icm

STUDIA MATHEMATICA 122 (2) (1997)

Spaces of holomorphic mappings on
Banach spaces with a Schauder basis

by

JORGE MUJICA (Campinas)

Abstract, We show that if U is a balanced open subset of a separable Banach space
with the bounded approximation property, then the space H{U) of all Lholomorphic func-
tions on U, with the Nachbin compact-ported topology, is always bornological.

Introduction. Let E be a complex Banach space, and let H(L7) denote
the vector space of all holomorphic functions on an open subset U of E.
Let 7, denote the compact-ported topology on H(U) introduced by Nach-
bin [18], and let 75 denote the bornological topology on H(U) introduced
by Coeuré [3] and Nachbin [19], [20]. 75 is always the bornological topology
associated with 7., and the question as to whether these topologies coin-
cide was mentioned explicitly by Nachbin in [19], {20], but its significance
was implicit also in the works of Coeuré [3] and Dineen [5], because of its
connection with the study of holomorphic continuation.

The first partial answers to this question were given by Dineen, who
proved in [7] that 7, # 75 on H(E) when E = [°°, whereas he proved
in [8] that 7, = 75 on H(U) whenever I/ is a balanced open subset of
a Banach space with an unconditional Schauder basis. Shortly afterwards
Coeuré [4] modified Dineen’s proof to show that 7, = 75 on H(E) when-
ever E is a homogeneous Banach space in the sense of Katznelson’s book
[14]. Homogeneous Banach spaces include the space L0, 27}, which, by
a result of Pelczynski [23], does not have an unconditional Schauder
basis. :

In this paper we extend Dineen’s result by proving that 7, = 715 on
H(U) whenever U is a balanced open subset of a Banach space with an
arbitrary Schauder basis. By combining this result with a result of Johnson
et al. [12] and Pelezyfiski [24], it follows that 7, = 75 on H(U) whenever
U is a balanced open subset of a separable Banach space with the bounded
approximation property. And this extends also Coeuré’s result.
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Qur proof follows the pattern of Dineen’s original proof. Dineen’s proof
is extremely elaborate, and is so tightly packed, that gives the impression
of not leaving room for improvement. Dineen’s proof relies heavily on some
estimates of the relative sizes of certain open sets, denoted by Bj" ;ﬂ’m
Dineen obtained those estimates by using some properties of unCOIldlthIchl
Schauder bases, and a cursory examination of his proof gives the impression
that the hypothesis of an unconditional basis is essential for his proof. How-
ever, a more careful dnalysis shows that it is still possible to obtain suitable
estimates on the sets B;i in Banach spaces with an arbitrary Schauder
basis. The estimates obtained in this more general setting are not as good
as those obtained in the case of an unconditional basis, but they are still
good enough to make the proof work.

Dineen’s original proof in [8] is very difficult to follow, and it is ot easier
to follow in his book [9] either. I hope that the way the proof is presented
here, it will be more readable.

I would like to thank my colleagues Raymundo Alencar, Geraldo Botelho,
Ary Chiacchio, Mdrio Matos, Jodo Prolla and Sueli Roversi for some helpful
comments when this paper was being written.

1. Notation and terminology. N denotes the set of all strictly positive
integers, whereas Ny denotes the set N U {0}. The letters E and F always
represent complex Banach spaces. If m € Ny then £5(™E; F) denotes the
Banach space of all symmetric, continuous, F-valued m-linear mappings
on E™, whereas P(™E; F) denotes the Banach space of all continuous, F-
valued m-homogeneous polynomials on E. If U is an open subset of E, then
H(U; F} denotes the vector space of all F-valued holomorphic mappings on
U. When F' = C we write L*(™E), P(™E) and H(U) instead of £5(™E; C),
P(™E;C) and H(U;C). Given a mapping f: U — F and a set 4 C U, we
shall sct | fl|4 = sup,e. |1 £(z)].

A seminorm p on H(U; F) is said to be ported by a compact set X C U if
for each open set V with X' < V' C U, there is ¢ > 0 such that p(f) < ¢||f||v
for every f & H(U;F). The topology 7., on H(I/; F) is defined by all such
seminorms.

The topology 75 on H(U; F) is defined by all seminorms p such that, for
each countable, open cover (V)22 of U, there are N € N and ¢ > 0 such
that p{f) < chHUﬁ»:l v, for every f € H(U; F).

We refer to the books of Dincen [9] or the author [17] for background
information on infinite-dimensional complex analysis.

2. Preparatory lemmas. Throughout this section & denotes a Banach
space with a monotone, normalized. Schouder basis (én). Let (2,) denote
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the sequence of coordinate functionals, and let (T3,) denote the sequence of
canonical projections, that is, Tp,m = 'Z;; . z(z)e;. Then

a
|52 20es]| < 2lal
i=p

whenever 2 € E and p < ¢. Let By denote the open unit ball of £.
Leb ()8, be a strictly increasing sequence in N, and let (8;)32; be a
decreasing sequence of strictly positive numbers such that Yoo B < oc.
Sonsider the following sets:
453
;],ll ‘” = {Zﬁ Ci Z zo(t)en 1 2 € Bg, |G| = 1} (where g = 0),
=gy +1
qi
E Zn{®)en 1 2 € B, G| = 1},

=g +1

K -{Zﬁ

[s 4]
,g;ll ?J) 41 = {ZﬁzCz ,(ﬁ)en +)8j+1(:j+1 Z Zn (:E)en
. ja=l =i+l n=q;+1

€ Bp, |G = 1}.

2.1. LEMMA. Bt“ c ki) + 2841 BE.
ﬁ +1 (8
(L) The set K ((g‘)) is relatively compact.

Proof. (a) Clearly

Bglx%?wl C Kﬁl 5+ 2/3.1+1BE
g1 gj c

On the other hand, since Ty, x € Bg whenever ¢ € By, we see that K Bro By

K1) and (a) follows.
( ») Since Ky o q’ lics in a finite-dimensional subspace and

Kyt c 2(2@)3,@,

we see thab I{;f,' “" is relatively compact. O;l the other hand,

=)
K(g~) c Ky +2( Y B)Bs.

i=4-+1

j o pola)
: TR ) .
Thus, since each th’@’j is precompact, so is Ky
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2.2, LevmMma. We have

.7+ q1.-.94
BEC2I6+IB .514-1

Proof. For each A = (Ar,..., Aj41) € T we define Ay € L(E; E) by

i o0

Azz = Z,\ Z Zn{Z)en + Aji1 E Zn(2)en.
n=gs~y1+1 n=g;+1
Then
J+1
4l <2 A,
i=1
If 8 = (B,.. ,@j41), where Bio; = 1 for every i,

S B541) and o = (ay, ...
then AsA, = I and .

Ap(Bg) C BE" f;w
It follows that
i+l
1 ” 1
Br C HAD!HA.@(BE) - 2(2 5 )Bq )q@:;-il 2j i Ql .qgj 17
i=1 Y Bt "

For each g € N let E{ be the subspace of B generated by {e, : n < g}
and let B¢, be the closed subspace of E generated by {e, : n > g}. Thus

we have a canonical decomposition F = Ef @ By

Let P € P("E;F), P = A, with A € L(™F; F). Given ¢ € N and
0<1<m,let P} € P(™E; F) be defined by

P = (17 )Aam
forevery z =2 +y GE‘I@E+1 Thus
P= Z P}
and it follows from the Cauchy integral formula that
[P (= + w)l| < s [iP(z + ¢y)ll-

2.3. LEMMA. Let P € P("E;F) and 0 <1< m. Then

i
PP | g <(ﬂiﬂ) Pl asss
v liB, g T Bitz2 | HBE?JE
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Proof Given z € Bq1 %{P , wiite z = z +y, with z € EP** and
y € B, 41- Then

= (7 uemwi= () (7)o (320) |
() e (- ) = (B

By
< P|| oo agn
< (52) 17ty
2.4. LEMMA. Let K be a compact subset of E. Then for each € > 0 there
are ¢ > 0 and gc € N guch that
1P||x < ¢™'l|Pllss

whenever P € P(ME; F), meN, 0<i<m and ¢ 2 ¢..

Proof. For every z € E and ¢ € N we may write 2 = 24 + Yq, With
z, € E} and y, € E7S,. Since the operators T, converge to the identity
uniformly on compact sets, given £ > 0 we can find ¢. € N such that
lygll < € for every z € K and g 2 g=. If P &€ P("E; F), then

1PS(2)] = ( ) | Aal |

z(nzu+1>msz(’f)”A(ﬂ_z%ﬁ>””( .- ),

i1 m yq
= (hell+ 1| P! (1 1t e<||zn+1>)
< (2] + D™ P, < (2] + D7 Pllsza-

Thus it suffices to take ¢ = 3aup,ex(||2|+1). Observe that ¢ is independent
of e.

For the convemience of the reader we include a proof of the following
known lemma (sce [6, Lemma 3]), valid on any Banach space B.

2.5. LEMMA. Let P, € PTE; F) (m € No) be such that
(2.1 i HPT,,HI ™m0
for cach compact set K C I. Then S o Pm € H(EF) and
(2.2) Jim p(Pr)™ =0

for each continuous seminorm p on (H(E; F),75)-
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Proof. It follows from (2.1) and the classical Cauchy-Hadamard formula
that o [A|™||Pmlixc < oo for every A € C. Thus the series 3 oo A™ P,
converges uniformly on compact sets to a mapping fn € H(E; F) for every
X € C. Hence the sequence (A™PF,,) is bounded in (H(E; F),75) for every
A € € Consequently, sup,, |A|"p(Pm) < oo for every A € C. Therefore
3 om=g AT P(Pr) < o0 for every A € C and (2.2) follows from the classical
Cauchy-Hadamard formula again.

3. The main result

3.1. THEOREM. Let F be o Bunoch spuce with a Schauder basis. Then
Tw = 75 on H({U; F) for every balanced, open set U C E and every Bonach
space F.

Proof, Without loss of generality we may assume that F has a mono-
tone, normalized, Schander basis, and will accordingly use the notation and
terminology from the preceding section. We will first give the proof in detail
in the case U = F, which is technically simpler, and will afterwards sketch
the proof in the case U # F.

A. Case U = E. Let p be a continuous seminorm on (H(E; F'}, 7). Since
E =J;>, nBg, there are N € N and ¢; > 0 such that

pf) < el flves
for every f & ’H(E, F). Hence

(3.1) p(P) S elN™|Plg; < aN™|P||gy,

for every P € P(™E;F) and m € No. Let (3;) be a decreasing sequence of
strictly positive numbers with 81 = 82 = 1 and 3 ;o) & < oo. Let () be
a sequence of numbers with 41 = 1, 7; > 1 for every 4 > 2 and [Tie v =
¥ < oo. We will show the existence of a strictly increasing sequence (g;) in
N, and a sequence (¢;) of strictly positive numbers such that

(3.2) p(P) W<,, C'E(N'Yl~--")’z')m“PHB‘?91“"§="
Bl

for every P € P(™F,F), m € Ny and i € N. The sequences (g;) and (¢;)
will be found by induction. (3.1) shows that ¢, = 1 and ¢; satisfy (3.2} for
i = 1. Assuming that we have found ¢, .-,y and ¢1,...,¢; that satisfy
(3.2) for ¢ = 7, we will show the existence of gj+1 and c;4q that satisfy (3.2)
for ¢ = j + 1. Otherwise for each k € N there is P, € P(™ E; F) such that

(3'3) p(P-‘-‘-) > k(N"Yl . -"}'Jﬁ'-l-l)'m"c “Pk”Bun-qj.qj—rk-
Bl By
We distinguish two cases.
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(a) First assume that the sequence (my) is bounded. By passing to a
subsequence we may assume that my = m for every k. Then set

Q= 5
BT W)™ P ey

B1-Bi4z

Tt follows from Lemma 2.2 that

el < (22)
1QkliBr < Ny i1 Bros
and hence ((g) is bounded in P(™E; F), and thus bounded in (’H(E, F), 7).
On the other hand, it follows from (3.3) that p(Qx) > k, a contradiction.

(b) Next assurne that the sequence {(my) is unbounded. Then by passing
to a subsequence we may assume that the sequence (mk) ig strictly increas-
ing. Now each Py admits a decomposition

Mg A
47+
Py=> P,
I=0

where the polynomials Pgi"’k = (Pp)} ** were defined before Lemma 2.3.
Then by (3.8) for cach k there exists Iy, with 0 < I, < myg, such that

) 5k ) m . sk
(3.4) p(Pt") > T - 1(N71 ) h“P’““stll.‘.E:iM

We now distinguish two subcases.

(i) First assume that litig— oo be /s = 0. Then set

gtk
R Pki},
K= q3+k i
(Nys oy ™ 1B, Nz

Tt follows from the induction hypothesis that p(Rx) < ¢; and therefore
i sup p( Bx) ™ < 1.

k—o0
On the other haud, it follows from (3.4) that
P R PR Pl
“ k”}a;i Z{I“;

i
]’)(Rk) > Mgy :|_’-Yu’."’|'h11 ”PCI:;"I'k ?

ik HB;}L;:;J;M

and using Lemma 2.3 we get

k B2 \"
my [ FIA2 )
P(Re) > T 17‘i+1(ﬁj+1>
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Since limy o0 Ix/ms = 0, it follows that

lim sup p(Rp) /™ > w1 > 1,

k—oa

a contradiction.

(ii) Next assume that limsupy_,o, {s/mg = § > 0. Then by passing to
a subsequence we may assume that limy_,o lx/mr = 6§ > 0. Let K be a
compact subset of E. Then by Lemma 2.4 for each & > 0 there are ¢ > 0
and k, € N such that '

-k .
1PE & < ™| Pyl b

for every k > k.. By using Lemma 2.2 we get

“PQ’:"HGH < e glhgm i+2 T
B, K€€ ﬁ_—z ”PkHBql“"‘fjnq‘j‘i'k-

i+ A1efyga

Now get
gi+k
— Pklk
Sy = : .
(N'Tl e 'Yj+1)m"‘ “Pkl|BG1~--Qj,r1j+k
. Ar-Pitz

Then

. M
I8kllx < (N1 v ) ™™ (QCﬂ) e,
Biso
and since limy—,o0 lk/mg = 6, 1t follows that
limsup S [ < (Vo . gga0) 20T 26
h— 00 Bj+2
As £ > 0 was arbitrary, we have

limsup 53|} = 0

for every compact set K C E. By Lemma 2.5, Y7o | Si € H(E; F) and
lim p(S, )™ = 0.
k—oo

On the other hand, it follows from (3.4) that p(Sy) > k/(my + 1), and
therefore '

lim supp(Sk)l/m“ >1,

k—roo

a contl.radiction. Thus there are sequences (g;) and (¢;) satisfying (3.2) for
every i.

We now prove that p is ported by the compact set L = clos(V?NK (('g‘%)

Indeed, given ¢ > 0, choose j € N such that 2¢2Ng;11 < e. Then by
Lemma 2.1,

2 q1---4d4 i
Y’NBg ¥ ., C VP N(EE +26,41B5) C L+ =Bg.
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Let S opoeq P be the Taylor series at the origin of a mapping f € H(E; F).

. Then
M M o0
p(30 Pu) € D0 0P) £ Y 000 Pl
=0 me=0 m=0 BByt
= —Tl Y
< Cy ZM ¥ “Pm”"l’uNBZi:‘.‘.?%J‘;-“!_i < Y 3_ 1”fuL+EBE‘
me=l)
Thus
M e
= i P <
P(f) &%ﬂmf)m%JWMm,

and the proof in the case U = E is complete.

B. Case U # E. Since U is a Lindelsf space, and since | J;2; EY is dense
in B, we can easily find a sequence (an) in U N (UjZ: B1), and sequences
{on) and (rp), with gn > 1 and ro > 0, such that

o0
U= |J(an+raBs) and g5(An+7roBr) CU
nrsl
for every n, where A, = {Aan ¢ |\ £ 1}
Let p be a continuous seminorm on (H(U; F), 75). Then there are NeN
and ¢; > 0 such that

n=1

p(f) € Cl.“f“UN (an+raBp) = €L :‘i’}PVHfHAernBE

for every f € H(U; F). Hence

(35) p(P) sa ::1"(11% T?THPHT,IJATL-I-BE sa Eg%rmlpnrilAnJrBﬂ

for every P € P(™E; F) and m € No, where g1 € N ig chosen so that an €
E§ for every n < N. Let (8;) be a decreasing sequence of strictly positive
mumbers with &) = fp = 1 and Yjoy fi < 3- Let (%) be a sequence of
numbers with g = 1, 1 > 1 for every 1 2 2 and [1;’_‘;1 i =y < mig<N On-
We claim that there exist a strictly increasing sequence (¢:) in N and a
sequence (¢;) of strictly positive numbers such that

(3.6) p(P) < e ':E%(""n.'}'l o -’Yi)m“P”r;‘AWBEi'.Z',fa’Z.H

for every P € P(™E; F), m € Ng and i € N. Inequality (3.5) shows that ¢1
and ¢ satisfy (3.6) for 4 = 1, and the proof of the ‘induction step can be
achieved by following the footsteps of the corresponding proof in the case
U = . Tnstead of the estimate given by Lemma 2.3, one should use the
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estimate

i
PO < (BELY R, e
B awmgzg,, < (ga) P lavsgiy

which is valid for each balanced set A ¢ Ef’. This explains our choice of ¢;.
Once {3.6) is established, we consider the compact set

N
L = clos U V2 (A, + rnK((E:;).

n=1

Since K((E% C 2(3 12, Bi)Be C 6Bg, we see that

(A + rnK((gj))) C 0% (An + 67, Bg),

and therefore L is a compact subset of U, We will prove that p is ported
by L. Indeed, given & > 0 choose j € N such that 2y28,.15up, ey Tn < €.
Then by Lemma 2.1, T

,),Z(An + ‘T‘nti'E_H) - ,.YZ(AH —+ ""”K{(gig + 2ﬁj+1?"nB]j;) c L+ EBE.

Let Y oo_o P be the Taylor series at the origin of a mapping f € H(U; F).
Then

M M 0Q
P( i ) < (P} £ c; sup (Pp )™ Pl — iy
m=0 " -m,z=:0 M) :r;] JnSR( n"Y) H murnlA“"'B;:lL...g;'-l-l
o0
< e —m ) CyY
=64 ﬂé:o'y 7?211’:\’{“PmH"'JE(A“"‘"T“B;::;JJ‘-;.1) < P 1 ”fHL+sBE-
Thus

M
— i
p(f) A}IEIOOP(;O Pr) < T 4o

and the proof of the theorem is complete.

3.2. PROPOSITION. Suppose E is topologically isomorphic to a comple-
mented subspace of e Banach space G. If 7, = 75 on H{V; F) for every

balanced, open set V C &, then 7, = 15 on H(U; F) for every balanced,
open set U C E.

. Proof Let J € L(F; @) and P € L(G; E) be such that PoJ = identity.
Given a balanced, open set U C E, consider the mappings

P* . feH(U;F)— fo P e H(PHU); F),
J* g e H(PTHU) F) — goJ € H(U, F).
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Then J*oP* = identity, and the desired conclusion follows from the following
commutative diagram:

(HUF)m) =5 (HUF),)
rr l ‘ lJ*
(H(PHURF),m) = (H(PTH(U)F),m)
By a result obtained independently by Johnson et ol. [12] and Pelczyhski
[24], every separable Banach space with the bounded approximation prop-
erty is topologically isomorphic to a complemented subspace of a Banach

gpace with a Schander bagis. Thus Theorem 3.1 and Proposition 3.2 yield
the following corollary.

3.3, COROLLARY. Let E be a separable Banach space with the bounded
approzimation property. Then 7, = 75 on H(U; F) for every balanced opern
set U C E and every Banach space F.

We remark that the proof of Theorem 3.1 works equally well, with the
obvious modifications, in the case of Banach spaces with a finite-dimensional
Schauder decomposition. But since that would not take us beyond Corol-
lary 3.3 anyway, we preferred to restrict Theorem 3.1 to the more familiar
case of Banach spaces with a Schauder basis.

Let us remark that Chae [2] has conjectured that 7, = 75 on H(U) when-
ever [7 is an open subset of a separable Banach space. On the other hand,
Aron et al. [1] have proposed a new approach to this problem by study-
ing the behaviour of the topologies 7., and 75 with respect to holomorphic
functions defined on quotient spaces. Anyway, neither Chae [2] nor Aron et
al. [1] have exhibited any additional example of a Banach space where the
problem would have a positive or a negative solution,

Tt is interesting to note that separable Banach spaces with the bounded
approximation property form the largest class among Banach spaces for
which several important problems in infinite-dimensional complex analysis
are known to have positive solutions. Indeed, by a result of Gruman and
Kiselman [10], extended by Hervier [11] and Noverraz 121], the Levi prob-
Jem hay a pogitive solution within this class, whereas, by a result of J osefson.
[18], it has a negative solution in the space co(I), with I uncountable. Fur-
thermore, Noverraz [22], Schottenlober [25] and the author [15], [16] have
obtained various versions of the Oka-Weil approximation theorem within
this class,

After this paper was weitten I learned that Theorem 3.1 and Corollary 3.3
were obtained independently and at the same time by Sedn Dineen. His
proof i entively different from mine. His proof is based on a refinement
of the methods in his paper Holomorphic functions and Banoech-nuclear
decompositions of Fréchet spaces, Studia Math. 113 (1995), 43-54. Dineen
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will publish his proof in his forthcoming book Complex Analysis on Infinite
Dimensional Spaces.

it
i
5
it
17
1
i
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