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Abstract. Let F be an analytic function from an open subset {2 of the complex
plane into the algebra of n x n matrices. Denoting by s1,...,sn the decreasing sequence
of singular values of & mairix, we prove that the functions log s1 (F(A)) +. .. +log sg(F(A)}
and log™ 51 (F(A) + ...+ log™ s (F(A)) are subharmonic on 2 for 1 < k < n.

0. Introduction. If f denotes a meromorphic function on the complex
plane, the characteristic function T'(r, f) plays a fundamental role in Rolf
Nevanlinna’s theory to prove the First Fundamental Theorem.

In his attempts to adapt the classical Nevanlinna theory to the case of
n % n matrices, O. Nevanlinna [4, 5] introduced the characteristic functions
for matrices, that is, the functions which are denoted by #p (1 £ k < n)
in Theorem 2. In order to apply the Maximum Principle, it is a natural
question to agk if these functions are subharmonic. The aim of this paper
is to answer this question of O. Nevanlinna in the affirmative (Theorem 2).
The paper also contains a slightly different version (Theorem 1) which is
the main ingredient in the proof of Theorem 2.

1. The results. Given an n X n matrix M we denote by A;(M),...
s Ap (M) its n cigenvalues, each one counted with its multiplicity, and
ordered in such a way that

(M) 2 A2 (M)} 2 .. 2 A (M)
We recall that the n singulor values of M are
sy (M) = M ((M*M)M?) = (| M]| 2 sp(M) = da(M"M)Y?) 2 ...
> sn(M) = Ap{(M*M)'/3).

They form a decreasing sequence of positive numbers. These singular values
are invariant under multiplication of M by a unitary matrix. Moreover, by
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H. Weyl’s famous inequalities (see [3] for instance) we have Hf:l (M) <
Hf:z 3¢(M) for every k such that 1 < k < n.

Let F' be an analytic function from an open subset {2 of the complex plane
into the algebra of n x n matrices. Because [A;(M}] iz the spectral radius
of M, z — log [A1(F(2))| is subharmonic on {2 (see [1], Theorem 3.4.7). Are
the corresponding statements for Ag, ..., A, also true? Taking

= (1 1) e me,

we have |Aq (F{2))| = max(|1+z|, |1-z]) and |A2(F(2))| = min(|1+z], |1~z]),
so log [A2(F(2})] is not subharmonic on the plane because [Ao{F(2))] is
not, as it viclates the mean inequality on a circle of centre 0 and radius
£ > 0 small enough (see [2], §2, for calculations). Nevertheless as a con-
sequence of a slightly more general theorem of [2], we can conclude that
z = log I\ (F(2))| + ... + log {Ak(F(2))] is subharmonic on {2 for every k&
such that 1 <k < n. In the Lemma of §2 we shall give a proof of this result
in the case of matrices. But what can be said about the analytic properties
of the functions z — log 5;(F(2)) for i = 1,...,n? Because s; (M) = | M|| it
is clear that z — log 51(F(2)) is subharmonic on {2 (see [1], Lemma 3.4.6).
Unfortunately, the functions z — log s; (F(2)) (¢ = 2,..., n) are not subhar-
monic in general. To see this take

11
F(Z) = (0 z) S Mz(@)
Simple calculations show that s3(F(z)) = max(1,|z|) and s2(F(z)) =
min(1, |z]). This last function is not subharmonic because it violates the

mean inequality on the unit circle; consequently, its logarithm is not sub-
harmonic either. ‘

The aim of this short nete is to prove the following two results.

THEOREM 1. Let F be an analytic function from an open subset {2
of the comples plane into M,(C). For 1 < k < n the functions wr(z) =
Eif;l log s;(F'(z)) and e?+ are subharmonic on 2.

We recall that log™ r = max(0, log ).

THECREM 2. Let F be an analytic function Jfrom an open subset 12
of the complex plane into M,(C). For 1 < k < n the functions oy, (2) =
Vor o log* s,(F(2)) and ) are subharmonic on £2.

2. The proofs

LeMMA. Let F be an analytic function from an open subset 2 of
the complex plane into M,(C). For 1 < k < n the Junctions ox(2) =
Ele log |A:(F(2))| are subharmonic on £2.
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Proof First step. Let zgp € £ be fixed, ap € Sp F(z) and s > 0
such that the disk B(ao, s) isolates o from the rest of the spectrum. There
exists » > 0 such that |z — zg| < r implies z € {2 and Sp F(2) N 8B{ag, s) =
@. From the Scarcity Theorem ([1], Theorem 3.4.25) there exists an inte-
ger m(ag) such that Sp F(z) N B{ap, s} has exactly m(ap) points for § <
|z—zg| < r. It is easy to see that this integer m(cyg) is in fact the multiplicity
of F{Ag) at ag. This comes from the fact that m(cg) < Mult(F{)o), o) and
=3 aesp Rzo) ™) S Laesp Pieg) MUE(F (Ra), @) = n. If we denote by
a1(2), ... eom(2) the elements of Sp F(z) N B(a, 8), for 0 < |2 — 2| < 7,
then the function h defined by h(z) = af', h(z) = a1(z). .. am(z) for 0 <
z — zg| < 7, is continuous on B(zg,r) and holomorphic on B(zp, 7)\{z0}
g0, by Radd’s Extension Theorem, h is holomerphic on all B(zg,r). Conse-
quently, we have

{1) mlog|ag] € 5%*- S

|z—zo‘=g

(log laa(2)] + . .. +loglam(2)]) |dz|

for 0 < p < r. Moreover, by the continuity of the spectrum on M,{C) it is
easy to conclude that the functions oy, are continuous on (2.

Second step. We fix zp € {2 and suppose that k is the sum of the
multiplicities of the first p spectral values of F{z). Applying the formula
(1) p times and the fact that |AL(F(2))]...|Ak{F(2))}| is greater than any
product of & moduli of elements of Sp F(z), we conclude that

2) (Pl < | on(F(2)) ldd

for 0 < g < r. This means that oy, is locally subharmonic at z.

Third step. We fix zp € £2 and suppose that { is the greatest sum of
the first multiplicities in the spectrum of F'(zq) which is less than k. Suppose
that [ < k < 14 m where m is the multiplicity of Ay (F(z)) (the casesl =k
or k = [+ m have been studied in the second step). By formula {1) we have

(3)  mlog Ak (F(20))|

5-2% | GogDL(F(2)| + .. +1og AT(F(2)) |dz|

|2~ za|=p

for 0 < o < r, where AL(F(2)),....A\["(F(2)) denote the m points of
Sp F(z) N B(ag, s) with ag = Ae(F(20)). Denote by oq1(2) = ... 2 op(z)
the k — | greatest moduli among AL(F(2)),..., AR(F(2)). The m mlkk—kil
remaining moduli are less than or equal to ax(2) < (cu+1(7) ... ax(2)) fk=t,
Consequently, by (3), we obtain
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(4)  mlog | A (F(z0))l

- {
< | (14222 D Gogars () + .+ g an()) d2].
27 k—1

EREMET:

Hence
(5) (k- 1)log [Xe(F(z0))|

3—21— S (log g (z) + ... + log an(2)) |dz|.
T ‘

|z—~za|=0

Applying (1) we conclude that

i
) nPE) <5 | (St FE)I) las,
|z—z0|=g J=1

where the v;(F(z)) are the I elements of Sp F(z) in the union of the
B(i(F(z0)),s), i = 1,...,1. Taking the union of the { elements v;(F(z))
with the k — [ elements of Sp F(z) N B(A(F(z0)),s) which have for moduli
a+1(2), .. ., (%), it is possible to reorder this set of k elements in such a
way that their moduli are respectively less than or equal to [\ (F(2))],...

-, |Ax(F(2))]. Adding (5) and (6) we conclude that oy (F(z)) satisfies lo-
ca]ly the mean inequality (2) at 2p.

The function o3 being continnous and locally subharmonic at each point
of {2, it is subharmonic on (2. «

Proof of Theorem 1. By H. Weyl's inequalities and the invari-
ance of the s numbers under multiplication by a unitary matrix, it is clear
that

maXH A(UM)| < Hsz (M),
=l
where the maximum is ta.ken over all unitary matrices. By the polar de-
composition of M there exists Up unitary such that M = (M*M)'/20; and
obviously A (U M) = sz(M) So we have

(7) ma.xH!)\ (UM)| W-Hsm
=]l
By the Lemma, the functions p¥(2) = Z 1 log [\ (UF(z))] are subhar-
monic for every U unitary. Consequently, we have
27
1 .
8) o (20) < 5 5 i (20 + re'’) df

for B(z,r) C 2. Taking max oY for all U unitary the same ineqﬁality (8)
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is true. Hence, from (7), pu(z) satisfies (8) and, as it is continuous, it is
subharmonic. The last part of the theorem comes from the fact that the
exponential of a subharmonic function is subharmonic. a

Proof of Theorem 2. It is obvious that px(z) < ¥y (2). We prove
the theorem by induction on k. For & = 1, ¢; = ], so it is subharmonic.
Suppose the result is true until k& and we prove it for k + 1. Let 2/ =
{#z € 2 ¢ sp41(F(2)) < 1}, which is open. If 25 € {2’ then ¥y (z) =
¥y (2) in a neighourhood of zj, s0 ¥y is locally subharmonic on ¥, and
consequently 9011 is subharmonic on 2'. If 25 € £27\ 2 then by continuity,
and taking B(z,r) C (2, we have, by the previous theorem,

27

1 1
Ye+1{20) = ereilzo) < o~ S i1 20+ re'’) db

2
1 .
< _QM‘.'; é ’[/);H_l(ZQ + re"‘a) 4.

Consequently, 4511 is locally subharmonic at zg. Now if 25 € £\ 2’ there
are two cases. Either 81(F(zg)) < 1, in which case ©r41{F(20)) = 0, s0 the
mean inequality is true on a small circle centred at 2z because ¥{z) > 0, or
51(F(zp)) > 1, in which case there exists a larger r (1 < r < k+1) such that
87(F(2)) > 1.7 = k-1, then in a neighbourhood of z; we have yp+1(2) =
©r41(2), 80, by the previous theorem, 1,1 is locally subharmonic at zg. If
r < k then hge1(z0) = ¥r(20) +logt spr1(F(20)) = wu(z0). Consequently,
by subharmonicity of 45 we have
2

Y (20) = Yalzo) < 5= | vatea + re) a6

27

1 ¢
<5 | 11120 + re®) df.
i 0

The function %1, being locally subharmonic, is subharmonic on all £2. =
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