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Cohomology groups, multipliers and factors in ergodic theory

by

M. LEMANCZYK (Torud)

Abstract. The problem of compact factors in ergodic theory and its relationship
with the problem of extending a cocycle $0 a cocycle of a larger action are studied.

Introduction. Given an ergodic automorphism 7 : (¥, C,v) — (¥, C,v)
of a Lebesgue space (Y,C,v) call any of its invariant o-algebras a factor.
Denote by

Clry={8: (¥,C,v) = (V,C,v): ST =78, S invertible}
the centralizer of 7. Endowed with the weak topology in which
Sp— 8 iff p(SF*AA SELA) — 0 for each A €C,

it becomes a Polish group. If H C €{7) is a subgroup then it defermines a
factor A(H) given by

AH)={AeC:5A= Aforeach S € H}.
On the other hand, a factor A determines a subgroup H(A)} ¢ C(7) by
H(A)={SeC(r): 5A= A foreach A € A}.

From this point of view compact subgroups are of special interest as for
them

(1) HAH)) =H

{see [5], [17]). Moreover, in this case T can be represented as a compact
group extension T, defined on the space (X x H, Ji), where X stands for the
quotient space corresponding to the factor A('H), i for the product measure
of the corresponding image of » with Haar measure my and T denotes the
quotient action of 7; T, is defined by

Tp(w,8) = (T2, p(2)5),
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276 M. Lematiczyk

where ¢ : X — H is a cocycle (i.e. a measurable map, see next section for
an explanation of the vocabulary).

Assume that we know all factors of T' and we are interested what new
factors appeared for 7, (clearly 7' is a factor of T, = 7). Under certain
assumptions on T (e.g. 2Z-simplicity, see [9]) we show that any factor of T,
will be determined by a compact subgroup in the centralizer of a certain
natural factor of Tj,. Assume that H is additionally Abelian. Here, by a
natural factor we mean a factor obtained by a compact subgroup of H. It is
clear that given a factor £ of T, we can choose the largest compact subgroup
F C M such that £ is still a factor -of this natural factor (see [9], [11] for
further details). Hence we conclude that £ is a factor of Tz : X x H/F —
X x H/F. So to simplify the notation we can assume that F = {Id}. Thus
there exists a compact subgroup H' C C(T,) that determines £. Due to

our assumptions on T, each element W € H'is of the form W = Wi,
Wio(z, 8) = (W(z), f(z)u(S)), where W € C(T), f : X — H is measurable
and v : H — H is a continuous group automorphism (see [11], [13]). Let
os(z, R) = (z,RS); then clearly o5 € C(T,). The group Wog : W €
H’, § € H} is then compact (e.g. [8], p. 55). However, if two liftings of the
same W are in M’ then they differ by a certain § € H and hence all sets of
£ are invariant under o5. This, however, contradicts our maximal choice of
the group F. Hence our subgroup H’ chooses only one lift (see Lemma 2.6
of [8}). Following [7], we call such a subgroup diagonal. Hence under all our
assumptions all factors of our group extension are determined by compact
diagonal subgroups.

We will now try to reverse the problem. Suppose that we are given a
group extension T, : X x G — X x (3, where G is a compact Abelian
group. Suppose moreover that a compact subgroup R < C(T) is given
with the property that each element S of it has an extension to an element
S of C(T,,) (i.e. can be lifted to C(7,,)). Is there a diagonal subgroup in
{§ag 15 €R, g€ G}? A partial answer to this question has been given by
J. Kwiatkowski [7] (in case of 7" an automorphism with discrete spectrum) in
terms of some functional equations. In this note we give further clarification
of this problem and exhibit its relationship with the problem of extending
a cocycle to a cocycle defined for a larger group (see [2], [3]). Namely, we
will show that (under some circumstances) the problem of the existence of
compact factors is equivalent to the problem of extending a Z-cocycle to a
cocycle of a larger action.

The author would like to thank Professor K. Schmidt for turning his
attention to the theory of Borel multipliers and Professor A. Danilenko for
some useful remarks on the first version of this paper.
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1. A scheme from cohomology theory. Assume that S is a group
(so Z(8) will be a natural ring coming from ). Let A be an Abelian group,
where we assume that A has a fixed structure of an S-module. For each
n 2 0 denocte by

F™(S, A)

the corresponding module of all functions from 8™ to A. The elements
of F"(S, A} are called n-cochains. The nth derivative 6" : F™(S, 4) —
F71(8, A) is introduced by the formula

(2)  8™(e)(s1,. oy 8ne1) = s190(s2, -, Snp1)

n
+ Z(—l)ilp(sl, e 381, 818541, 814254, S-n-l-l) + (—1)n+1<,0(.5'1, R Sn).
i=1

We then have §"*1 o 6™ = 0. In standard cohomoclogy language, a 1-cocycle
is f: 8§ — A with
§f=0, ie f(s1s2)—s1f(s2)— fs1)=0.
A l-cocycle f is a 1-coboundary if there exists a € A such that
f(s)=sa—a.
Also, a 2-cochain @ is a 2-cocycle if

31(82, 83) — (5182, 83) -+ (81, 5283) — @(s1,82) = O,
and it will be a 2-coboundary provided that there exists a 1-cochain f such
that
p(s1,52) = s1.f(s2) + f(s1) — fls182).

In the measure-theorstic context, to all the above notions we will al-
ways add certain measurability conditions. The corresponding groups of
n-cocycles and n-coboundaries will be denoted by Z™(S, A) and B"(S, A)
respectively. In what follows 1-cocycles (1-coboundaries) will be called co-
cycles (coboundaries).

ExaMPLE 1. Suppose that S acts on (X, B, ) (s — T; with Ty, 5, =
T,,Ts,) and let G be a compact Abelian group. Denote by A = M(X,G)
the group (under pointwise multiplication) of all measurable functions from
X into G. Then & acts on A as

sfi=fT7Y = Tyor.
Consequently, 1-cocycles can be identified with measurable functions f =
F(s,2) of two variables with values in G satisfying
Fflsis2,2) = fls1,2) + f(SQ,T;llm),
while 1-coboundaries are of the form

f(s,2) = g7, (=) — g(e)
for a g € M(X, &),
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EXAMPLE 2. We will now complicate our picture by adding to the above
representation of & another representation of S in Aut(G) (the group of
continuous group automorphisms of ). We will denote this new represen-
tation by s — vs with ¥;,s, = ¥s,Vs,. The corresponding action of & on

A= M(X,G) is given by
sf = vs(fI57).
This definition is correct:
s(fi+ f2) = vs((fL + )TN = v (AT + RIS =sfi+ sh
and moreover,
(5182)f = ?Jszsngs:.}jg = us, (vs, (fTs_gl))Tam;l = s1(s2f).
We find that a I-cocycle f is a measurable function satisfying
fs182,2) = fs1, %) -+ vs, fs2, Ts“llm),
and a l-coboundary satisfies
f(s,2) = veg(Ty ') — g{z)
for a g € A.

Assume now that two groups §, R act on (X, B, p) via s — Ty, v — T,
We will assume that both act freely (i.e. for a.e. 2 € X the maps 5 — T,z
and 7 — T,z are bijections) and that {Ts : s € S} N {7, : r € R} = {Id}.
Suppose moreover that

T.T. =TT, forallse &, reR.
Let P denote the group generated by T,T,, r € R, s € § (i.e. P can be
identified with § x R). Assume that ¢ : Sx X - Gand ¥ : Rx X — @

are cocycles. Moreover, assume that v, = Id for all s € § and let » — v, be
a representation of R in Aut(G). Then we get easily the following.

ProrosrTion 1. The formulas F(TT;, ) = ¢(s,z) + 9 (r, T ') defines
a cocyele for P iff for every s € S andr € R,

(s, z) -+ 9(r, T x) = (r, z) + vp(s, T z). w

2. Cohomology, extensions of cocycles and lifting subgroups.
We assume that T : (X, B, u) — (X, B, 1) is ergodic and let ¢ : X — G be
a cocycle. According to Example 1 the Z-cocycle generated by ¢ is given by

o(T™1z) + o(T722) +... + (T™"z) ifn>0,

pln,z)=<10 ifn=0,

~p(z) —o(Tz) — ... — (T~ 1z) ifn < 0.
Denote by T, : (X x G, i) — (X x G, i) the corresponding group exten-
sion of T, where Ty, (2, g) = (T'z, p(z) + g) and % is the product measure of
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1 and Haar measure mg on G. Let L(yp, T) € C(T) denote the set of those

elements from C(T') that can be lifted to ¢ (T)- Tt is known (see [3]) that

L{, T) is a Borel subset of C(T). We assume that ¢ is ergodic, i.e. that T

is ergodic. According to [9], [11], [13] each lift is then of the form Stw,
Ste(2.9) = (Sz, f(z) + v(g)),

where v : ¢ — G (a continuous group automorphism) is unique while f
X — ( (2 measurable map) is determined up to a constant from G. In other
words, the functional equation

(3) pS —vp=fT—f

is satisfied. The group 5’(T¢) = {8ty 1 5 € L{p,T)} is a closed subgroup
of C(T,). Let w : C(T,) — C(T), w(Sfw) = S, be the natural projection.
Assume now that R C L{y, T) is a Borel subgroup. With each Borel selector

c: R — C(T,) (they do exist, see e.g. [6]) for = we will associate a certain
2-cocycle {in an appropriate cohomology).

Let ¢: R — C(T,) be a Borel selector for n. So for each § € R we have

a measurable choice of Syg ., € C(T,). Therefore, for each 51,52 € R we
have

(4) p(S152) — vg,5,9 = f9,5,T — fs,5,-
Moreover,
(10(‘5'152) - 'US1(IDSQ = f31S2T - fS1S2

and
v5:0(S2) — vs,8,0 = vs, f5,T — vs, f5,-
Adding the above two equalities we get
©(515%) — vg, 5,0 = (f5,52 + vg, f5,)T — {f5,52 + vs, fs.)-
By comparing it with (4) and using the ergodicity of T we finally obtain
(5) J$,8, = [ 82t vs, 5, +Cs1,5,

for a constant €g, 5, € G. Since the map S — fg is Borel (by our special
choice} and S — vg is also Borel (see [3]), the function 2 : R x R — G is
Borel. By a simple calculation we get the following.

PROPOSITION 2. ug, (€5,,5,) +C5,,5285 = C81,85 +€8152,85, #6. T RXR
— @ belongs to Z3(R, (), where R acts on G by v5°s.

Suppose now that the above 2-cocycle € is in fact a 2-coboundary, ie.
€5,,5; = '"dglsz + IUSldSZ + d51
for a measurable d : R — (. Set fs = fg+ dg. Then

ij52 = .FS1S2 + ’US]_ng
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and by further change fs = f59~! we finally obtain
Fous, = vs, f5, 57" + Fsu

which simply means that f{5, %) = fs{z) is a l-cocycle (as in Example 2).
Let us put fig = 0; we also have vy = Id. It follows that

Cs1a=fs— fsId—vsfa =0 ="TCu,s.
Therefore, our 2-cocycle € has the following additional property:
(6) €g1d = CId,§ = 0 forall SeR.
‘We can summarize the remarks of this section in the following.

PrROPOSITION 3. Let R C L{p,T) be a Borel subgroup such that no
nondrivial power of T is in R. The following conditions are equivalent.

(1) There exists o Borel selector ¢ : R — C(T,,) such that the correspond-
ing 2-cocycle T is in fact a 2-coboundary (equivalently, (fs) is a 1-cocycle).

(2) There evists a Borel selector ¢ : R — C(T,) which is o group ho-
momorphism (in other words, there is a measurable choice of a diagonal
subgroup in the whole lifting of R in 5('11,,), i.e. of a subgroup which chooses
ezactly one element from #~1(5), § € R).

(3) The Z-cocycle @ has an estension to o cocycle of the subgroup of
C(T) generated by T' and R.

Proof. It is not difficult to check that (fg)gen with fg := foS~! sat-
isfies the l-cocycle equation if and only if {Sy; ., : S € R} is in fact a
subgroup of C(T,). The rest follows from Proposition 1. m

Remark 1. Notice that if we have two diagonal subgroups over R then
we obtain two l-cocycles with values in M(X, ), and since the cocycles
form a group, their difference will be a 1-cocycle for R taking values in the
space of constant functions. This means that two diagonal groups determine
a Borel map m : R — @ satisfying m(55;) = m(81) -+ vg,m(Ss). In
particular, if each vg = Id then m is a continuous group homomorphism.
In this latter case, if a diagonal subgroup exists, then all others are in 1-1
correspondence with continuous group homomorphisms of R into G

3. Kwiatkowski’s observation. In [7], J. Kwiatkowski shows that if T
Is an ergodic rotation and ¢ : X — @ an ergodic cocycle, and if a compact
subgroup R C C(T) lifts to C(T,) in such a way that there exists a diagonal
compact subgroup in the lifting then (using our language—see Proposition 2)
the extended cocycle acting on the group generated by T and R must be
a coboundary on ‘R. Observe that R acts by rotations so in particular this
action is free,

We will now briefly argue that such a result is true in a wider context.
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PROPOSITION 4. Assume that S is a compact second countable group
acting freely on (X, B, ). Then for any cohomology of 8 with coefficients in
A= M(X,G) all cohomology groups are trivial.

Proof. It is classical that in the case of an action of a compact group &,
the partition of X Into trajectories of the action is measurable. Hence there
exists a Borel set B (in general of measure zero) such that

X:US'.Z:

=€B
and this union is disjoint. Suppose now that F = F(s,..., Spt1,T) is in
Z"1(8, A), where A = M(X,G). In view of (2) we wish to show that _
Fls1,.v 8n40,3) = (52, Sny1, To, )

n
+ Z(—l)itp(sh Cey Binl, SiBig 1, 8540, - - s Sug1, ) (1) (s, . -, 80, 2)
=1

fora ¢ € F™(8, A). So, given = € B choose ¢, : S — @ so that the map
©.() : B x 8™ — G is Borel and then extend it to a cocycle on the whole
trajectory using the above equality. =

In particular, we have obtained

Cororrary 1. If R is compact, acts freely and there is a diagonal
subgroup in the lifting (or equivalently, if there ezisis a selector ¢ whose
2-cocycle T is o 2-coboundary) then the estended cocycle must be a cobound-
ary on K. u

Remark 2. The only fact which we used in the proof that for compact
actions the cohomology groups are trivial was that the partition into trajec-
tories was measurable. Since this is a particular case of the so-called actions
of type [, the above result can easily be obtained from [15].

4. Multipliers and extensions of cocycles. All the material of this
section is taken from [14]. Let S be a locally compact second countable
group. By T we denote the circle, T == {# € T : |z] = 1}. A Borel function
¢:8 x 8 — Tis called a multiplier if it satisfies

c(s1, 8283)c(82, 83) = ¢81, 2)c(5182,82), c(s,e) =cle,s) =1
for all s, $1,89,$3 € 9, where e stands for the unit of G. We say that a
multiplier ¢ is trivial if there exists a Borel function d: & — T such that
(51, 82) = d{(s1)d(s2)d(s182) 7 .

Remark 3. It follows from Proposition 2 and (6) that if vg = Id for

each § € R, then for any character ¥ € & the function x(%) is a multiplier.
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Given a multiplier ¢ on & x & we consider the group &¢ (called the
¢c-extension of 8) which lives on § x T and whose multiplication is defined
by . :
(s1,21)(82, 22) = (5182, 2122¢(51, 52)).-

On 8¢ we consider its Weil topology (the product measure of Haar measure
mg on & and Lebesgue measure on T is a right invariant measure on &¢)
which makes &° a locally compact group. Consider U : 8¢ — U(L*(S,ms))
given by

Ute, ) f(t) = zc(t, s) f(ts).
A direct computation shows that U is a representation of §% in L*(S,ms).
It is also continuous (Lemma 3.2 of [14]}. The map

U:8 = UILAS,ms)), U f(t)=clt, s)f(ts),

is not a representation of 8 (U,,U,, = ¢(s1,82)0as,) but if a subspace
V C L*(S,mg) is invariant under U/ then it is also invariant under U. If §
is additionally compact then so is 8¢ (Theorem 5.1 of {14]). Hence U has an
invariant finite-dimensional (say of dimension k) subspace V C L*(S,ms).

Since this subspace is also invariant for U, by taking the determinant of U,
in V we obtain Bargman’s theorem {Theorem 5.1 of [14]}:

(7) if § is compact and c is a multiplier then c® is trivial.

There are groups for which each multiplier is trivial. We have (see Corollary 1
and Theorem 5.3 of [14]):

(8)  every multiplier is trivial whenever S is either a compact, connected
and simply connected or G =R.

5. Factors in ergodic theory and cohomology of cocycles. Suppose
that T : (X,B,p) — (X,B,p) is ergodic and ¢ : X — @ is an ergodic
cocycle, where G is a compact Abelian group. Suppose that a compact
subgroup R C L{p,T) with a representation S — ug € Aut{@) are fixed.
Put

'={$: X - G: ¢85 =uvgy for each § € R}.
It is clear that I is a subgroup of cocycles. Suppose that @ extends to
a cocycle of the group generated by T and R. Since R is compact the
extended cocycle on R must be a coboundary (and this is all we are going

to use). So we have a measurable choice of { £)ser such that (Fs)gex i an
R-coboundary. Hence there exists a measurable g : X — G such that

fsST = fs =vggS '~ g
and therefore fg = vgg — ¢S for each S & R. Now we can write
P8 —vgp = (vsg — g8)T ~ (vgg — ¢5)
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forall S € R, so

{0+ 9T —9)S =vs{p + gT ~ g),
and if we put ¥ := ¢ + gT — g we see that  and v are cohomologous and
wel.
In particular, we have proved the following.

PROPOSITION 5. Let R be a compact group in the centralizer of T which
lifts to C(T,). Then there is a diagonal subgroup in the lifting if and only if
w0 18 cohomologous to a cocycle from I'. If in addition R is connected then
this 1s equivalent o saying that ¢ is cohomologous to an R-invariant cocycle
(or, what is the same, to a cocycle already measurable with respect to the
factor A(R) of T determined by R).

Proof. One need only apply the Continuous Embedding Lemma from
[3] which in the case of connected groups says that all vg’s must be equal
to the identity. m

Remark 4. If T belongs to R € L(y,T) which is compact and if a diag-
onal subgroup exists then the corresponding cocycle for R is a coboundary,
but it only means that ¢+ gg is a T-coboundary as we make a selection over
each S € R so we chouse T,,0,, as an element of a diagonal subgroup.

EXAMPLE 3. Let X = TxT, G = T. Assume that T is an ergodic rotation
by (e, 3),80 T = Ty x Ts. Let : X — G be defined as

90(21,22) = Zz.
It is then well known that the corresponding extension is ergedic, while our
cacycle is invariant under R = {I, x Id : v € [0,1)}. Obviously, we can

consider the factor (T3}, as ¢ depends only on the second coordinate. This
factor corresponds to R which is a diagonal subgroup of C(T,).

EXaMPLE 4. Let X = T* (n = 1,2,...,00) and 7" be an ergodic ro-
tation. Suppose that ¢ : X — G is ergodic and oll elements of C(T) lift.
Thus if there is a diagonal subgroup in the centralizer of C(T,,) then ¢ has
to be cohomologous to a constant. (Indeed, here R acts ergodically so by
Proposition 5 if a diagonal subgroup exists then ¢ must be cohomologous
to a cocycle already measurable with respect to A(R), which by ergodicity
is trivial.)

ExaMPLE 5. The assumption about the existence of a diagonal subgroup
is essential. Rotation by « on the circle is a 2-point extension of the rotation
by 2c. All elements from the centralizer of the rotation by 2« lift, but the
cocycle is not cohomologous to a constant (hence no diagonal subgroup
exists). (If ¢ were cohomologous to a constant then either it would be a
coboundary and then the rotation by « would not be ergodic or it would
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be cohornologous to —1, which means that ~1 would be an eigenfunction of
the rotation by o)

Remark 5. In the example above we have a 2-point extension T, of
T (T, represents the rotation by o while T’ the rotation by 2c). Here the
centralizer of T, is Abelian (as T, has simple spectrum) so each 2-cocycle
¢ associated with a selector ¢ : R — Zy (here R = C(T)} is symmetric, Le.
Z(S1, Sa) = {8, S1). Consequently, if we regard ¢ as a circle cocycle then
‘R¥ is compact and Abelian. If we look at the proof of the Bargman theorem
outlined in Section 4 we are forced to conclude that & = 1 and hence the
multiplier ¢ (we can consider the 2-cocycle € as a circle 2-cocycle) must be
trivial. This, however, means that ¢ regarded as a circle cocycle must be
cohomelogous to a constant (and this is not surprising since the equation

p=AfT/f
for A € T and a measurable f : X — T expresses exactly the fact that ) ig
an eigenvalue of T,: in our example €™ is an cigenvalue of T,).

ExXAMPLE 6. Suppose that T is ergodic and R ¢ C(T') is compact and
cyclic of order k. Assume that G is a group where all roots of order k exist
(for instance, G is divisible). If R lifts with all vg's equal to the identity then
a diagonal subgroup exists. Indeed, if § is a generator of R then consider a
lifting Sy of 5. If it has order k we are done; if not, which means (S;)* = o,
consider Syip,. Its kth power is equal t0 o4, #n, s0 We only need khg = —gy.

6. Diagonal subgroups in case of circle extensions. We will now
consider only circle extensions T,,, with ¢ : X — T. Throughout, we will
assume that R C L(p, T') acts freely and that the representation R 3 § —
vg is trivial. Recall that this latter condition is automatically satisfied if R is
locally cornpact and connected (see [3]) or even for each R provided that T,
has a simple spectrum, Under these assumptions for any measurable selector
¢: R -+ C(T,) the corresponding 2-cocycle 2: R x R — T is a multiplier.
We will also assume that no nontrivial power of T is in R. Directly from (7)
and Proposition 3 we obtain the following.

PROPOSITION 6. If R C L(p,T) is compact then there ezists k > 1
such that for Tyw a diagonal subgroup over R emists. Bauivalently, ¢* can
be extended to o cocycle of a group generated by R and T, m

COROLLARY 2. If, additionally, T, has a simple spectrum then a diago-
nal subgroup exists. '

Proof. One can repeat the reasoning from Remark 5 as C(T,) is Abelian
and hence the corresponding multipliers will be symmetric. m

In view of (8), in case of R = R we have the following result.
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PROPOSITION 7. A cocycle ¢ : X — T has an estension to a cocyele
generated by T and R if and only if R C L{p, 7). m

7. On extensions of Z-cocycles. Assume that groups G,S act as
measure-preserving transformations on a Lebesgue space (Y, C, ) (the cor-
responding actions on Y will be denoted by gy and sy respectively). We
assume that G is compact and metric, while & is locally compact, second
countable and it acts ergodically (both actions need not be free). Moreover,
we assume that G is in the centralizer of S, ie. G € C(8). Giveny € Y
denote by G, the stabilizer of G at y,

Gy ={g€G:gy=uy}.
It is a closed subgroup of G and since G C C(S), sy = G, Therefore, if we
denote by M the space of closed subgroups of G endowed with the Hausdorf
metric then M is clearly separable, and since the map

YoymGoeM

is S-invariant, it must be constant as the action of & is ergodic. This means
that with no loss of generality, we can talk about the stabilizer, stab(G), of
the action of G. Denote by X = Y/G the space of orbits of §. Clearly, S still
acts on this new measure space (X, B, 1); we will denote this action by S
and write 3z for the action of s € S at z € X. Finally, let £,: X — Y be
two measurable selectors for the map y — {gy: g € G} = =.

The following theorem is “folklore”, so we will only sketch a proof.

THEOREM 1. The formule
O¢(s,z) = gstab(G) < g(3z) = st{z)

defines a cocycle with values in G/stab(G) such that the corresponding group
extension of & via @ is isomorphic to the original action of S. Moreover,
B¢ and O, are cohomologous.

Proof. By a direct computation, @ (s1s2, z) = O¢(s1,2)O¢ (82, s1z). If
we define

f(z) = gstab(G) & gé(z} = n{z)
then @¢(s,n) = f(x)"'Oy(s,z)f(s2), so the two cocycles ¢ and O, are
cohomologous. Finally, observe that the map
(z, g stab(G)) — g&(z)

establishes an isomorphism of the extension of S by 6; with &. =

Let us now come back to our situation of an ergodic ' : (X,B,u) —
(X,B, ). We assume that v : X — @ is an ergodic cocycle, where G is

a compact Abelian group. Let R C Ly, T) be a compact subgroup. We
assume that R acts freely on {X, B, ) and that no nontrivial power of T is
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in R. In other words, the joint action of T' and R can naturally be identified
with an action of Z ¥ R and furthermore, this action is free. Let R denote
the group of all liftings to C(T,,) of alt elements of R. Hence

SeRe 8= 54, and wS~vp=fT — f.

Define by G = {og: g € G}, where o4(z, h) = (2, h + g). Hence G consists
of all liftings of Idx and as a subgroup of C(T,) is naturally isomorphic to
(. Moreover,

(9) Stwog = Tuy(g)Sf.0.
From now on we will assume that
(10) Gc C(R).

Equivalently (by (9)), the representation R 3 S ~ wvg is trivial. We will
write Sy instead of Sy 4.

Let ¢ : R — R be a measurable selector for = (7{8;) = S) and let
¢: R x R — (5 be the associated 2-cocycle, i.e.

C5,,5s T €8,,5,8; =C8,,5;, T €5,8,,8s, €81 = C1a,5 = 0
for all §, 51, 83, S5 € R. Consider the Mackey Z-extension RE of R, that is,
RE=R x @ and
(51, 91) o (S2,92) = (5152, g1 *+ g2 + (51, S2)),
(S: g)_l = (5—17 —g- E(S: S—l))'
Since the product of Haar measures on R and G is a finite rotation invariant
measure, R with its Weil topology becomes a compact group. Note that G

becomes a closed normal subgroup of R and R¥/(G is exactly R hence RE
can be viewed as a compact extension of R.

Remark 6. Note that a 2-cocycle T : R x R — G is a 2-coboundary
<+ the Mackey extension R® of R contains a diagonal subgroup {(S,g3) :
SeR}

As noticed in 3], R ¢ C(T,) is also a compact group in the weak
topology of the centralizer.
PROPOSITION 8. The map J : R — RE defined by
J(85) = (5, 90) & Sgors = &(S)(= Sy,)

is an isomorphism of topological groups. In particular, if ¢;,co : R — R are
two Borel selectors for w then the corresponding Mackey extensions RFt, RE
are tsomorphic.

Proof. The fact that J is 1-1 and onto is clear. Moreover, if S5, 8% € R

and J(S¢) = (S, o), J(8%) = (5",9)) then S, = Sgo+s and S}S, = S;é,+f"
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Now
T(S} 0 85) = J(S),_yy 0 Sta-go)

= JUS'S) pgrst o-(agran) = TUS'S) fyrg—et5,8)~(ap0))
= (58S, 90 + gpe( S, 8) = J(Sp) 0 J(S;).

It remains (see e.g. [10]) to show that J is a Borel map. This, however,
is clear; the Borel structure on RE is exactly the product Borel structure of
R x G (see [14]), J(S5) = (5, ¢(S)(Sf)™2) and the maps

St S=e(S), S (Sp)7T
are Borel.

In view of the above proposition, on X x G we have the joint free action of
T, and R which naturally can be identified with a free action of & = Z x RE.
Note that G is in the centralizer of the action of § and hence the factor
determined by G (that is, B) is a factor for §. (Note, however, that the factor-
action of & on (X, B, i) is not free.) Collecting now the results contained
in Proposition 3, Theorem 1 and Remark 6 we obtain our main result on
extensions of Z-cocycles.

THEOREM 2. Let T': (X, B, u) — (X, B, ) be an ergodic automorphism
of o Lebesgue space. Assume that p : X — @ is an ergodic cocycle, where G
is a compact metric Abelion group. Assume moreover that R C L{p, T is
compact, acts freely on (X, B, 1), T™ € R iff n = 0 and that the representa-
tion

R385 vs € Aut(@)
i trivial. Then there emists a 2-cocycle T: R x R — @ such that for the
compact Mackey extension R = {(S,g) : S € R, g € G} of R there
exists an extension of the Z-cocycle v to e cocycle of an action of Z x RE.
Moreover, ¢ admits an extension to the action of 7. x R iff RE contains a
diagonal subgroup {(S,g5): S €R}. =

Remark 7. (1) Although the action of R® on {X, B, 1) is an action of a
compact group, the corresponding cocycle need not be a coboundary since
the action is not free (see Example 5 for a concrete realization of this case).

(2) The only subactions of R? which are free on (X, B, u) are subgroups
of the form {(S,gs) : § € R'}, where R/ is a subgroup of R.

(3) Note that the extension of the Z-cocyele i to a cocycle of Z x RF is
always possible as R is compact and it corresponds to a factor of T,,, while
extensions of ¢ to cocycles of other groups (as Z x R) depend on whether
or not there exists an appropriate factor of T},.

(4) The situation where many groups of the centralizer can be lifted to a
compact group extengion appears in the recently developed theory of natural
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factors (see [4]) and for example can be applied in the case of Gaussian-
Kronecker automorphisms (see [16]).

References

[] V.Bargman, On unitary ray representations of continuous groups, Ann. of Math.
50 (1954), 1-46.

[2  A.L Danilenko, Comparison of cocycles of o measured eguivalence relation and
lifting problems, Ergodic Theory Dynam. Systems, to appear.

[3] P.Gabriel, M. Lemasiczyk and K. Schmidt, Extensions of cocycles for hyper-
finite astions, ond applications, Monatsh. Math. {1996), to appear.

4 A.del Junco, M. Lemaficzyk and M. K. Mentzen, Semisimplicity, joinings
and group eztensions, Studia Math. 112 (1995}, 141-164.

[5] A.del Juncoand D, Rudolph, On ergodic acfions whose self-joinings are graphs,
Ergodic Theory Dynam. Systems 7 (1987), 531-857.

6 XK. Kuratowskiand C. Ryll-Nardzewski, A general theorem on selectors, Bull,
Acad. Polon. Sci. 13 (1965), 397-403.

{7] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math,
103 (1992), 123-131.

8] M. Lematiczyk, Ergodic Compact Abelian Group Extensions of Rotations, Publ
N. Copernicus University, 1990 {(habilitation).

9] M. Lemaficayk and M. K. Mentzen, Compact subgroups in the centralizer of
natural factors of an ergodic group extension of a rotation determine all factors,
Ergodic Theory Dynam. Systems 10 (1990), 763-776.

[10] G. W.Mackey, Borel structures in groups and their duals, Trans. Amer. Math.
Soc. 85 (1957), 134-169,

[11] M.K.Mentzen, Ergodic properties of group estensions of dynamical sysiems with
discrete spectra, Studia Math. 101 (1961), 19-31.

[12] C.C.Mooreand K. Schmidt, Coboundaries and homomorphisms for non-singular
actions agnd o problem of H. Helson, Proc. Tondon Math. Soc. 40 (1980), 443-475.

[13) D.Newtomn, On canonical factors of ergodic dynamical systems, J. London Math.
Soc. 19 (1979), 129-136.

[14] K. R. Parthasarathy, Multipliers on Locally Compact Grroups, Lecture Notes in
Math. 93, Springer, 1969.

[15] K. Schmidt, Cocyeles of Ergodic Transformation Groups, Lecture Notes in Math.
1, Mac Millan of India, 1977,

[16] J-P. Thouvenot, Some properties and applications of joinings in ergodic theory,
in: Ergodic Theory and its Connections with Harmonic Analysis, London Math,
Soc., 1995, 207-235.

[17] W. A. Veech, A criterion for a process to be prime, Monatsh, Math, 94 (1982),
335-341.

Depariment of Mathematics and Computer Sclence
Nicholas Copernicus University

Chopina 12/18

87-100 Torud, Poland

E-mail: mlem@mat.uni.torun.pl

Received December 11, 1965 (3582)
Revised version August 28, 1996

icm

STUDIA MATHEMATICA 122 (3) (1997)

Product Z%-actions on a Lebesgue space and their applications
by

L FILIPOWICZ (Bydgoszcz)

Abstract. We define a class of Z-actions, d > 2, called prodact Z%-actions. For every
such action we find a connection between its spectrum and the spectra of automorphisms
generating this action. We prove that for any subset A of the positive integers such that
1 € A there exists a weakly mixing Zd—action, d > 2, having A as the set of essential values
of its multiplicity function. We also apply this class to construct an ergodic 7%-action with
Lebesgue component of multiplicity 2%k, where k is an arbitrary positive integer.

1. Introduction. One of the most important open problems in ergodic
theory is the following: does there exist a dynamical system with a given
spectrum? This very difficult problem has been solved only for some types
of spectra. It is not known in particular whether there exists a dynamical
system with Lebesgue spectrum of a finite multiplicity.

Let T : X — X be an automorphism of a Lebesgue probability space
(X, B, 1). The spectrum of T is uniquely described by the maximal spectral
type and the spectral multiplicity function. We denote the set of essential
values of the spectral multiplicity function by E(T). The problem of what
subsets of N* U {oo} (where N* is the set of all positive integers} can be
realized as E(T) for an automorphism T is considered e.g. in {A], [BL],
[CFS], [GKLL], [MN], {O], [Re].

Recently Kwiatkowski and Lemanczyk ([KL]) have shown that, for a
given set 4 C Nt with 1 € A, there exists a weakly mixing T such that
E(T) = A. In addition, if A is finite then one can find a smooth such T'. The
goal of this paper is to extend this result to dynamical systems which are
actions of the group Z¢ of d-dimensional integers on a Lebesgue probability
space. To do this, we introduce a special class of Z%-actions.

Let & be a Z%-action on a Lebesgue probability space (X, B, i), le. ®isa
homomorphism of Z% into the group of all automorphisms of (X, B, u). The

1991 Mathematics Subject Clussification: Primary 28D15; Secondary 60G15.
Key words and phroses: Z%-action, speciral theorem, spectrum, spectral multiplicity
function.

[289]



