ which generates ({2, ¥, u). For any measure
space (£2,X,u4), and 1 < p < oo, the weak L space LP(2, 3, 1) is the
space of all (equivalence classes of) Z-measurable functions f such that

I £ll = sup c(u{|f| > H? < 0.

Tt is well known that |- || is equivalent to a norm under which L2, 2, 1)
is a Banach space. However, since we are only concerned with isomorphic
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56 D. H. Leung

questions, we will employ the quasi-norm || - | exclusively in our computa-
tions. The aim of this paper is to prove the following theorem.

TuEOREM 1. Let (2, X, 1) be a purely non-atomic measure space, and
let 1< p < oo. The following statements are equivalent:

(1) LPo(02, X, u) is isomorphic to LP>((2', 5, ') for some purely
atomic measure space (£, X', u').

(2) LP>>(02, X, u) is isomorphic to o subspace of LP*°(2', X', u') for
some purely atomic measure space (2, X2, /).

(3) There is a measurable partition 2 = (0 U 2y such that (2, 5N
1, plsne,) 45 countably generated and o-finite, and that u(o) = 0 or oo
for every measurable o C (2.

(4) LP2(802, ¥, p) is isomorphic to £P.

It is interesting to note that with regard to (2), the weak L? spaces
behave in a way that is “in between” the behavior of the LP spaces, 1 < p<
oo, and L. Indeed, if ({2, ¥, 11) is purely non-atomic, then LP(12, 3, u) can
never be embedded into an atomic I? space (1 < p < oo, p # 2). On the
other hand, along with all Banach spaces, L*{$2, 3, p) is isomorphic to a
subspace of £°°(.J) for a sufficiently large index set J.

The other notation follows mainly that of [5, 6]. Banach spaces ¥ and
F are said to be isomorphic if they are linearly homeomorphic; E embeds
into F if it is isomorphic to a subspace of F. If I is an arbitrary index set,
and (z:)ier, (¥i)icr are indexed collections of elements in possibly different
Banach spaces, we say that they are eguivalent if there is a constant 0 <

K < 0o such that
= ”Z‘“yi < KHZ iy

KW:LHZ a; Ty

for every collection (a,);cr of scalars with finitely many non-zerc terms. We
will also have occasion to use terms and notation concerning vector lattices,
for which the references are [6, 8]. In particular, two elements a, b of a vector
lattice are said to be disjoint if |a| A |b] = 0. A Banach lattice F satisfies an
upper p-estimate if there is a constant M < oo such that

3] <20 (Slaur) ™
== i=1

whenever (z;)7; is a pairwise disjoint sequence in &. It is trivial to chack
that every LP:*(£2, X, 1) satisfies the upper p-estimate with constant 1.
Finally, if 4 is an arbitrary set, we write P(A) for the power set of 4, and
A for its complement (with respect to some universal get)

2. Proof of the main theorem. Let us set the notation for the two
types of measure spaces which will command a large part of our attention.
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By {~1,1} we will mean the two-point measure space each point of which
is assigned a mass of —;— If I is an arbitrary index set, {—1, 1} is the prod-
uct measure space of I copies of {~1,1}. Now let (2, X, ta))aca be
a collection of pairwise disjoint measure spaces. We define the measurable
space (2, Z) to be the set |, ¢4 {2, endowed with the smallest s-algebra
5 generated by J,c 4 o For any o € X, define

plo) = Z pelo N 24).
aCA
The measure space (12, X, 1) is denoted by @ ¢ 4{2a; Tas i) Of particular
interest will be @B, 4 Ja, Where each J, is a copy of the reagure space [0, 1]
with the Lebesgue measure.

TuBoREM 2. If I i5 an uncountable index set, LP>({—1,1}!) does not
embed into LP°(£2, 8, ) for any purely atomic measure space ({2, X, IR

THEOREM 3. Let A be an arbitrary index set. For every o € A,_ let
J., be a copy of the measure space [0,1]. If LP*°(P,eq Jo) embeds into
LPe(0, 2, 1) for some purely atomic measure spoce (12, Z, 1), then the set
A 15 countable.

The proofs of the crucial Theorems 2 and 3 will be the subject _of the
subsequent sections. To apply these theorems to the proof of th('e main the-
orem (Theorem 1) requires the use of certain known facts, which we now
recall. Let (2, X, 1) and ({2, ¥, ¢) be measure spaces. Denote 1?y @, and
O, the p- and p'-null sets respectively. Then p induces a functmn. on the
o-complete Boolean algebra ¥/@,, which we denote again by M', Sm:ulafrly
for . We say that the measure spaces ({2, X, p) and (2,20 u) a.rf,ﬁ is0-
morphic if there exists a Boolean algebra isomorphism @ : X/6, — &'/@y
such that g = ' o &. For notions and results regarding measure algebrias,
we refer to [2, §14]. The next fact, which can be found in [7], follows easily
from the observation that the set of functions f € LP*(£2, X, p) of the form
f =V anxa,, where (a,) C R, and (4,) is a pairwise disjoint sequence in
%, is dense in LP°(2, X, u).

THEOREM 4. If (2,5, p) and (2, X, u') are isomorphic’ measure
spaces, then the Banach spaces LP>((2, X, ) and LP=‘f° (2, %', 1) are iso-
metrically isomorphic.

The next theorem is stated in the form in which we will use it. It is a
consequence of Maharam’s theorem on the classification of measure algebrag
see [2, Theorems 14.7 and 14.8]. If {2, ¥, ) is a measure space, and c is
a positive number, we let cu be the measure given by (C:I.L)(O') = ?u(cr) for
all ¢ € 2. Clearly, the map [ — ¢~M/Pf is an isometric isomorphism from
Lp2e(, 5, p) onto LA (2, ¥, cp).
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THEOREM 5 (Maharam). Let (£2, X, 1) be a purely non-atomic, finile
measure spoace which is not couniobly generated. Then there is a measur-
able subset 2' of (1 and an uncountable index set I such that (£2', X', 1)
is wsomorphic to {-1,1}, where &' = TN 2, and u' = (p{2)) Lp|z.
Consequently, LP°(02, X, u) has o subspace isometrically isomorphic to
Lr>({-1,1}).

For the following proof, recall that a Banach space E satisfies the Dun-
ford-Pettis property if {z,, ;) — 0 whenever (z,,) and (z]) are weakly null
sequences in I and E' respectively. It is well known that £°° satisfies the
Dunford—Pettis property; see, e.g., [8, §IL.9].

Proof of Theorem 1. Suppose (3) holds. Then LP* (2, X, 11) is clearly
isometrically isomorphic to L#*(£2y, &' N 12, 4| sne, ). By |4, Theorem 7],
LPee(2, X, i) is isomorphic to either £7°° or £*°. However, since ({2, 2, p)
is purely non-atomic, we can easily verify that LP°°(2, ¥, 41) fails the Dun-
ford-Pettis property. (Use Rademacher-like functions.) Hence it cannot be
isomorphic to £°°. The implications (4)=(1)=>(2) are trivial. Therefore, it
remains to prove that (2}=(3). Using Zorn’s Lemma, we obtain a (possi-
bly empty) collection of measurable subsets (24)aea of 2 which is max-
imal with respect to the following conditions: p(£2, N 25) = 0 if & % G
#{f22) = 1 for all @ € A. For each € A, let J, be a copy of the
measure space [0,1]. Then J, is isomorphic to a measure subalgebra of
(26,2 N R, plzna,). Tt follows that D,eca Jo is isomorphic to a mea-
sure subalgebra of (12, X, u). Theorem 4 implies that L2 (P yen Ja) 18
isometrically isomorphic to a subspace of L#:2(f2, X, i), and hence, by the
assumption (2), isomorphic to a subspace of an atomic weak LP space. Ac-

cording to Theorem 3, A must be a countable set. By the maximality of
(-Qa)aEA’

m = sup {;L(a) :

¢ is a measurable subset of 2 U {2, of finite measure} <1
acA

It is easily seen that the supremum is attained, say, at (. Define 2y =
10 U {(Uyea f20). Since A is countable, 4 € X. If 24 is not countably
generated for some o € A, then Theorem 5 produces an uncountable index
set I such that LP*({—1,1}?) is isometrically isomorphic to a subspace of
I7*%(£24), and thus isomorphic to a subspace of an atomic weak LP space.
This violates Theorem 2. Similarly, we see that 2, is countably generated.
Therefore, {2, is countably generated; it is clearly o-finite. If o is a measur-
able subset of 23 = 2\ 21, and 0 < u(o) < oo, then m < w20 U o) < oo,
contrary to the choice of f25. Hence u{o) =0 or co. m
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3. The space L7 ({—1,1}}). Let I be an arbitrary set, and letw : ' —
(0, 00) be a weight function. We can define a measure & on P(I") by p(o) =
Yoye o w(y) forall o C I'. The resulting weak L space L#= (T, P(F),.,u,) will
be denoted by £P°°(I,w), or simply #°°(I") if w is identically 1. It is easy
to see that if (12, T, u) is purely atomic, then L>°({2, X, u) is isometrically
isomorphic to £7:°°(I,w) for some (I',w). If (12, X, 1) is a measure space,
and 1 < p < oo, let MP°(R2, 52, p) be the closed subspace of LP*°({2, X, u)
generated by the functions x., where ¢ is a measurable set of finite measure.
The corresponding subspace of £2:°°(I',w) is denoted by m»*(I,w). The
proof of Theorem 2 for the case p 5 2 is rather easy and is contained in The-
orem 7. For the reader’s convenience, we recall the following disjunctification
result (4, Proposition 10].

PROPOSITION 6. Let w be a weight function on a set I'. Assume that
A and B are subsets of £7°°(I',w) such thai |A| > max{|B|,Xo}. Suppose
also that there are constants K < oo, 7 > 1 such that

(1) HZsm:ﬂ < K|F[M"
e F

for oll finite subsets F of A, and all e, = 1. Then there ewists C C A,
|C| = |A|, such that the elements of C are pairwise disjoint, and [b|Alc| =0
whenever be B, c€ C.

Proof. First we show that if I is a subset of I' such that || < |4],
then there exists A’ € A, |A'| = |4[, such that zxp = 0 for all z € A",
Indeed, let A’ = {z € A : zxr = 0}. For each z € A\ A, there is a
4 € I such that z(¥y) # 0. Pick a choice function f : A\ A" — I'" such
that o(f(z)) % 0 for all € A\ A" If |A’] < |A], then [A\ A" = |A| > Ro.
Hence there exist C C A\ A’ and n € N such that |C]| = |A\ A'| = |4], and
z(f(z))| = 1/n for all z € C. Now |C| = |4]| > || = |£(C)]. Therefore,
there is ayp € F(C) such that D = f~ {4y} N C is infinite. Note that z € D)
implies |z(70)| = 1/n. Now for any finite subset F' of D,

F
| 3 ssnatwe] = 3 im0 xgany = o) 7.
e o F
As D is infinite, this violates condition (1). _

Now for each z € £9:°(Iw), let suppz = {y € I' : z(y) # 0}. Clearly
lsupp z| < Ro. Therefore, | epsuppz| < max{|B|,Ro} < lA| Let Iy =
(Upes Suppz. By the above, there is a subset Ay of A, hav:t.ng the same
cardinality as A, such that sxyy = 0forall z € Al Itlrem.a.ms to choose
a pairwise disjoint subset of Ay of cardinality {A|. This w1-11 ‘t?e dqm_e .by
induction. Choose g arbitrarily in A;. Now suppose a palrwise dlS_]‘_:)lIlt
collection (2,)o<p has been chosen up to some ordinal § < |A| = |A1]. Since
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|A;| is a cardinal, |8] < |A1|. Hence |, g 5upp z,| < max{|8[,Ro} < [4].
Let I} = |}, gsupp . Using the first part of the proof again, we find an
zg € Ap such that zgxr, = 0. It is clear that the collection (x,)o<p is
pairwise disjoint. This completes the inductive argument. Consequently, we
obtain a pairwise disjoint collection €' = (,),<(4) in A1. As each z € C is
disjoint from each b € B, the proof is complete. m

THEOREM 7. Let T and I” be arbitrary sets such that I is uncouniable.
For any weight function w on I', and any p # 2, 1 < p < oo, €7 w)
does not contain o subspace isomorphic to £2(I). Conseguently, Theorem 2
holds if p# 2.

Proof For any set I, and apy ¢ € I, let &; : {—1,1} — {~1,1} be

the projection onto the ith coordinate. By Khinchin’s inequality, (&;)ier C

- IPe{{~1,1}) is equivalent to the unit vector basis of £2(J). Hence the first
statement of the theorem implies the second. Now suppose (z;);er is a set
of normalized elements of £/°°(I', w) which is equivalent to the unit vector
basis of £2(T). If I is uncountable, apply Proposition 6 with 4 = I, B = { to
obtain an uncountable C' C I such that (z;);cc are pairwise disjoint. Since
£/ w) satisfies an upper p-estimate, there is a constant 0 < K < oo

such that
K_1|Ft1/2 S HZ:L,Z
ieF

for every finite subset F' of C'. We conclude that 1 < p < 2, Denote by u the
measure associated with (I',w). For each ¢ € C, there is a rational number
¢; > 0 such that ¢;(uf{|z;| > ;NP > 1/2. By using an uncountable subset
of C if necessary, we may assume that ¢; = ¢, a constant, for all ¢ € . For
any finite subset F of ¢,

5
iEF

Hence |3 ;e il > 3| F|*/?. Since 1 < p < 2, and (z;)icc is equivalent to
the unit vector basis of £2(C'), we have reached a contradiction. m

< K|F|MP

> c} =3 |zl > ¢} > (20)7F|F.
I

The proof of Theorem. 2 for the case p = 2 is more involved. Let (hy,)
denote the L*°-normalized Haar functions on [0, 1] (cf. [5, Definition 1.a.4]).
Then by [6, Theorem 2.c.6], (/) is an unconditional basis of M»°°(0,1].
We first show that if T : M*°°[0,1] — L2°°(2, ¥, u) is an embedding, then
(Thp} cannot be pairwise disjoint.

PROPOSITION 8. Suppose T : M22[0,1] — L*»*(0, B, 1) is an embed-

ding for some measure space ({2, X, ). Then (Thy) cannot be o pairwise
disjoint sequence.
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Proof. By Theorem 1.d.6(ii) in [6], there is a constant D such that

[ anta] 2 D (5 i) |

for every sequence of scalars (a,,) which is eventually zero. Given m € N, let
ay; =i+7—1 (mod2™),1<4,j £2™ For 1 < j <27, define

2™ gm\ 1/2
=3 (5)

i=1
where I; = [(1 — 1)/2™,i/2™). If 1 < j £ 2™, there exists

gm-tj

fi= Z

n=2m+i-141

bphy € span{h, : 2" < n < 2™

such that |f;| = g;. Note that (f;)?; is a normalized sequence in M2:°°[0, 1].
If T : M2°[0,1] — L»*°({2, £, ) is a bounded linear operator such that
(Thn) is pairwise disjoint, then (T'f;)7_, is a pairwise disjoint sequence
which is bounded in norm by ||T||. Hence, using the upper 2-estimate in
L22°($2, 2, u), we get |35, Tf;]| < 2™/2|T|. On the other hand,

Ba]-15 S w20 T s
Jj=1 F=1 pegmti-14] F=1 p=gm+i—141
T 21’!1
=0 () ] =2 (o) )
f=1 =
’ 2™ 1 1/2 ’ 2™ 1 1/2
-0 5) el =07 (2 5)
J= ]:‘

Since m is arbitrary, T cannot be an embedding. w

We now complete the proof of Theorem 2 for the case p = 2. Suppose
T is uncountable, and T : L>*({-1,1}) — £%°(I'w) is a bounded lin-
car operator. We will construct a sequence {g.) < L**({—1,1}!) which
is equivalent to the Haar basis (h,) € L*°°[0,1], and such that (T'gn) is
a pairwise disjoint sequence in £%°°{I',w). An appeal to Proposition 8 will
then yield the desired result that T is not an embedding. Let the functions
(e;) € L#*({—1,1}7) be the same as those which appeared in the proof of
Theorem 7. For any finite subset F of I, and any {-1, 1}-valued sequence
(bi)icr, the family

( (g X{E‘:b"}) Ej) JENF
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is easily seen to be equivalent to the unit vector basis of £2(I'\ F). Applying
Proposition 6, we see that for any F' and (b;)icr as above, and any countable
S C I, there exists j € I\ F such that (T{([Licr X{es=bi})E5))Xs = 0.
For any z € £2°°(Iw), we let its support be the set suppz = {verlI:
z{v) # 0}. Any element in £>>(I',w) has countable support. Let g1 be
the identically 1 function on {~1,1}f. Then there exists iz € I such that
supp Tey,Nsupp Tgr = 0. Let gz = €4, Now supp T gy Usupp Tg2 is countable.
Therefore, one can find i3 # iz such that supp T((X{Eif_,l})aia) is disjoint
from supp T'gy U supp Tg. Define gs = (X{ei,=—1})8is- Next define g4 =
(X{asp=1 })Eia, Where i4 is chosen so that it 3s distinct from ig, %3, and supp T'gq
is disjoint from U?m1 supp T'g,,. Continuing in this way, we obtain the desired
sequence {gn)-

4. The space LP*((D, 4 J»). In this section, we present the proof of
Theorem 3. Let A be an uncountable set, and let w be a weight function
defined on a set I'. Suppose T : MP* (P4 g Ja) = £ (T w) is a bounded
linear operator. The first step is to show that the range of T' is mostly
contained in m?°°(I",w). This will require the following technical lemma.

LEMMA 9. Let k € N be given, and let 8,¢1, ¢, ..., cx be strictly positive

numbers. Suppose | € N is so large that
l(min(cl,...,ck) )pZ L
max(ey, ..., Ck)
Let (2,5, 1) be any measure space, and let fi,..., fi be pairwise disjoint
functions in LP>(2, 5, u) such that |f;| = an=1 EmXa(m,j), where,
for each 7, o(1,9),...,0(k,J) are pairwise disjoint sels in X such thot
wla{m, §)) > (6/cm)?, L <m < k. Then

sz (3)

Proof. We may assume without loss of generality that ¢ > ... 2 ¢p > 0.
Then I{ck/c1)? > 1. For 1 < m < k, let iy, be the largest integer in N not
greater than I{cy,/c1)P. Note that 1 < i, < 1. For any £ < ¢;1™/?,

DI

2| Holm, ) emi P > e} 2| Jlo(m, ) emi P 2 enlHP}

/e
§

ki
=Utotm, i) : 5 < lemfer)?y = | (J o(m, ).

m=1 j=1
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Thus

{55 e} 2 3 Sty

m=1j=1
k  im k
>3 N (lemP =Y im(8/cm)P.
m=l4=1 m=1

Now i, > 1 implies 4y, > (14 4m)/2 > 271 (e, /ey )P. Hence

i k
{35725 > ) 2 3 2 emf e (6P = k/2) 0/
=1 m=1

Therefore,

S5 > (W[ 375> )™ > s nga
J=1 i=1

Taking the supremum over all £ < ¢,173/? yields the desired result. m

ProposiTioN 10. Let A be an index set, and let T' : mP>®(4) —
£ w) be a bounded linear operator for some (I'w). Then T'xia) €
mP (T, w) for all but countably many o € A.

Proof Let fo = TX(a}, and assume f, ¢ m»*(I,w) for uncount-
ably many «. Applying Proposition 6, we may assume that the f,'s are
pairwise digjoint. Choose an uncountable Ay € A, and § > 0, such that
d(fo, mP* (I, w)) > 6 for all o € Ag. For each & € Ag, there is a rational
r > 0 such that pu{|fs| > r} > (8/r)P, where u is the measure associated
with (I",w). Hence we can find an uncountable 4; C Ay, and ¢; > 0, such
that p{ifs| > a1} > (§/er)? for every @ € Ay. For all o € Ai, choose
a finite set o(1,a) € {|fa| > c1} such that p(o(l,a)) > (6/c1)?. Now
| fa = faXo@wll > 6 for all @ € A;. Arguing as before, we find an uncount-
able Ay C Ay, and ¢y > 0, such that

:u'{|fa - .fotXa'(l,u}l > 32} > (6/Cz)p
for all & € Ay. Hence, for each o € As, there exists a finite set o(2,a) C
{|fal > ¢z}, disjoint from o(, @), such that p(o(2, )} > (§/e2)?. Continue
inductively to obtain a decreasing sequence of uncountable subsets (Ap) of
A, a positive sequence (¢,,), and finite subsets o(m, o) C {|fa] > cm} for
all & € A, such that p{o(m,a)) > (6/cm)?, and o(m,a) No(n,a) = O if
a € A, N A, and m # n. Now let k € N be given. Choose [ so large that

l(min(cl,,..,ck) )p -

max(cy,...,k) /)

Lemma 9 implies that ||E;:1 FTVPH| = (k/2)YP6 i oy, ..., o are distinct
elements of A. This violates the boundeduess of T since k is arbitrary. m
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COROLLARY 11. Let A be an index set. For each o € A, n € N, and
1 <4 <27, let fuja be the characteristic function of the subinterval
[(G—1)/2%,5/2%) in Jo. If T : MP (@ hea Ja) — (I w) is a bounded
linear operator, then all but countably many members of {Tfnja:o €A,
n €N, 1< 4 < 2"} belong to m™* (I, w).

Proof. If nis fixed, the collection {fpnjo: €4, 1 <j < 2} is equiv-
alent to the unit vector bagis in mP (A4 x {1,...,2"}). Apply Proposition
10 to complete the proof.

If A is uncountable, and T : LP*° (P ey Jo) — (I, w) is an cm-
bedding, then it follows from Corollary 11 that there exists ag € A such
that T(MP°(J,)) © mP*(Iw), where we identify M™°(Jy,) with a
subspace of P (@ 4 Jo) in the obvious way. Hence MPeel0, 1] embeds
into mP°° (I, w). The proof of Theorem 3 is completed by showing that this
is impossible. Once again, we find it necessary to distinguish between the
cases p £ 2 and p = 2. If p # 2, we use a Kadec-Pelczyfiski type argument
[1] to show that £2 does not embed into m»*(I',w). For p = 2, we resort
once again to Proposition 8. If f is a real-valued function and 1 < M < oo,
let (fiar = Fxqa—r<|fl<p}-

LEMMA 12. Let (12, X, u) be any measure space, and suppose 1 < p < o0.
If (£,) is a pairwise disjoint sequence in the unit ball of LP*° (2, 2, b)), and
(My) is o real sequence such that 1 < Mp < 2“1/?’Mn+1 for all n € N,
define g1 = {f1)}ag and

gn~1—1 = (fﬂ+1)Mn+1
Then supy, || Ty 9nll < 4.

- (fn-}-l)Mn .

Proof. Let g = pointwise-Y ., g, and My = 1/M;. If Mpqx < ¢ < My
for some k € N, then

pilgl > ¢} = iu{lgnl > c}

n=k

=plgsl >} + > p{lonl = Mni}
n=k41
o0
<P Y MIh <P 2MP <8P
nemk4+1
On the other hand, if M,;'jl <e< Mk_l for some k € N, then

k o0
w{lgl > c} = Zﬂ{lgn\ > MY+ p{lgnea] > e} + Z p{lgnl 2 Mp-1}

n=1 a n=k42 :
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k 00
<Y ME4cPE Y ME
n=] n=k+2

C2MP+ e P+ M P <2eP L cPH1<4c7R
Hence g € LP>(£2, X, 1}, and [jg|| < 4. n

THEOREM 13. For any (Iw), and 1 < p < oo, p # 2, there 13 no
embedding of €2 into mP (I, w).

Proof. Suppose, on the contrary, that m®*°(I', w) contains a sequence
(fa) equivalent to the unit vector basis of £?, Since each f, has countable
support, we may assume that I" is countable. Then clearly (X{y})yer 1s
an unconditional basis of mP (I, w). Since (fy) is a weakly null sequence,
we may apply the Bessaga-Pelczyniski selection principle [5, Proposition
1.a.12] to it. Thus, we may assume without loss of generality that (fn)
is pairwise disjoint. Since m#*°(I',w) satisfies an upper p-estimate, this
is possible only if 1 < p < 2. Now suppose there exists 1 < M < o
such that limsup,, ||(fu)as]| > 0. We may assume that there exists & >
0 such that |[(fr)arl > € for all n. For each n, choose ¢n € (M~ M)
such that c,(u{|fa] > ca})¥/? > €, where p is the measure associated with
(I',w). Using the compactness of [M -1 M), and going to a subsequence
if necessary, we may assume the existence of a ¢ € [M —1 M] such that
(| fn| > c})/P > £ for all n. Then

”Ek: fall 2 C(E}c: ! fal > c})lh} > kP
n=1 n=1

for all & € N, a contradiction. Therefore, it must be that limy [|(fa)u il =
0 for all 1 < M < oo. Note that limarseo [ f — (flaell = O for every
f € m»*(I" w). By a standard perturbation argument, we obtain a subse-
quence of (f,), denoted again by (fr), and a real sequence (M,) satisfying
1 < M, < 27YPM, for all n € N, such that (frn+1) s equivalent to
((Fat1)Masa — (Frt1)rs,). Lemma 12, however, shows that (fni1) cannot
be equivalent to the unit vector basis of Z.ou

We now give the proof of Theorem 3. Assume that for some uncountable
set A, IP™ (P, 4 Jo) embeds into o2 w) for some (I, w). As in the
discussion following Corollary 11, M?°°[0, 1] embeds into m#* (I, w). Since
the sequence of Rademacher functions in M™ [0, 1j is equivalent to the unit
vector basis of £2, Theorem 13 implies that this is impossible unless p = 2.
Now let T : M2*[0,1] — m>>(I,w) be an embedding. Without loss of
generality, assume that |Tf|| 2 ||| for all f € M2*[0,1]. Denote by (rn),
respectively (hy), the sequence of Rademacher functions, respectively Haar
functions, on [0,1], Note that for all f € M 2,0[0,1], f - rn — 0 weakly as
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n — oo, Let fi = k] If k € N, and 281 < j < 2% let f; = v2h=1]h|,
Define n; = 1. Since x1 = T(h1 - 1y, ) € m*°° (I, w), there is a finite subset
o1 of I' such that |z1xes|f < 273 Now suppose that numbers n; and finite
sets o; have been chosen for ¢ < j. Since T(f;11 ) — 0 weakly as n — oo,

and Ug':l o; is finite, there exists n;j1 > n; so that ||$j+1XUjm1 o | <2774,
where ;41 = T(f;41 - rn,,,)- Now we can choose a finite subset o1 of I,
disjoint from | }{_, ¢;, such that lzjraxes,. || < 279-3. Finally, let y; =
TjXo; for all § € N. Then (y;) is pairwise disjoint sequence, and hence is a
basic sequence with basis constant 1. Mareover,
lwsll > llzsll = 27972 2 ify - rmy | = 27972 > 172,

Also, 3 ||lz; — y;ll < 1/4. By Proposition 1.a.9 in [5], (y;) and (z;) are
equivalent. But then (f; +7y;) is equivalent to a pairwise disjoint sequence in
£2°2(I', w). However, it is casy to see that ( fi - 7Tn;) 18 equivalent to (a,h,),
where a; = 1 and a; = V2% 1 if 2%~ < j < 2% Hence we obtain an
embedding S of [(hy}] into £2°°(I', w) such that (Sh) is a pairwise disjoint
sequence. As (h;) is a basis of M%°[0, 1], we have reached a contradiction
to Proposition 8. This completes the proof of Theorem 3.
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Distinguishing Jordan polynomials
by means of a single Jordan-algebra norm

by

A. MORENO GALINDO (Granada)

Abstract. For K = R or C we exhibit a Jordan-algebra norm [ - | on the simple
associative alpebra Meo (KK) with the property that Jordan polynomials over K are precisely
those associative polynomials over K which act |- 1-continuously on Meo (K). This analytic
determination of Jordan polynomials improves the one recently obtained in [5].

1. Introduction. The Jordan product of a (real or complex) associa-
tive algebra is defined as the symmetrization of the associative product.
Jordan polynomials are those (non-commutative) associative polynomials
which can be expressed from the indeterminates by means of a finite pro-
cess of taking sums, multiplications by scalars, and Jordan products. Clearly,
every Jordan polynomial acts continuously on anmy associative algebra en-
dowed with a Jordan-algebra norm. The question of the continuity of the
action of particular non-Jordan associative polynomials (like the associa-
tive product xy or the tetrad xyzt + tzyx) on suitable associative algebras
endowed with Jordan-algebra norms has received special attention in the
literature, mainly because of its close relation to positive results and limits
in the normed treatment of the Zel’'manov prime theorem [15] for Jordan
algebras. In this direction the interested reader can consult [14], [10], {11],
[2], 81, [6], [7], [12], [18], 3], [4] and [9]. The introduction of [5], together
with that of {9] already quoted, can also be interesting for a historical view
of progresses in the above mentioned question. Among these progresses,
we only emphagize here that every Jordan-algebra norm on a simple asso-
ciative algebra with unit makes the associative product (and hence, every
associative polynomial) continuous, and that the result need mot remain
true if the assumption of the existence of a unit is removed [3]. In fact, a
first “monster” is built in {3] by providing a Jordan-algebra norm on the
simple associative algebra Mo, (K) (of all countably infinite matrices over
K with a finite number of non-zero entries) and a K-linear involution * on
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