$n \to \infty$. Let $f_1 = |h_1|$. If $k \in \mathbb{N}$, and $2^{k-1} < j \le 2^k$, let $f_j = \sqrt{2^{k-1}} |h_j|$. Define $n_1 = 1$. Since $x_1 = T(h_1 \cdot r_{n_1}) \in m^{2,\infty}(\Gamma, w)$, there is a finite subset σ_1 of Γ such that $||x_1\chi_{\sigma_1^c}|| < 2^{-3}$. Now suppose that numbers n_i and finite sets σ_i have been chosen for $i \le j$. Since $T(f_{j+1} \cdot r_n) \to 0$ weakly as $n \to \infty$, and $\bigcup_{i=1}^j \sigma_i$ is finite, there exists $n_{j+1} > n_j$ so that $||x_{j+1}\chi_{\bigcup_{i=1}^j \sigma_i}|| < 2^{-j-4}$, where $x_{j+1} = T(f_{j+1} \cdot r_{n_{j+1}})$. Now we can choose a finite subset σ_{j+1} of Γ , disjoint from $\bigcup_{i=1}^j \sigma_i$, such that $||x_{j+1}\chi_{\sigma_{j+1}^c}|| < 2^{-j-3}$. Finally, let $y_j = x_j\chi_{\sigma_j}$ for all $j \in \mathbb{N}$. Then (y_j) is pairwise disjoint sequence, and hence is a basic sequence with basis constant 1. Moreover,

$$||y_j|| > ||x_j|| - 2^{-j-2} \ge ||f_j \cdot r_{n_j}|| - 2^{-j-2} > 1/2.$$

Also, $\sum \|x_j - y_j\| < 1/4$. By Proposition 1.a.9 in [5], (y_j) and (x_j) are equivalent. But then $(f_j \cdot r_{n_j})$ is equivalent to a pairwise disjoint sequence in $\ell^{2,\infty}(\Gamma,w)$. However, it is easy to see that $(f_j \cdot r_{n_j})$ is equivalent to (a_jh_j) , where $a_1 = 1$ and $a_j = \sqrt{2^{k-1}}$ if $2^{k-1} < j \le 2^k$. Hence we obtain an embedding S of $[(h_j)]$ into $\ell^{2,\infty}(\Gamma,w)$ such that (Sh_j) is a pairwise disjoint sequence. As (h_j) is a basis of $M^{2,\infty}[0,1]$, we have reached a contradiction to Proposition 8. This completes the proof of Theorem 3.

References

- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_p, Studia Math. 21 (1962), 161-176.
- [2] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974.
- [3] D. H. Leung, Isomorphism of certain weak L^p spaces, Studia Math. 104 (1993), 151-160.
- [4] —, Isomorphic classification of atomic weak L^p spaces, in: Interaction between Functional Analysis, Harmonic Analysis and Probability, N. J. Kalton, E. Saab and S. J. Montgomery-Smith (eds.), Marcel Dekker, 1996, 315–330.
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977.
- [6] -, Classical Banach Spaces II, Springer, 1979.
- [7] H. P. Lotz, Weak* convergence in the dual of weak Lp, unpublished manuscript.
- [8] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974.

Department of Mathematics National University of Singapore Singapore 119260 E-mail: matlhh@leonis.nus.sg

Received January 29, 1996
Revised version July 29, 1996
(3602)

Distinguishing Jordan polynomials by means of a single Jordan-algebra norm

р

A. MORENO GALINDO (Granada)

Abstract. For $\mathbb{K} = \mathbb{R}$ or \mathbb{C} we exhibit a Jordan-algebra norm $|\cdot|$ on the simple associative algebra $M_{\infty}(\mathbb{K})$ with the property that Jordan polynomials over \mathbb{K} are precisely those associative polynomials over \mathbb{K} which act $|\cdot|$ -continuously on $M_{\infty}(\mathbb{K})$. This analytic determination of Jordan polynomials improves the one recently obtained in [5].

1. Introduction. The Jordan product of a (real or complex) associative algebra is defined as the symmetrization of the associative product. Jordan polynomials are those (non-commutative) associative polynomials which can be expressed from the indeterminates by means of a finite process of taking sums, multiplications by scalars, and Jordan products. Clearly, every Jordan polynomial acts continuously on any associative algebra endowed with a Jordan-algebra norm. The question of the continuity of the action of particular non-Jordan associative polynomials (like the associative product xy or the tetrad xyzt + tzyx) on suitable associative algebras endowed with Jordan-algebra norms has received special attention in the literature, mainly because of its close relation to positive results and limits in the normed treatment of the Zel'manov prime theorem [15] for Jordan algebras. In this direction the interested reader can consult [14], [10], [11], [2], [8], [6], [7], [12], [13], [3], [4] and [9]. The introduction of [5], together with that of [9] already quoted, can also be interesting for a historical view of progresses in the above mentioned question. Among these progresses, we only emphasize here that every Jordan-algebra norm on a simple associative algebra with unit makes the associative product (and hence, every associative polynomial) continuous, and that the result need not remain true if the assumption of the existence of a unit is removed [3]. In fact, a first "monster" is built in [3] by providing a Jordan-algebra norm on the simple associative algebra $M_{\infty}(\mathbb{K})$ (of all countably infinite matrices over \mathbb{K} with a finite number of non-zero entries) and a \mathbb{K} -linear involution * on

¹⁹⁹¹ Mathematics Subject Classification: 46H70, 17C65.

 $M_{\infty}(\mathbb{K})$ such that the action of the tetrad (hence the associative product) on $H(M_{\infty}(\mathbb{K}), *) := \{A \in M_{\infty}(\mathbb{K}) : A^* = A\}$ is discontinuous.

The question of the continuity of the action of general associative polynomials on associative algebras endowed with Jordan-algebra (semi-) norms has been first considered by R. Arens and M. Goldberg [1]. They prove that for "almost" every non-Jordan associative polynomial \mathbf{p} there exists a non-simple associative algebra (depending only on the degree of \mathbf{p} and the number of indeterminates involved in \mathbf{p}) endowed with a Jordan-algebra seminorm making the action of \mathbf{p} discontinuous. Very recently, the Arens-Goldberg result has been significantly improved in [5], where it is shown that, for every non-Jordan associative polynomial \mathbf{p} over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , there exists a Jordan-algebra norm $|\cdot|$ (depending only on the degree of \mathbf{p} and the number of indeterminates involved by \mathbf{p}) on $M_{\infty}(\mathbb{K})$ such that the action of \mathbf{p} on $M_{\infty}(\mathbb{K})$ is $|\cdot|$ -discontinuous. Moreover, the $|\cdot|$ -discontinuity of the action of \mathbf{p} can be centered in $H(M_{\infty}(\mathbb{K}), *)$ for a suitable \mathbb{K} -linear involution * on $M_{\infty}(\mathbb{K})$, which can be chosen of arbitrarily given type (hermitian or alternate).

In this paper we present the "absolute monster" for the analytical determination of Jordan polynomials. Precisely, for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , we construct a Jordan-algebra norm on $M_{\infty}(\mathbb{K})$ making the action of any non-Jordan polynomial on $M_{\infty}(\mathbb{K})$ discontinuous. Moreover, our norm exhibits all additional pathologies of the norms built in [5]. For the most part, our arguments are more or less deep refinements of the ideas developed in [5]. However, we would like to emphasize, as a new auxiliary result of independent interest, the existence of a Jordan subalgebra J of $M_{\infty}(\mathbb{K})$ such that no non-Jordan associative polynomial leaves it invariant. This property of $M_{\infty}(\mathbb{K})$ is shared in an obvious way by the free associative algebra on a countably infinite set of indeterminates, but this last algebra is not simple. It is also worth mentioning that, for a suitable (associative) algebra-norm $\|\cdot\|$ on $M_{\infty}(\mathbb{K})$, the Jordan subalgebra J above becomes $\|\cdot\|$ -closed.

2. The result. As we have said in the introduction, our work continues and refines the ideas developed in [5]. Therefore, in order to avoid repetition, we refer the reader to that paper for all standard concepts not explicitly explained here.

Given a field \mathbb{F} , a natural number n, and $\varepsilon = \pm 1$, we consider the involution * on $M_{2n}(\mathbb{F})$ defined by $a^* := s^{-1}a^ts$, where a^t denotes the transpose of a and $s := \operatorname{diag}\{q, \overset{n}{\ldots}, q\}$ with $q := \begin{pmatrix} 0 & 1 \\ \varepsilon 1 & 0 \end{pmatrix}$. If $\varepsilon = 1$, then * will be called the symmetric involution on $M_{2n}(\mathbb{F})$. In the case $\varepsilon = -1$ we obtain the familiar symplectic involution. Both the symmetric and the symplectic involutions pass from matrix algebras of the form $M_{2n}(\mathbb{F})$ ($n \in \mathbb{N}$) to the algebra $M_{\infty}(\mathbb{F})$

(of all countably infinite matrices over \mathbb{F} with a finite number of non-zero entries) by regarding $M_{\infty}(\mathbb{F})$ as $\bigcup_{n\in\mathbb{N}} M_{2n}(\mathbb{F})$ in the most natural way.

For a real or complex associative algebra A, a Jordan-algebra norm on A is a norm $|\cdot|$ on the vector space of A satisfying $|a.b| \leq |a| |b|$ for all a, b in A, where $a.b := \frac{1}{2}(ab + ba)$ is the Jordan product of A.

Now, we can state our main result:

THEOREM. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} , and denote by * either the symmetric or the symplectic involution on $M_{\infty}(\mathbb{K})$. Then there exists a Jordan-algebra norm on $M_{\infty}(\mathbb{K})$ making discontinuous the action on $H(M_{\infty}(\mathbb{K}),*)$ of every non-Jordan associative polynomial.

As in [5], the proof of the theorem relies on two results of independent interest (Propositions 1 and 2 below) refining the corresponding Propositions 1 and 2 of that paper.

Given an algebra B, we denote by $M_{\infty}(B)$ the algebra of all countably infinite matrices over B with a finite number of non-zero entries. In the proof of the next proposition, for n in \mathbb{N} , we will identify the algebra $M_n(B)$ of all $n \times n$ matrices over B with the subalgebra of $M_{\infty}(B)$ of those matrices $(b_{ij})_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ in $M_{\infty}(B)$ satisfying $b_{ij}=0$ whenever either i>n or j>n. If B has an involution *, then $M_{\infty}(B)$ has a "standard" involution (also denoted by *) consisting in transposing a given matrix and applying the original involution to each entry.

PROPOSITION 1. Let $(B, \|\cdot\|)$ be an associative normed algebra over \mathbb{K} $(=\mathbb{R} \text{ or } \mathbb{C})$, and J be a closed Jordan subalgebra of B. Then there exists a Jordan-algebra norm $\|\cdot\|$ on $M_{\infty}(B)$ making discontinuous the action on $M_{\infty}(B)$ of every associative polynomial \mathbf{p} such that J is not invariant under \mathbf{p} . Moreover, if B has an involution *, and if J is contained in H(B,*), then the norm $\|\cdot\|$ can be chosen in such a way that the action on $H(M_{\infty}(B),*)$ of every polynomial \mathbf{p} as above is $\|\cdot\|$ -discontinuous.

Proof. The proof of this proposition involves only minor changes on that of [5, Proposition 1], hence we limit ourselves to provide a sketch of it, emphasizing only the required changes.

We consider the algebra norm $\|\cdot\|$ on $M_{\infty}(B)$ defined by

$$\|(b_{ij})\| := \sum_{(i,j) \in \mathbb{N} imes \mathbb{N}} \|b_{ij}\|$$

for all (b_{ij}) in $M_{\infty}(B)$. Given a subspace S of $M_{\infty}(B)$ and an element α in $M_{\infty}(B)$, we write $\|\alpha+S\|:=\inf\{\|\alpha+\beta\|:\beta\in S\}$. Also, we consider the identification $M_{\infty}(B)=M_{\infty}(\mathbb{K})\otimes_{\mathbb{K}}B$. For k in \mathbb{N} , we denote by \mathcal{J}_k the Jordan subalgebra of $M_{\infty}(B)$ given by $\mathcal{J}_k:=M_{k-1}(\mathbb{K})\otimes B+e_k\otimes J$, where $M_0(\mathbb{K}):=0$, and we denote by e_k the element $(\lambda_{ij})_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ in $M_{\infty}(\mathbb{K})$ given by $\lambda_{ij}=0$ whenever $(i,j)\neq (k,k)$, and $\lambda_{kk}=1$.

Now the norm $|\cdot|$ on the vector space of $M_{\infty}(B)$ defined by

$$\|\alpha\| := \|\alpha\| + \sum_{i=1}^{\infty} 2^{i^i} \|\alpha + \mathcal{J}_i\|$$

is a Jordan-algebra norm satisfying

$$|e_k \otimes b| = (1 + 2^{1^1} + 2^{2^2} + \dots + 2^{(k-1)^{k-1}})||b|| + 2^{k^k}||b + J||$$

for all k in \mathbb{N} and b in B.

Let $\mathbf{q} = \mathbf{q}(\mathbf{x}_1, \dots, \mathbf{x}_s)$ be a homogeneous associative polynomial such that J is not invariant under \mathbf{q} , and let m denote the degree of \mathbf{q} . Then there exist x_1, \dots, x_s in J satisfying $\|\mathbf{q}(x_1, \dots, x_s) + J\| > 0$, and we easily obtain

$$\frac{|\mathbf{q}(e_{k} \otimes x_{1}, e_{k} \otimes x_{2}, \dots, e_{k} \otimes x_{s})|}{\max\{|e_{k} \otimes x_{1}|, |e_{k} \otimes x_{2}|, \dots, |e_{k} \otimes x_{s}|\}^{m}} \\
\geq \frac{2^{k^{k}}}{k^{m} [2^{(k-1)^{k-1}}]^{m}} \frac{\|\mathbf{q}(x_{1}, x_{2}, \dots, x_{s}) + J\|}{\max\{\|x_{1}\|^{m}, \dots, \|x_{s}\|^{m}\}}.$$

Therefore, for k > m, we have

$$\frac{|\mathbf{q}(e_k \otimes x_1, e_k \otimes x_2, \dots, e_k \otimes x_s)|}{\max\{|e_k \otimes x_1|, |e_k \otimes x_2|, \dots, |e_k \otimes x_s|\}^m} \\
\geq \frac{2^{(k-1)^k}}{k^m} \frac{\|\mathbf{q}(x_1, x_2, \dots, x_s) + J\|}{\max\{|x_1|^m, \dots, |x_s|^m\}} \underset{k \to \infty}{\longrightarrow} \infty.$$

From [5, Lemma 1] we deduce that the action of \mathbf{q} on $M_{\infty}(B)$ is not $|\cdot|$ -continuous at zero. The passing from homogeneous polynomials to general ones, as well as the remaining part of the proof, follow without changes the corresponding arguments in [5, Proposition 1].

PROPOSITION 2. Let \mathbb{F} be a field of characteristic not two, and let * denote either the symmetric or the symplectic involution on $M_{\infty}(\mathbb{F})$. Then there exists a Jordan subalgebra J of $M_{\infty}(\mathbb{F})$ contained in $H(M_{\infty}(\mathbb{F}), *)$ such that J is not invariant under any non-Jordan associative polynomial. Moreover, if $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , and if we consider the algebra norm $\|(\mu_{ij})\| := \sum_{(i,j) \in \mathbb{N} \times \mathbb{N}} |\mu_{ij}|$ on $M_{\infty}(\mathbb{F})$, then the Jordan subalgebra J above can be chosen $\|\cdot\|$ -closed.

Proof. For p in $2\mathbb{N} \cup \{\infty\}$, let * denote the symmetric involution on $M_p(\mathbb{F})$ (the argument for symplectic involutions is the same). According to [5, Proposition 2], for every natural number n there exists an even number d_n and a Jordan subalgebra J_n of $M_{d_n}(\mathbb{F})$ contained in $H(M_{d_n}(\mathbb{F}), *)$ such that J_n is not invariant under any non-Jordan associative polynomial involving at most n indeterminates and of degree $\leq n$.

For p,q in \mathbb{N} , denote by $M_{p,q}(\mathbb{F})$ the vector space of all $p \times q$ -matrices over \mathbb{F} (so that $M_p(\mathbb{F}) = M_{p,p}(\mathbb{F})$), and consider the algebra whose vector space is the abstract direct sum of the family $\{M_{d_n,d_m}(\mathbb{F})\}_{(n,m)\in\mathbb{N}\times\mathbb{N}}$ and whose product is determined, for elements $A_{n,m} \in M_{d_n,d_m}(\mathbb{F})$ and $B_{n',m'} \in M_{d_{n'},d_{m'}}(\mathbb{F})$, by

$$A_{n,m}B_{n',m'} = \left\{ \begin{matrix} A_{n,m}B_{n',m'} \in M_{d_n,d_{m'}} \text{ (the usual product)} & \text{if } m=n', \\ 0 & \text{otherwise.} \end{matrix} \right.$$

Then the algebra presented above is a copy of $M_{\infty}(\mathbb{F})$, via the mapping

$$\bigoplus_{n,m\in\mathbb{N}} A_{n,m} \to \left(\begin{array}{c|c} A_{1,1} & A_{1,2} & \dots \\ \hline A_{2,1} & A_{2,2} & \dots \\ \hline \vdots & \vdots & \ddots \end{array} \right).$$

Moreover, in that identification, the restriction of the symmetric involution on $M_{\infty}(\mathbb{F})$ to each diagonal summand $M_{d_n,d_n}(\mathbb{F})$ is nothing but the symmetric involution on that summand. Putting $J:=\bigoplus_{n,m\in\mathbb{N}}K_{n,m}$ with $K_{n,n}=J_n$ and $K_{n,m}=0$ if $n\neq m$, it follows that J is a Jordan subalgebra of $M_{\infty}(\mathbb{F})$ contained in $H(M_{\infty}(\mathbb{F}),*)$. Also J is not invariant under any non-Jordan associative polynomial. Indeed, if $\mathbf{p}(\mathbf{x}_1,\ldots,\mathbf{x}_s)$ is a non-Jordan associative polynomial of degree g, then, for $n:=\max\{s,g\}$, we have $\mathbf{p}(J_n)\subseteq M_{d_n}(\mathbb{F})$ and $\mathbf{p}(J_n)\not\subseteq J_n$, and therefore $\mathbf{p}(J)\not\subseteq J$.

Now assume $\mathbb{F}=\mathbb{R}$ or \mathbb{C} and let $\|\cdot\|$ be the norm on $M_{\infty}(\mathbb{F})$ given in the statement of the proposition. Let $\{X_k\}$ be a sequence in J convergent to some element A in $M_{\infty}(\mathbb{F})$. Then there exists $N\in\mathbb{N}$ such that $A\in\bigoplus_{n,m\leq N}M_{d_n,d_m}(\mathbb{F})$. Since the natural projection Π from $M_{\infty}(\mathbb{F})$ onto $\bigoplus_{n,m\leq N}M_{d_n,d_m}(\mathbb{F})$ is $\|\cdot\|$ -continuous, $\{\Pi(X_k)\}$ converges to A. Since $\Pi(J)$ is finite-dimensional, it follows that $A\in\Pi(J)\subset J$. Therefore J is $\|\cdot\|$ -closed in $M_{\infty}(\mathbb{F})$.

Now we are ready to conclude the proof of our main result.

Proof of the theorem. Applying Proposition 1 with $B=M_{\infty}(\mathbb{K})$, $\|\cdot\|$ equal to the algebra norm on $M_{\infty}(\mathbb{K})$ given in the statement of Proposition 2, and J equal to the closed Jordan subalgebra of $M_{\infty}(\mathbb{K})$ provided also by Proposition 2, we obtain a Jordan-algebra norm $|\cdot|$ on $M_{\infty}(M_{\infty}(\mathbb{K}))$ making the action on $H(M_{\infty}(M_{\infty}(\mathbb{K})),*)$ of every non-Jordan associative polynomial discontinuous. Now, the proof is concluded by realizing that the algebras with involution $(M_{\infty}(M_{\infty}(\mathbb{K})),*)$ and $(M_{\infty}(\mathbb{K}),*)$ are isomorphic. Indeed, regarding $M_{\infty}(M_{\infty}(\mathbb{K}))$ as $M_{\infty}(\mathbb{K}) \otimes_{\mathbb{K}} M_{\infty}(\mathbb{K})$, the standard involution on $M_{\infty}(M_{\infty}(\mathbb{K}))$ relative to either the symmetric or the symplectic involution * on $M_{\infty}(\mathbb{K})$ becomes $t \otimes *$, where t denotes transposition. In other words,

$$(M_{\infty}(M_{\infty}(\mathbb{K})),*) \simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{\infty}(\mathbb{K}),*).$$

73

But it is easy to find isomorphisms

$$(M_{\infty}(\mathbb{K}),*) \simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{2}(\mathbb{K}),*)$$

and

$$(M_{\infty}(\mathbb{K}),t) \simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{\infty}(\mathbb{K}),t).$$

It follows that

$$(M_{\infty}(M_{\infty}(\mathbb{K})),*) \simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{\infty}(\mathbb{K}),*)$$

$$\simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{2}(\mathbb{K}),*)$$

$$\simeq (M_{\infty}(\mathbb{K}),t) \otimes_{\mathbb{K}} (M_{2}(\mathbb{K}),*) \simeq (M_{\infty}(\mathbb{K}),*). \blacksquare$$

Acknowledgements. I would like to thank M. Cabrera García and A. Rodríguez Palacios for their advice and encouragement.

References

- [1] R. Arens and M. Goldberg, Quadrative seminorms and Jordan structures on algebras, Linear Algebra Appl. 181 (1993), 269-278.
- [2] R. Arens, M. Goldberg and W. A. J. Luxemburg, Multiplicativity factors for seminorms II, J. Math. Anal. Appl. 170 (1992), 401-413.
- [3] M. Cabrera, A. Moreno and A. Rodríguez, On the behaviour of Jordan-algebra norms on associative algebras, Studia Math. 113 (1995), 81-100.
- [4] —, —, —, Zel'manov's theorem for primitive Jordan-Banach algebras, J. London Math. Soc., to appear.
- [5] M. Cabrera, A. Moreno, A. Rodríguez and E. Zel'manov, Jordan polynomials can be analytically recognized, Studia Math. 117 (1996), 137-147.
- [6] M. Cabrera and A. Rodríguez, Zel'manov's theorem for normed simple Jordan algebras with a unit, Bull. London Math. Soc. 25 (1993), 59-63.
- [7] —, —, Nondegenerately ultraprime Jordan-Banach algebras: a zel'manovian treatment, Proc. London Math. Soc. 69 (1994), 576-604.
- [8] A. Fernández, E. García and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335.
- [9] A. Moreno and A. Rodríguez, Algebra norms on tensor products of algebras and the norm extension problem, preprint, Universidad de Granada, 1995.
- [10] A. Rodríguez, La continuidad del producto de Jordan implica la del ordinario en el caso completo semiprimo, in: Contribuciones en Probabilidad, Estadística Matemática, Enseñanza de la Matemática y Análisis, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1979, 280-288.
- [11] —, Jordan axioms for C*-algebras, Manuscripta Math. 61 (1988), 297-314.
- [12] —, Jordan structures in Analysis, in: Jordan Algebras: Proc. Conf. Oberwolfach, August 9-15, 1992, W. Kaup, K. McCrimmon, and H. Petersson (eds.), Walter de Gruyter, Berlin, 1994, 97-186.
- [13] A. Rodríguez, A. Slin'ko and E. Zel'manov, Extending the norm from Jordan-Banach algebras of hermitian elements to their associative envelopes, Comm. Algebra 22 (1994), 1435-1455.

[14] S. Shirali, On the Jordan structure of complex Banach *-algebras, Pacific J. Math. 27 (1968), 397-404.

[15] E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104.

Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain E-mail: agalindo@goliat.ugr.es

Received March 18, 1996

(3635)