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Hardy spaces of conjugate temperatures
by

MARTHA GUZMAN-PARTIDA [Mésico, D.F.)

Abstract. We defline Hardy spaces of pairs of conjugate temperatures on ]Ri using
the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert
transform relatos both components, We demonstrate that the boundary distributions of
our Hardy spaces of conjugate temperatures ¢oincide with the boundary distributions of
Hardy spaces of holomorphic functions.

1. Introduction. The Hardy spaces of holomorphic functions Hp ,(IR% )
were originally defined by Stein and Weiss as spaces of harmonic functions
u such that the vector F{x,t) = u(z,t)+iv(z,t), where v is the conjugate of
u, is uniformly in LP(R), that is, {7 |F(z,)|P dz < C < 0, independently
of t > 0. The Theorem of Burkholder, Gundy and Silverstein characterized
HE_(R2) as a space of harmonic functions without appealing to any notion
of conjugacy: a tempered distribution f is in Re Hp (R ) if and only if it is
the boundary distribution corresponding to a real harmonic function u(z, t)
in K% such that its maximal function v (z) = suppy_gi<s [4(y, t)] belongs to
L7, Fefferman and Stein showed that the following properties are equivalent
for a tempered distribution f in R:

(a) f = Ymspu(-t) in & for some v € HY (R3).

(1) $up, = | f*@e(w)| is in LP for some ¢ € S such that =@ =1, where
o) =t p(a/t). _

(€) Sy s | 01 (y)| is in L? for some ¢ as above. _

(d) PE{f)() = sup|y s [u(y, £)] i in LP, where u(y,t) = Py* fy) and
P, is the Poisson kernel.

This theorem shows that H  (R?) may be defined without having re-
course to the Poisson kernel, and in fact, independently of ¢ € . In this
work, we characterize Hardy spaces in terms of temperature functions using
the notion of conjugacy intreduced by Kochneff and Sagher. In particular, we
study spaces of temperature functions u such that Flz,t) = u(z, 1) +iv(z,1)
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is uniformly in LP, where v is the conjugate of u. We show that the boundary
distributions in this case are the same as in the holomorphic case.

2. Hardy spaces of temperature functions. We write

8%y du
2y . HR2Y. D
II(R+)~{uEO(R+).8m2 m_},

HP(RL) = {u € H(RE) : ular < o),
where
[l ze = sup [lu(-, t}]lp,  O0<p< oo
t>0

If the context does not cause confusion we shall write H and H?, respectively.
We shall call the elements of H temperature functions. K(z,t) will denote
the Gauss—Weierstrass kernel.

For 1 < p £ oo, we have the following representations for w ¢ H?;

(a) weH? if and only if u(z,t) = K{-,1) % f(z), where fel? 1<p < o0.
(b) w € HY if and only if u(z,t) = K(-,t) * u(z), where p € M(R), the
space of Borel measures on R.

{See [4, Th. 5} for 1 < p £ oo and use [6, Ch. VIII, Th. 10.2] and the
Banach-Alaoglu Theorem for p = 1.)

Now, we analyze the growth of functions in H2. If u € H? for 1 < p < o0,
Flett's estimate in [4, Th. 2(iv)] gives for ¢t > 0 and z € R,

L fulz, )] < C| f||pt~ ),

where u(z,t) = K(,t) * f(z), f € LP. Also, an application of Flett’s result
in [4, Th. 2(ii) and (v)] gives fort > 0 and z € R,

2) | Deu(z,t)] < C| Fllot~1 Y ),

An immediate consequence of estimates (1) and (2) [4, Th. 2(iv)] is that u
and Dyu are bounded in each proper half-plane {(z,t) € R2 : ¢ > t; > 0).

It remains to analyze the case 0 < p < 1. We will require Lemma 1
below, whose proof follows the main ideas of the harmonic case [5, p. 172]
adapted to our situation. Before we state it, we recall some known facts that
will be used in this part.

Let @ = (0,1) x (0,1}, I' = I U I U Iy (the parabolic boundary of @),
where I't = {0} x {0,1), I = {1} x [0, 1), Iy = (0,1) x {0}, and let X be
the one-dimensional Lebesgue measure on I,

For ¢t >0, let

f(z,t) = Z Bz +2n,t), oz,t)=~2D,8(x,1),

N=—0Q

and for t <0, let K=0=¢=0.
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We consider the kernels K; on I3, i=1,2,3, given by

Ki(z,40,7) = @(z,t — 1), P<r<l,
Ka(m ts L, 1) =p(l —z,t ~ 1), 0<rt<l,
K3(z,t;8,0) =0z~ £,t) —0(z+£,8), D<E<L,

and then consider the heat kernel K{x,t;£,7) on @ x I’ defined as the union

of Ky, Ks, K3. It 35 well known that every temperature function on @ which
is continuous on ¢ can be written on (0,1) x (0,1) as

ule,t) = § K{o 46, r)u(g,7) dAE, 7).
r

We shall also consider for every 0 < v < 1 the mapping T,.(z, t) = (&r, T},

where
zp =re -+ (1—7)/2, fp=rit4 (1-7r7).
Notice that Q = {T.(£,7): (§{,m) e I, 0 < r < 1}

LEMMA 1. Let u be a temperature function on a rectangle R = (g,b) x
(¢,d) C B2 where d—c = (b—a)?, and let u be continuous on R. If (zq,t0)is
the middle point of the upper boundary of R, then for everyp with0 <p <1,

1

|u($01t0)|p <Cp 1B

SS |u(z,t)|? dzdt,
R

where |R| is the area of R and C, is a constant depending only on p.
Proof. As the mapping ¥ : @ — (a,b) X (¢, d),
&7) = ((b-a)+a,(d—e)r+c),
makes uo W a temperature function since d —e = (b— a)?, there is no loss of
generality in supposing that R = @ and {{, ju(z,t)fPdadt = |Q] = 1. We

notice that u o T} is a temperature function on @ for 0 < r < 1, because
To(w,t) = (r(z — 1/2) +1/2,7%(t = 1) + 1}. For r > 0 let

myr) = [ |z, P axe. )],
)

aud
Moo (r) = sup{|u(T(€, 7)) : (€, 7) € I}
We may also agsume that meo(r) > 1 for every r € (0,1) since otherwise
the maximum principle for temperature functions on a rectangle would im-
mediately give us the required inequality.
First, we notice that

(3) ma(r) < moo(r)' Pmp(r)F.
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We have the representation

u(Tr(w, 1)) = | K (2,8, 7)u(To(E, 7)) dAE, 7).
r

For (z,t) € QU = [(1 —7)/2, (1 +7)/2] x [(1 -r?),1] we have

u(z, ) = | K(T7 (2, 8); €, myu(To(€, 7)) dAE, 7),
I

and since Ty, o Ty = Tys, it follows that for (z,1) € @), 0 < s < r < 1,
(4) (@, ) = | K(Tan(T7 M, 8)); &, a6, 7)) dALE, 7).
r

It is enough to analyze the behavior of K (Ty,,(z,t);€,7) for (z,1) € @
because T;"!(z,1) € Q.
Now, we get an estimate of K3. Since (see [2])

Oz —yt)—Fz+yt)=2 Z gt sin(nmz) sin{nry),
n=1

we obtain for 0 < p < 1,

|K3($g,tg§§»0)‘ < 22 [Q
n=1

1 1
< =(1=p)"2
24 (1 - e¥)n2n? — 3 (1-e)

To get an estimate of Ky, we first notice that
p(z,t) = —2D K (z,t) + U(z,1),
where U(z,t) = 3, ., —2D;K(z + 2n,t), which is smooth and bounded,
Since
_9D, K (z,f) < { g:c/t)K(sc,t) ;ii 2 8:
and (1/t#)e=="/(4) < C/|z|* fort >0, 8> 0,z € R, we have for 0 < o<1,

| K1 (2g,;0,7)| < € (;;:((11__5)//22)3 +C<CO-g) 2

It remains to analyze Ko. As before, for 0 < p < 1,
|K2(mgrtei L £0(1- Q)_2~

Collecting all the estimates above, we obtain from (4), for ¢ = s/r and
(z,t) € Q(s)a

(5) [u, 1)) < M(1 = s/7)7% | [(To(&, 7))| dAE, ),
r

where M is a positive constant. Inequality (5) implies

(6) Meo(s) < M1 — s/r) " 2my (7).

icm
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Choosing s = r® with @ > 1 we obtain from (3) and (6),

Moo (1%) € M(1 =721 2 m (1) " Pmy(r)*.
Taking logarithms, multiplying by 1/r and then integrating with respect to
r, we get

i 1
(7) S log Mee(r*)dr/r < Co+ (1 — 1) S log meolr) dr/r
1/2 1/2

1
+ S log tn, (r)P dr /7,
1/2
1 a1y
where C, is the real constant Si/z log M dr/r + 2§ ,log(1 - W-tdr/r.
Now, we notice that
3

(8) 1= {{ju@ t)Pdzdt = {§ luls, ) dzdt,

Q i=1Q:
where
Oy ={(z,1):0<x<1/2, (1-4(z~1/2)*) £t <1},
Qe ={(z,1):1/2<2<, {1-4(z- 1/2)%) <t <1},
Qs ={(z,8):0<2<, 0t < (3~ 4z — 1/2)H)1.
If we consider the mapping T': [0,1] x [0,1] — @1,
T(,7) = (1 - €)/2, &7+ (1 - €),

we get

' 1
[§ lu(a, OfF dedt = 3 § [ 21T (€ m)P drde
451 ]

1

| { £1u(Te 0 )P dx(0,7) dé

[ L

Oun the other hand, taking the mapping S : [0,1] x [0, 1] — Qo,
S(€,7) = (L+6)/2, €7+ (1 - £M),
we gee that 1
|| (e, 1)l dz dt = [ | e2lu(me(t,m)P d(1, 7 de.
Q2 0y
Finally, we consider the mapping W : [0,1] x [0,1] — Qs,
W(E )= (rt+ (1 —7)/2 L=

R
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and we obtain
1

Wiu(z, P dedt =21 | 7[u(T(€,0)P A€, 0) dr.

Da 0y
Collecting all the integrals, it follows from (8) that
1 1
Yrmy(r)? dr = { | r2lu(T (6, M) dA(E, 7) dr < C.
0 or
Then
1 1
(9) { logmy(r)P dr/r < 8\ r?my(r)P dr < C.
1/2 0

Using inequality (9), making a change of variable in the integral on the left
hand side of (7) and choosing a < 1/(1 —p) we can write

1

S log miee (r) dr/r < Cp,

1/2e

where Oy, is a constant depending only on p. This inequality implies that
there exists rg € [1/2%,1] such that meo(rp) < M,, a constant depending
only on p, and from the maximum principle the assertion follows. m

Remark. Notice that Lemma 1 is also true for 1 < p < oo, since it is
valid for p = 1,

THEpREM 1. Letw € H? for 0 < p < 1. Then there exists a constant C
depending only on p such that for every (z,t) € R?,
(10) [u(z,£)] < O|ju| got 1/ P,

In particular, u{x,t) is bounded in each proper half-plane {(z,8) st >t >
0}. In fact, w(z,t) — 0 if (,£) — oo in such o half-plane.
Proof. Let (:L‘a, to) c Rﬁ, and Rg S ({I:o-—-\/t—a/@\/i), ) 4-\/%/(2\/5)) hd

{to/2,%y). By using Lemma 1, the proof of this result is exactly the same a4
the proof of the harmonic case given in [5, p. 174]. w

Next, we analyze the growth of Dyu for u € HPD<p< 1. Lett >0
and z € R. Fix tg > 0 such that /2 < to < t. Estimate (10) implies

u(g,) = | K(@—y,t-tohu(y,to) dy
and therefore using {7, Lemma 3, (18)] we obtain
o>
e, )] < €] ot ™ OP) min{ ! !
T e Ve s e
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dy

—1/(2
= Clullmts ™™ § =g
1g)3/2 Y

[y—a?>(t-
_ d
+ C|u) oty 1/(2p) S _ %Y
(f - tg)3/2
ly—az |3 <(E—1g)3/2

< Ofullze (t — #9) 77130,
Letting tg — t/2 we finally get
(11) [ Dyu(x, t)| < Clluf| gt~/

Now we analyze the houndary behavior of w € H?, 0 < p < oo. In the
case 1 < p < oo, u(-,t) — f in the L? norm as t — 0 (see [4, Th. 2(xi}]),
where u(z,t) = K(,1)* f{z) , f € L*. In the case p = 1, u(,¥) — p
as t — 0 in the weak* topology of M(R), where u(z,t) = K(-,t) * p(z)
with € M(R). Therefore, if u € H?, 1 < p < oo, the family (u(-,t))i>0
converges in 8’ as ¢t — 0 and the boundary distribution uniquely determines
. Now suppose that u € H?, 0 < p < 1. Theorem 1 implies that each u(-, )
is a bounded function, hence a tempered distribution. In fact, (u(-,t))t0
converges in 8, as stated in the following theorem.

THEOREM 2. Let u € HP, 0 < p < vo. Then limy_,gu{-,1) = f evists in
S" and f uniquely determines u.

Proof It remains to consider the case 0 < p < 1. Since estimate
(10) holds, taking @ = b = 0 and ¢ = 1/(2p) in 4, Th. 17], we see that
u(z,t) = K(-,t) * f(z) where f € §'. Writing F¥ = 7, for each p € S we
have (u(-, ), @) = (Ful-,t), F~Yp) = (47 O P f,F~1g) — (Ff,F'g) =
{f i) ast — 0. It is clear that f uniquely determines u. m

3. Hardy spaces of conjugate pairs of temperature functions.
Kochneff and Sagher introduced in [7] the class AH that we shall use to
define our Hardy spaces of pairs. For real functions u,v € C'(R3.), they
write u+ v € AH if :

(a) Di % and .DE/ % exist on 13, and

(b) the following equations hold:

Dyufz,t) = ——iD:."/Q'u(m,t), ?ID%fzu(m,t) = Dyv(z,1),

where D;l /% iy ‘Weyl’s fractional derivative operator of order 1 /2 with respect
to t.

We recall that (see [9]) Weyl's fractional integral of order a > 0 s defined
by

o0

[ £(s)(s =) ds
k1

D*1(8) = g
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and the fractional derivative of order & > 0 is
.

D¥f(t) = ;z(wa) S f(n) (s)(s — t)&~1 ds,

where o =n — @, n € Nand 0 < & < 1. Of course, f must be sufliciently
regular to ensure that the integral converges.
In [7] it is shown that

(1) I u+dv € AH then u,v € H.

(2) K +iHK € AH where K is the Gauss~Weierstrass kernel and HEK
is the Hilbert transform of K with respect to the spatial variable.

(8) g* K +iH(g* K) € AH where g € LP for 1 < p < oo and the
convolution is taken with respect to the spatial variable.

DerINITION 1. For 0 < p < 0o we define

o
HF = {Fm u+iv € AH : sup S |F(z,1){P do < 00}4
0

When u € HP, estimates (2) and (11) in the previous section imply

1D; u(z, )] < OB(1/2,1/2+ 1/(2p)|u st >V for 0 < p < o,

where B is the beta function, Therefore, any u € H?, 0 < p < o0, has
fractional derivative Dtl 2y, Moreover, if u, v are real functions in H? and
satisfy condition (b) in the definition of the class AH, then u + v € H?,

THEOREM 3. For 1l < p < o0,
HP = {u +iHu:u € H?,u real},
where Hu is taken with respect fo the spatial varigble.

Proof If uw+ iHu is in the set on the right hand side, then [7, Ths. 5,
6] implies that u -+ iHu € AH, and since M is bounded from L# to LP for
p-> 1, it follows that u + {Hu € HP.

Conversely, let F = u +iv € H? and u(x,t) = K(,t) « f(z) for some
f € LP. Since K +iHK € AH we have

[> BN« a]

e V() Pkl =y s 4000 dy) a2 as

0

Dov(z, t) =

=i | DYPE(z vy, t)f()dy

—

icm
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= S DmHK(z - y:t)f(y) dy = DmH(K{'at) * f)(:i}),

hence v(z,t) = Hu(z,t) + C(t) and since v € H? we infer that v(z,t) =
Hu(z, ). Asin [7, p. 46 the application of Fubini’s Theorem is justified by

|DK (2 —y,s+1)|s 2 ds

& e B

<CD§)min{ ! ! 572 ds < C'min —~1—~—1
- lz—~yP}’ (s+1)%/2 - (w—9y)2"t]’

and the differentiation with respect to the spatial variable under the integral
gign is valid since f € IP and

1
D, HK(z,1} < Cmin ~—1—,-— by |7, Lemma 3]. =
g2’ ¢

CoROLLARY 1. For 0 < p <1,
HP C {u+iHu:u <€ H?,u real}.
Proof Let f=wu+4iv € HP and fix 5 > 0. Then
Ug, (2,1) = u(z, t+ 1) = K-, t) = ul-, t0){z),
v, (2, 8) = v(z, t + t0) = K(-,t) * v (-, to)(z)-
Theorem 1 implies that u(-, to), v(-, %) € LPNL® < L9 for every ¢ > 1, and
since g, +ivy, € AH, it follows that uy, +ive, € HY Then using Theorem 3

we obtain w(-,t + to) = Hu(,t + tg) for every £ > 0. Since ¢ and £y are
arbitrary, we conclude that for any s > 0, v(-, 8} = Hu(-,s). m

For F € HP, 0 < p < oo, we define

o

v
|Flew =sup [ | IF(a,tyrda] s
>0

- 00
F s ||Fllgy is a nomm for 1 € p < oo and F — |[F||f is a p-norm for
0<p<l.
TunoreM 4. HF is complete for every 0 < p < co.
Proof Let (F,)%%, be a Cauchy sequence in HP |, F, = tn + iUn. By
estimates (1) and (10), '
(=~ ) (2, 2)] < Gtwl/(zp)“Fn = P ||

where 0 < p < oo. Then (un)2%; and {vn)s2, are temperature functions
which converge uniformly on compact subsets of R? to temperature func-
tions u(z,t) and v(w,t), respectively. It suffices to show that u and v satisfy
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condition (b) in the definition of AH, since letting F' = u +4v and ¢ > 0 we
get
o] o0
| 1Fa(z,t) = F(z, )P dz <liminf | |Fn(z,) = Fu(a,6)Pdz <&
=0 -0

for n arbitrarily large. The rest of the proof is a routine computation. m

The last part of this section is devoted to characterizing our H” spaces.
‘We denote by HY , the classical Hardy spaces of holomorphic functions:

HZ, = {F=u=+iv: F is holomorphic on %% and

[}
sup S |F(z,t)|P dz < oo}
>0
with the p-norm
o0
|F|%r =sup S |F(z,t)|Pde "if0<p<l
Hhcl -5>O o
and the norm
i s
1 Fllge = sup [ | [F( P dm} if 1< p< oo.
Bl s b

It is well known that for 1 < p < oo,
(B0 | llmr ) =2 ({F +9HF 2 f € ReLPY || Flls + S lp)-

hol

Theorem 3, [4, Th. 2(xi})] and continuity of H from LP to L imply
(H? |- llae) = (B - ez, ), 1<p< oo

hol
For 0 < p €1, we define the space Re H? whose elements are the bound-
ary distributions Re F'(z) corresponding to the functions F € HP with the
p-norm Re F'(z) — ||F|{}s. As in the holomorphic case (see [5, p. 236]), it
can be shown that Re HP — &',

In the holomorphic case, we denote by Re H} | the analogous space.

Remark. We recall that we are viewing the elements of HIL , as har-
monic functions u for which the vector F(x,t) is uniformly in L?.

The classical result by Fefferman and Stein proved in {3, Th. 11] states
that for 0 < p < oo and f € &, the following are equivalent:

(a) u™(z) = supP)y_y ¢ [0e* f(y)| € LP for all p € S satisfying 2 o=1
(b) The distribution f arises as f = limy—,ou(-,t) in &', where u € H?

Lol”
Moreover, ||u||§’{,1: L [[w*{|2, where ~ means the standard equivalence of
La]
norms (p-norms).
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In {10, Prop. 3, p. 123] the following characterizati.on of Re H} , is given:

If f € &' is restricted ot infinity (that is, f * € L for every ¢ € S and
for all r < oo sufficiently large) and 0 < p < oo, then f € ReHJ ; if and
only if

SUp{[[f el + I1HF * @ellie} S O < oo,
where p € 8, §* =1, 0 (z) =t p(z/t) and C is a constant. Of course,
Hf means the Hilbert transform of a distribution f that is restricted at
infinity (see [10, p. 123]).

Before stating the main result of this paper, we need to prove the fol-
lowing lemina.

LeMMA 2. Let f € 8" and w(z,t) = K(-,t) * f(z) for (z,t} € RE. If
wh{z) = supysg [w(z, )| € LP then w*(2) = sup|,_ycpe [w(y, 1) € LP and
[|aw* |5 ~ [|w+H§3 for 0 < p < co.

Proof Let z € R and (y,%) € {(£,7) : | — 2| < 7Y/2}. If R denotes

the rectangle (y — V4/(2v2),y + Vt/(2v2)) x (t/2,t), then according to
Lemma 1 we have

o 8) P72 < o [ o, )2 ddt

= 3372
3/ "
wty/E
c +
S E%st+(z)p/2 dz dt’ < m S .w-l-(z)p/ﬂ dz,
R s

which implies (w*)}*/?(z) < CM((wt)?/?)(z), where M is the Hardy-
Littlewood maximal function, thus
[ (w(e)do 5 €| (M((w*P/) (@) do < 0| (w')? () de.
R i R
The other inequality is immediate. m
THEOREM 5. ReHP = ReH} |. Moreover, H? = HY | for 0 < p < 1.
Proof. First, we will show that ReHP = Re Hf .
Lot f & Re HP. Then there exists u--iv € HP such that f = lim, .o u(-, %)
2
in &. Fix ¢y » 0. Set Glz) = 7%;;6"“” /2. Then K(z,t} = G sm(e), thus
Corollary 1 implies ug, (t) = G, /g7 * ul’, to), va, (1) = G, g7 * Hu(:, %), and
moreover
Sug{ﬂgm *u(, to}llh + 16,57 * Hul to)[B} < oo
>

Since w(-, ty) € L9 for any ¢ > 1, it is a distribution restricted at infin-
ity. Then [10, Prop. 3, p. 123] implies that u(-, 7o) € Re HY . Also, from
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Lemma 2 and. [3, Th. 11] we have
12) Gt ~ G to)IE ~ [y to By
where

G5 (ul- to) (=) = ‘y_ilffm!g\/ﬂ * (u(- o) M),

G (ul to))(z) = sup |G 55 * (u(:, 2a)) ().
On the other hand, if we define
Ftn (:E,t) = P x u(-,to)(ﬁﬂ) + z7_":(‘1:'13 * ’LL(~, tg))(:’b‘)

where P; is the Poisson kernel, we obtain a holomorphic function in H} |
which satisfies Fy, (z,t) — u(z, to) +iMu(z, o) = ulz, to) +iv(e, o) ast — 0
a.e. on R; consequently (see [5, Cor. 1.2(c), p. 233]),

Byl ~ [u(-t0) + io(-,to)]3
Thus,
(13) {ul )| Zermy = [Fullhy. < Clul o) + 800 10) 3 < CIlf oz
Combining (12) and (13) we get
9% (u(- T)IE < Clut t0) By < Cllilhers

and since G&(f) = lims, 0 GG (u(-, tp)) a.e. on R, an application of Fatou's
Lemma gives us

165 (HNE < Cllf R

and hence

(14) e S ClFerss

This shows that f € ReH} .

Conversely, let f € ReH} . There exists w + jv'¢ HJ ; such that f =
limypu(-,t) in &, in fact, f = lms .o u(-,t) inReH} . From [10, Prop. 3,
p- 123] we have

il}llg{\lf *Galf + IIHS * G mllp} < O < oo

Consequently, the function wy (z,t) = K (-, t)* f(z) belongs to H?. Moreover,
wi{z,t+o) = K (1) #wy(z, o) for all £,¢p > 0 and aswy(,19) € LP N L™
C L% for every ¢ > 1, it follows that Hwi(-,20) € L9 This implies that
wl(m, t+t0)+iﬂ)2(.’£,t+to) € AH where 1U2(£D,t+t()) = K(', t)*H'U)l(-, fo)(fﬂ).
Moreover, wy + twy € H? because wa(x,t + 1) = K (-, £ +1g) * H f(z). Now,
wy (1) converges to an element in ReH? and also wy(-,t) — f in & as
t — 0, and since Re H? =+ &' we see that f £ Re HP.
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To finish the proof, it is sufficient to notice from (14) that the bijective
linear mapping 7' : H? — Hﬁul’ F=uy+iv— f=lim ou(-t)in &, is
continuons, and the result follows by the Open Mapping Theorem. w

CoroLLARY 2. Let f € & and 0 < p < 1. Then f € ReHP if and only
if the mazimal function w*(z) = sup),_, 1.3z 9,5 * f(y)} belongs to LP.
Proof. Just apply Theorem b and Lemma 2.
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