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n — oo, Let fi = k] If k € N, and 281 < j < 2% let f; = v2h=1]h|,
Define n; = 1. Since x1 = T(h1 - 1y, ) € m*°° (I, w), there is a finite subset
o1 of I' such that |z1xes|f < 273 Now suppose that numbers n; and finite
sets o; have been chosen for ¢ < j. Since T(f;11 ) — 0 weakly as n — oo,

and Ug':l o; is finite, there exists n;j1 > n; so that ||$j+1XUjm1 o | <2774,
where ;41 = T(f;41 - rn,,,)- Now we can choose a finite subset o1 of I,
disjoint from | }{_, ¢;, such that lzjraxes,. || < 279-3. Finally, let y; =
TjXo; for all § € N. Then (y;) is pairwise disjoint sequence, and hence is a
basic sequence with basis constant 1. Mareover,
lwsll > llzsll = 27972 2 ify - rmy | = 27972 > 172,

Also, 3 ||lz; — y;ll < 1/4. By Proposition 1.a.9 in [5], (y;) and (z;) are
equivalent. But then (f; +7y;) is equivalent to a pairwise disjoint sequence in
£2°2(I', w). However, it is casy to see that ( fi - 7Tn;) 18 equivalent to (a,h,),
where a; = 1 and a; = V2% 1 if 2%~ < j < 2% Hence we obtain an
embedding S of [(hy}] into £2°°(I', w) such that (Sh) is a pairwise disjoint
sequence. As (h;) is a basis of M%°[0, 1], we have reached a contradiction
to Proposition 8. This completes the proof of Theorem 3.
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Distinguishing Jordan polynomials
by means of a single Jordan-algebra norm

by

A. MORENO GALINDO (Granada)

Abstract. For K = R or C we exhibit a Jordan-algebra norm [ - | on the simple
associative alpebra Meo (KK) with the property that Jordan polynomials over K are precisely
those associative polynomials over K which act |- 1-continuously on Meo (K). This analytic
determination of Jordan polynomials improves the one recently obtained in [5].

1. Introduction. The Jordan product of a (real or complex) associa-
tive algebra is defined as the symmetrization of the associative product.
Jordan polynomials are those (non-commutative) associative polynomials
which can be expressed from the indeterminates by means of a finite pro-
cess of taking sums, multiplications by scalars, and Jordan products. Clearly,
every Jordan polynomial acts continuously on anmy associative algebra en-
dowed with a Jordan-algebra norm. The question of the continuity of the
action of particular non-Jordan associative polynomials (like the associa-
tive product xy or the tetrad xyzt + tzyx) on suitable associative algebras
endowed with Jordan-algebra norms has received special attention in the
literature, mainly because of its close relation to positive results and limits
in the normed treatment of the Zel’'manov prime theorem [15] for Jordan
algebras. In this direction the interested reader can consult [14], [10], {11],
[2], 81, [6], [7], [12], [18], 3], [4] and [9]. The introduction of [5], together
with that of {9] already quoted, can also be interesting for a historical view
of progresses in the above mentioned question. Among these progresses,
we only emphagize here that every Jordan-algebra norm on a simple asso-
ciative algebra with unit makes the associative product (and hence, every
associative polynomial) continuous, and that the result need mot remain
true if the assumption of the existence of a unit is removed [3]. In fact, a
first “monster” is built in {3] by providing a Jordan-algebra norm on the
simple associative algebra Mo, (K) (of all countably infinite matrices over
K with a finite number of non-zero entries) and a K-linear involution * on
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Moo (K} such that the action of the tetrad (hence the associative product)
on H(Myo(K), %) := {A € My, (K) : A* = A} is discontinuous. -

The question of the continuity of the action of general associative poly-
nomials on associative algebras endowed with Jordan-algebra (semi-) norms
has been first considered by R. Arens and M. Goldberg [1]. They prove
that for “almost” every non-Jordan associative polynomial p there exists a
non-simple associative algebra (depending only on the degree of p and the
number of indeterminates involved in p) endowed with a Jordan-algebra
seminorm making the action of p discontinuous. Very recently, the Arens—
Goldberg result has been significantly improved in [5], where it is shown
that, for every non-Jordan associative polynomial p over K = R or C, there
exists a Jordan-algebra norm | - | (depending only on the degree of p and the
number of indeterminates involved by p) on M,,(K) such that the action
of p on Mo(K) is | - [-discontinuous. Moreover, the | - |-discontinuity of the
action of p can be centered in H{M(K), +) for a suitable K-linear involu-
tion * on Mo (K), which can be chosen of arbitrarily given type {hermitian
or alternate).

In this paper we present the “absolute monster” for the analytical deter-
mination of Jordan polynomials. Precisely, for K = R or C, we construct a
Jordan-algebra norm on M. (K) making the action of any nen-Jordan poly-
nomial on M (KK) discontinuous. Moreover, our norm exhibits all additional
pathologies of the norms built in [5]. For the most part, our arguments are
more or less deep refinements of the ideas developed in [5]. However, we
would like to emphasize, as a new auxiliary result of independent interest,
the existence of a Jordan subalgebra J of M., (K) such that no non-Jordan
associative polynomial leaves it invariant. This property of M. (K) is shared
in an obvious way by the free associative algebra on a countably infinite set
of indeterminates, but this last algebra is not simple. It is also worth men-
tioning that, for a suitable (associative) algebra-norm || - || on M (K}, the
Jordan subalgebra .J above becomes || - ||-closed.

2. The result. As we have said in the introduction, our work continues
and refines the ideas developed in [5]. Therefore, in order to aveid repetition,
we refer the reader to that paper for all standard concepts not explicitly
explained here.

Given a field F, a natural number n, and ¢ = +1, we congider the involu-
tion * on Mo, (IF) defined by a* := s~1ats, where at denotes the transpose of
a and s := diag{g,.". ¢} with ¢ := (2 10) Ife=1, then * will be called the
symmetric involution on My, (F). In the case € = —1 we obtain the familiar
symplectic involution. Both the symmetric and the symplectic involutions
Dpass from matrix algebras of the form Ms, (F) (n € N) to the algebra M, (F)
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(of all countably infinite matrices over F with a finite number of non-zero
entries) by regarding Moo (F) as |, ey Man(F) in the most natural way.
For a real or complex associative algebra A, a Jordan-algebra norm on
A ig a norm | - | on the vector space of A satisfying Ja.b| <|a|]#] for all a, b
in A, where a.b:= $(ab+ ba) is the Jordan product of A.
Now, we can state our main result:

THEOREM. Let K be either R or C, and denote by * either the symmetric
or the symplectic tnvolution on My (K). Then there exists a Jordan-algebra
norm on M., (K) making discontinuous the action on H{(M(K), *) of every
non-Jorden associative polynomial.

As in [5], the proof of the theorem relies on two results of independent
interest {Propositions 1 and 2 below) refining the corresponding Propositions
1 and 2 of that paper.

Given an algebra B, we denote by My.(B) the algebra of all countably
infinite matrices over B with a finite number of non-zero entries. In the proof
of the next proposition, for n in N, we will identify the algebra M, (B) of
all n x n matrices over B with the subalgebra of M. (B) of those matrices
(bij)(i,yenxn in Moo (B) satisfying b;; = 0 whenever either i > n or j >n.
If B has an involution *, then M (B) has a “standard” involution (also
denoted by *) consisting in transposing a given matrix and applying the
original involution to each entry.

PrOPOSITION 1. Lel (B, || - ||) be an associative normed algebra over K
(=R or C), and J be o closed Jordan subalgebra of B. Then there exists
a Jordan-algebra norm | - | on M (B) making discontinuous the action on

Moo (B) of every associative polynomial p such that J is not inveriant under
p. Moreover, if B has an involution *, and if J is contained in H(B,x), then
the norm |+ | can be chosen in such a way that the action on H(My(B),*)
of every polynomial p as above is| - |-discontinuous.

Proof. The proof of this proposition involves only minor changes on
that of [5, Proposition 1], hence we limit ourselves to provide a sketch of it,
emphasizing only the required changes. :

We consider the algebra norm || - || on My (B) defined by

el = > llbss]
(4,7)ENXN
for all (bs;) in Moo(B). Given a subspace § of M (B) and an elemex}t o
in Meo(B), we write ||a + 5] := inf{]a + 8] : 8 € §}. Also, we consider
the identification Mo (B) = Mo (K) @k B. For k in N, we denote by Jx the
Jordan subalgebra of My, (B) given by Ji := M—1(K) @ B.—|» e @ J, wlinere
My(K) := 0, and we denote by e, the element (Aij )i, jenxn in Moo (K) given
by Ai; = 0 whenever (4,5) # (k. k), and Age = 1.
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Now the norm | - | on the vector space of M (B) defined by

lad:= o]+ 3" 2o+ %)

=1

is a Jordan-algebra norm satisfying
[er ® bl=(1+21 +22° +... +201

forall ¥ in N and b in B.

Let ¢ = q(x1,-..,%s) be a homogeneous associative palynomial such
that J is not invariant under q, and let m denote the degree of q. Then
there exist z1,..., 7, in J satisfying ||q{z1,...,2,) + J|| > 0, and we easily
obtain

laler @ z1,ex @ 22, .., e @ 2, |
max{ler ® z1 ] fer ® 221, ... lex ® z |}

- il la(zs, B2, ..., ) + J]|
e k1 i) ot
ke (2D max{flaa |7, [l

Therefore, for &k > m, we have

)k—l

&
ol + 25 b+ ]

laer ® z1,ex ® 20, -, e @ 24}
ma.x{[ek ® mll?lek ®$217'-.' 1|ek @ g I}m

21" (@1, 22, . ., ) + J|
2T madllel ™ Y

From [5, Lemma 1] we deduce that the action of q on M,(B) is not | - |-
continuous at zeroc. The passing from homogeneous polynomials to general
ones, as well as the remaining part of the proof, follow without changes the
corresponding arguments in [5, Proposition 1]. m

ProrosiTiON 2. Let F be o field of characteristic not two, and let x
denote either the symmetric or the symplectic involution on Moo (). Then
there exists o Jordan subalgebra J of Muo(F) contained in H(Mao(F), %)
such that J is not invariant under any non-Jordan associative polynomial.
Moreover, if F = R or C, and if we consider the algebra norm ||(ui)|| =
2 nenxn [Bis] on Moo(F), then the Jordan subslgebra J above can be
chosen || - ||-closed.

Proof For p in 2N U {ox}, let * denote the symmetric involution on
M(F) (the argument for symplectic involutions is the same). According to
[5, Proposition 2], for every natural number n there exists an even number dn
and a Jordan subalgebra J, of My, (F) contained in H(M,, (IF), *) such that
Jn is not invariant under any non-Jordan associative polynomial involving
at most n indeterminates and of degree < n.
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For p,q in N, denote by M, ,(IF) the vector space of all p x g-matrices
over I (so that Mp(F) = M, ,(F)), and consider the algebra whose vector
space is the abstract direct sum of the family {My, 4, (F)}n,m)enxn and
whose product is determined, for elements A, ,, € My q, (F) and By €
Ma,, 4, (F), by

A B _ {An,mBn:,'mr € Mg, 4, (the usual product) if m =n/,
n,mon! m! = 0 m

otherwise.
Then the algebra presented above is a copy of M (F), via the mapping
.Al,]_ A1,2 PR
@ Ap g — | A2a Azp
n,meEN : :

Moreover, in that identification, the restriction of the symmetric invo-
lution on M (F) to each diagonal summand My, 4, (F) is nothing but the
symmetric involution on that summand. Putting J = EBn,mEN K, m with
Kpn = Jp and Ky = 0 if n # m, it follows that J is a Jordan subal-
gebra of M (F) contained in H{M.(F),*}). Also J is not invariant under
any non-Jordan associative polynomial. Indeed, if p(xi,...,Xs) is a non-
Jordan associative polynomial of degree g, then, for n := max{s,g}, we
have p(J,) C Mg, (F) and p(Jn) € Jn, and therefore p(J) & J.

Now assume F = R or C and let || - | be the norm on M (F) given
in the statement of the proposition. Let {Xy} be a sequence in J conver-
gent to some element A in Moo (F). Then there exists N € N such that
A € D, ey Ma, o, (F). Since the natural projection II from M, (F) onto
D, men Ma, o, (F) is || |-continuous, {IT(Xz)} converges to A. Since IT{J)
is finite-dimensional, it follows that A € IT(J) ¢ J. Therefore J is |- ||-closed
in Moo(F). m

Now we are ready to conclude the proof of our main result.

Proof of the theorem. Applying Proposition 1 with B = M. (K),
|| - || equal to the algebra norm on My (K) given in the statement of Propo-
sition 2, and J equal to the closed Jordan subalgebra of M (K) provided
also by Proposition 2, we obtain a Jordan-algebra norm |- | on Moo (Meo (K))
making the action on H(Mw(Me(K)),*) of every non-Jordan associative
polynomial discontinuous. Now, the proof is concluded by realizing that the
algebras with involution {Me(Mee(K)), *) and (Mo (K),*) are isomorphic.
Indeed, regarding Moo (Moo (K)) a8 Moo (K) ®x M (K), the standard invo-
lution on My (Moo (K)) relative to either the symmetric or the symplectic
involution * on Mo, (K) becomes t @ *, where t denotes transposition. In
other words,

(Moo (Moo (K)), #) == (Moo(K), 1) @k (Moo (K), %)-
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But it is easy to find isomorphisms
(Moo(K), ) = (Moo (K}, 1) @k (Ma(K), )
and

(Moo (K), t) = (M (K), t) @K (Moo (IK), ).

It follows that

(Moo (Moo (IK)), %) 22 (Moo (K), £) @ (Moo(K), %)
- o2 (Moo (K), t) ®x (Moo (K), 2) @ (M2(K), %)
o~ (Moo (K), 1) ®K (Ma(K), *) o (Moo (K),*). w
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