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Semi-Browder operators and perturbations
by

VLADIMIR RAKOCEVIC (Ni)

Abstract. An operator in a Banach space is called upper (resp. lower) semi-Browder
i it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operagor in
a Banach space is called semi-Browder if i is upper semi-Browder or lower semi-Browder.
We prove the stability of the semi-Browder operators under commuting Riesz operator
perturbations, As a corollary we get some results of Grabiner [6], Kaashoek and Lay (8],
Lay [11], Rakogevié [15] and Schechter [16].

Let X be an infinite-dimensional complex Banach space and denote the
set of bounded (resp. compact) linear operators on X by B(X') (resp. K (X)).
For T' in B{X) throughout this paper N(T') and R(T) will denote, respec-
tively, the null space and the range space of T. Set N>°(T) = |, N(T™),
R=(T) = (), RT™), (T) = dim N(T) and S(T) = dim X/R(T). Recall
that an operator T € B(X) is semi-Fredholm if R(T) is closed and at least
one of a(T) and B(T") is finite. For such an operator we define an indez (1)
by i(T) = a(T) — B(T). It is well known that the index is a continuous
function on the set of serni-Fredholm operators, Let &4.(X) (resp. $_(X))
denote the set of upper (resp. lower) semi-Fredholm operators, i.e., the set
of semi-Fredholm operators with o(T") < oo (resp. S(T) < oc). Tt is well
known that @, (X) and @_(X) are open semigroups in B(X) (see [1], [7]).
Recall that a(T) (resp. d(T))), the ascent {resp. descent) of T' € B(X), is
the smallest non-negative integer n such that N(T") = N (T*1) (resp.
R(T™) = R(T™)). If no such n exists, then a(T) = oo (resp. d(T) = o0).
An operator T is called upper semi-Browder if T e @,.(X) and a(T") < o0;
T is ealled lower semi-Browder if T € $_(X) and d(T) < o0 [7, Defini-
tion 7.9.1], Let B..(X) (resp. B..(X)) denote the set of upper (resp. lower)
semi-Browder operators. An operator in a Banach space is called semi-
Browder if it is upper semi-Browder or lower semi-Browder. Semi-Browder
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operators were studied by many authors; see e.g. [6], [7], [9], [10], [14], [15],

[19], [22]. The name was introduced in [7]. An operator T is Browder if it is

both upper semi-Browder and lower semi-Browder [7, Definition 7.7.1]. Let

B(X') denote the set of Browder operators, i.e., B(X) = B..(X) N B_(X)
For T € B(X) set

d'i'(T) = dlSt(T: B(X) \ Sb-}—(X)):
d_(T) = dist(T, B(X)\ 2_(X)).
Hence, d.(T) > 0 if and only if T € $,.(X), and d_(T) > 0 if and ounly if
T € ¢_(X). The semi-Fredholm radii of the operator T' ([20]) azc
r{T) =sup{e 2 0: T — M € $..(X) for [A| < e},
r—(T)=sup{e 2 0: T — A € $_(X) for |)| < &}.
Let us remark that v (T) = d () and r_(T) > d_(T).
The fact that K'(X) is a closed two-sided ideal in B(X) enables vs to de-

fine the Calkin algebra over X as the quotient algebra C(X) = B(X )/K(X)
C(X) is itself a Banach algebra in the quotient algebra norm

T+ E(X)|= inf |T+K]|.
KeK(X)

We shall use 7 to denote the natural homomorphism of B(X) onto C(X);
() =T+ K(X), T € B(X). Let ro(T) = lim ||z (T™)||}/" be the essential
spectral radius of T An operator T' € B(X) is a Riesz operator if and only
i 7¢(T) == 0 [1, Theorer 3.3.1], i.e., if and only if #(T) is quasinilpotent in
C(X). Let R(X) denote the set of Riesz operators in B(X).

Let us recall that B,(X) and B_(X) are open subsets in B(X) 10,
Satz 4], but not stable under finite-rank perturbations [1, pp. 13~14). In this
paper, among other things, we generalize Grabiner's well known theorem
[6, Theorem 2] and our recent result {15, Theorem 1] on perturbations of
semi-Fredholm operators with finite ascent or descent (see Corollaries 3 and
4 below). Now our arguments are based on the observation that both 6,
Theorem 2] and [15, Theorem 1] have been presented in the global form,
i.e., they have been stated for all semi-Fredholm operators with finite ascent
or descent, while the perturbation results have been in the local form, i.e.,
they have depended on the particular choice of semi-Fredholm operator.

The main result of this paper is the following theorem.

THEOREM 1. Suppose that T, S € B(X) and TS = ST. Then
(1.1} T eBi(X) and re(S) <ri{T) = T+ 8¢ Bi(X),
(1.2) T eB.(X) and re(S) < r_(T) = T+5eB. (X).

Proof. To prove (1.1) suppose that T & Bi(X} and 7.(S) < ry(T).
Let us remark that limd, (T*)¥/" = r, (T) (2], [4], [13], (171, [18], [20]).
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From 7e{S) < r4(T), there is an n with ||%x(S™?)|| < d4(T™). Hence there
is a compact operator K € B(X) such that ||S™ — K| < d(7™). Then we
obtain

(1.3) 0<di(T™)~||S" - K|| £d4(T" — 8™ + K).

Hence T — 8" + K € #, (X)), and therefore T™ — 8" € &, (X). Using the
hypothesis that T and S commute, we have 7" — §" = (IT™~! — §T"2
+...){(T - 8). Now, [1, Corollary 1.3.4] shows that T~ § € &, (X). Let
us remark that the argument above shows that T + AS € $4(X) for all
M € [0,1]. Hence, by [3, Theorem 3], there exists ¢ = g(A) > 0 such that

(14) N[N R2(T) = N2 (T0) N R¥(,)
in the open disc S(A) with center A and radius e. Formula,. (1.4) says,
in effect, that N°°(T3) N R*°(T)) is a locally constant function of A on
the interval [0,1]. Now, since every locally constant function on a con-
nected set like [0,1] is constant, and a(T) < oo implies that N *(T) N
R%®(T) = N°o(T) N R*(T) = {0} [19, Proposition 1.6(i)], we conclude that
NS(T +8) N R®(T 4 §) = {0}. Thus N*°(T'+ S)N R®(T + §) = {0}:,
and again by [19, Proposition 1.6(i)] it follows that a(T'+ §) < co. This
completes the proof of (1.1). .
To prove (1.2} suppose that T € B_(X) and re(S) < 'I'_ET). Now T™ €
B (X*) and T*5* = §*T*. Since r¢(8*) = ro(S) and r; (5*) = r_(5), by
(1.1) we have T* + 8% € By.(X*), ie, T+ 5 € B_{X). =

Let us remark that the commutativity condition in Theorem 1 is essen-
tial, even for finite-dimensional perturbation 5 [1, pp. 13-14].

COROLLARY 2. Suppose that T € B(X}, S € R(X) and TS = 5T, Then
(2.1) TeBi(X) = T+85€By(X),
(2.2) TeB_(X) = T'+5eB (X)

Proof. From Theorem 1. m

Now s a corollary, we get the main result of 8. Grabiner 8, ’.l‘heorem 2];
(sec also [7, Theorem 7.9.2]). Our formulation of that result is somehow
different from that of 8. Grabiner’s, but resembles that of Theorem 1.

COROLLARY 3. Suppose that T € B(X), S € K(X) ond TS = ST. Then

(3.1) T eBL(X) = T+8¢€Bu(X),
(3.2) TeB.(X) = T+SeB(X)

Proof. Since X (X) ¢ R(X), this follows from Corollary 2.
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Recall that the perturbation classes associated with $.(X) and ¢_(X)
are denoted, respectively, by P(®4(X)) and P(®_(X)), i.e.,

PP, (X)) = {Te BX): T+ 5 P (X) forall § € P, (X)}
and
P(@_(X))={TeB(X):T+S5ed_(X)forall S P_(X)}.

Now as a corollary, we get the main result of V. Rakogevié [15, Theo-
rem 1].

COROLLARY 4. Suppose that T\ K € B(X) and TK = KT. Then
(4.1) TeBL(X) and K € P(®..(X)) = T+ K e B.(X),
(4.2) TeB.(X)and K € P(P_(X)) = T+ K e B_(X).

Proof. Since P(®4 (X)) U P(¢_(X)) C R(X) ([1, Theorems 5.5.9 and
5.6.9]}, the assertion follows from Corollary 2. w

Remark, Let us mention that in a series of papers ([2], [4], [5], [12], [17],
(18], [20], [21]) the quantities d, d_, .., 7, and several other operational
quantities have been studied characterizing upper and lower semi-Fredholm
operators. Recently, M. Gonzélez and A. Martindn [5] have proved that
these guantities can be divided into three classes, in such a way that two of
them are equivalent if they belong to the same class, and are comparable
and not equivalent if they belong to different classes. From the proof of
Theorem 1, it is clear that instead of dy, d-, 4, r—, we can use other
appropriate operational quantities.

The setefupper (lower) semi-Browder operators and Browder operators

define, respectively, the corresponding spectra, i.e., for T' € B(X) set
oun(T) = {A € C 1T — A ¢ B(X)},
oan(T)={AeC:T - A ¢B._(X)},
oan(T)={AeC: T -\ ¢ B(X)}.

It is clear that o, (T) = oup{T) U oap(T). oen(T) is the well known
Browder’s essential spectrum of T' ([T}, [11], [16]). gan(T) and oq,{T) are
non-empty compact subsets of the complex plane C called Browder’s essen-
tial approzimate point spectrum of T and Browder's essentiol defect spec-
trum of T, respectively, ([14], [15], [22]). Let o(T), 0.(T") and og(T) denite,
respectively, the spectrum, appromimate point spectrum and approzimate de-
Ject spectrum of an element T of B(X) (recall that o,(T) = {X € C :
Infy =1 (T — Al)z|| = 0} and 6a(T) = {A € C: T ~ Al is not onto}). It is
well known that

oen(T) = ﬂ o(T + K).

TK=EKT
Kek(X)
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Recall that ({14], [15], [22])

o(TV= [] oalT+K) and oa(T)= [)| ocalT+K).

TK=KT TK=KT
KeK(X) KeK(X)

Let S be a subset of B(X). A subset A of o(T') is said to remain invariant

under perturbations of T by operators in 8 if & C Ngego(T + 8 ([8])-
Now we can prove

THEOREM 5. Suppose that T € B(X). Then oa(T) (resp. aan(T)) is the
largest subset of the approzimate point (resp. defect) spectrum of T which
remains invariant under perturbations of T by Riesz operators R which com-
mate with T, d.e.,

(51) G'ub(T) = ﬂ G‘a(T -+ 8) and Udb(T) = ﬂ Cl'd(T-Jr S)

TE8=8T T8=8T
SeR(X) SER(X)

Proof. Tt is enough to prove (5.1) only for gap(7), and in this case it is
sufficient to prove “C”. If A & (Y{ou(T'+ 5) : TS = ST, S € R(X)}, there
is a Riesz operator Sp such that T'Sy = SpT and A ¢ o.{T + Sp). Hence
T 4+ Sy — M € B(X), and by Corollary 2 we have I'— Al € By (X). Thus
AE o (T). =

Now as a corollary we get the well known theorem of D. Lay {11, The-
orem 4] or M. A. Kaashoek and D. C. Lay [8, Theorem 4.1] for bounded
operators.

COROLLARY 6. Suppose that T € B(X). Then o (T) is the largest subset
of the spectrum of T' which remains invariant under perturbotions of T' by
Riesz operators R which commute with T

Proof. From Theorem 5 and the fact that o(T) = oa(T) U oa{T}. =
Further, as an application of Theorem 1, or Corollary 2, we have
TuroreM 7. (i) An operator § € B(X) satisfies
(7.1) Tan(T + 5) = oan(T)
for oll T € B(X) which commute with S if and only if § € R(X).
(ii) An operator 8 € B(X) satisfies
(7.2) oap(T +8) = oap(T)
for all T € B(X) which commute with S if and only if S € R(X).
* f.Ttis e rove (i). Tf (7.1) holds for all T’ which commute
W'l't'i[l) 1;:’(,) (:15()11'1[} c;::(%lflg;oj Uab(c()% = E{O}.)Now, by [14, Corollary 2.5] we

) = ‘ . ly, suppose that S € R(X), T
have oa,(S) = {0}, hence § € R(X). Conversely,
commljt)egs with S and A & oap(T}. Thus T'—AI € B..(X), and by Coroliary 2
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we have T -+ § — M € BL(X), ie, A ¢ oa(T + S} This implies that
oan(T + 8) C oan(T). Now, clearly oap[(T + 5) - 8] C oan{T + S), and we
have oo (T + S} = 0an(T).

Finally, as a corollary we get a theorem of M. Schechter [16, Theorem 2.6].
COROLLARY 8. An operator § € B(X) satisfies

(8.1) Fan{T + S) = 0ep(T)

for all T € B(X) which commute with S if and only if S € R{X).
Proof. From Theorem 7 and the fact that o(T') = oo (T) U oa(T). =
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