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STUDIA MATHEMATICA 123 (1) (1997)

On the semi-Browder spectrum

by

VLADIMIR KORDULA (Praha), VLADIMIR MULLER (Praha)
and VLADIMIR RAKOCGEVIC (Nis)

Abstract. An operator in a Banach space is called upper (lower) semi-Browder if it
is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion
to n-tuples of commuting operators and show that this notion defines a joint spectrum.
Further we study relations between semi-Browder and {essentially) semiregular operators.

Denote by £(X) the algebra of all bounded linear operators in a compléx
Banach space X and by I the identity operator in X. For T in £L(X) denote
by N(T) = {z ¢ X : Toz = 0} and R(T) = {Tz : ¢ € X} its kernel
and range, respectively. Set further R*°(T) = [Npwp B(T*) and N*°(T) =
Ui N(T®)

The sets of all upper (lower) semi-Fredholm operators in X will be
denoted by €, (X) and &_(X). Recall that T € &,(X) if and only if
dim N{T) < oc and R(T') is closed; T € ®_(X) if and only if codim R(T")
< oo (then R{T) is closed automatically}. The ascent and descent of T
are defined by a(7T) = min{n : N(T") = N{T™)} and d(T) = min{n :
R(T™) = R{T™1}.

‘We say that an operator T & £(X) is upper (lower) semi-Browder if it is
upper (lower) semi-Fredholm and has a finite ascent (descent). The set of all
upper (lower) semi-Browder operators in X will be denoted by By (X) and
B_({X). Semi-Browder operators were studied by many authors (see e.g. [4],
[12], [14], [18], [20]-[22], [24]). The name was introduced in [6].

‘We extend the notion of semi-Browder operators to n-tuples of commut-
ing operators. We discuss the lower semi-Browder case; the upper case is
dual.

Let T = (TY,...,Tn) be an n-tuple of mutually commuting operators
in a Banach space X. We use the standard multiindex notation. Denote
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2 V. Kordula et al.

by Z the set of all non-negative integers. If o = (ay,...,ap) € Zl! then
lal = a1+ ... + oy and T =T . T,

For k= 0,1,2,..., define My(T) = R(TF) + ...+ R(T¥) and let M[(T)
be the smallest subspace of X containing the set [ J{R(T®) : a Z% and
|la| = k}. Clearly X = Mo(T) D> My(T) > My(T) > ... and X = MY(T) D
Mi(T) D Mj(T) > ... Further
(1) r’z(k:ml)ﬁ'l(T) C My (T) C M (T).

Indeed, if o = (a1,...,05) € Zy and |l =n(k — 1) + 1 then there exists 1,
1 <1 <mn, such that o; > k, so that R(T*) C R(TF) C My(T). This proves
the first inclusion of (1) and the second inclusion is clear.

Set R(T) = (122 Mi(T) = N0 MU(T),

If My(T) = My (T for some k then it is easy to see by induction that
M (T) = M (T) for every m > k, so that R™(T") = MJ(T).

As usual we say that an n-tuple T = (T, ..., Ty) of mutually commuting
operators in X is lower semi-Fredholm (T € '™ (X)) if

codim M) (T') = codim(R(T1) + ... + R(T}.}) < co.

Clearly T' = (T,...,Ty) is lower semi-Fredholm if and only if the operator

T X" — X defined by f(sa:l, oy Zn) =Tz + ... + Tz, is lower semi-
Fredholm.

We say that T = (T1,...,T,) is lower semi-Browder if codim R*(T) <
oc. The set of all lower semi-Browder n-tuples will be denoted by BE")(X ).
Clearly &™) (X) c B(_")(X).

Define

0o (T) = {(A-- 0 x0) €C (T4 = My, T — M) € 879(X)),
and

o8_(T) = {(My. -y An) €C*: (T4 = Ay, Ty — Ay) € BY(XO))
It is well known that op_ has the spectral mapping property [1]. In par-
ticular, (T3,...,T,) € U (X) if and only i (TF, ..., T4) € 6™ (X). Thus
codim M, (T) < oo implies codim My (T) < oo for every k.

THEOREM 1, Let T = (11,...,T}.) be an n-tuple of mutually commuting
operators in @ Banach space X. The following statements are equivalent:

(a) T € B™(x).

(6) T € 87(X) and there eists k such that M(T) = M (T,

(c) T e '™ (X) and there exists k such that My(T) = My (7).

(d) There exists o subspace Y C X invariant with respect to every T

(i = 1,...,n) such that codim¥ < oo and DY+ ...+, Y =Y. We can
take Y = R>®{TY). . :
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Proof. (c)=(b). Let My(T} = My41(T) for some k. Using the same
argument as in the proof of (1) we can show

M;(k—1)+1(T) = M;z(k—l)+2(T)'

(b)=>(a). Let M;(T) = M ((T) for some k. Then My(T) C M (T) =
R®(T). Further T € &™) (X) implies codim My(T) < o0, so that T €
B™(x).

(a)=>(d). Set ¥ = R*°(T). Clearly Y is invariant with respect to T}
(i=1,...,n), codim¥ < oo and ¥ = My(T) = My1(T) for some k. If
% € Y then for some z4,...,z, € X we have

y= TFle; =3 Ty(TFz) € Y ...+ T,V
=1 i=1
(d)=>(c). Since M1(T) > Mi(T|y) = Y we have codim M;(T) < oo so
that T € 8" (X). Further MJ(Tly) = M}(T]y) = ¥ implies R®(T|y) = ¥
and My(T) > M(T|y) D Y for every k. Thus the sequence M (T) is
constant for k large enough.

COROLLARY 2. Let T= (Th,...,T,) € B™(X). Then there exists £ > 0
such that (Ty — Ay, ..., Tn — An) € BUNX) for all My, An € C with
S 1 Xl < . Moreaver,

codim R (T1 — Ay,...,Tn — Ay) < codim R®(Ty, ..., Ty).

Proof Set ¥ = R*(T"). Then codim¥ < oo and TyY ...+ T, ¥ =
Y. There exists € > 0 such that (T3 — M)Y +... + (T, — \)¥Y = Y if
My A €C, T8 M| < &, so that R®(T1 — Ar,..., Ty ~ An) O Y =
R®(Ty, ...\ T,).

PROPOSITION 3. Suppose T, ..., Ty, S1, ..., Sn are mutually commuting
operators in X such that 3 o T;S; =1I. Then (Ty,...,Tn) € B&")(X).

Proof. Cleatly M;(T1,...,Tn) = X = My(Th,...,T,,) so that (Ty,...
T € B (x).

COROLLARY 4. op_(T) is a compact subset of C".

Proof. op_(T) is closed by Corollary 2. Further op_(T) C o{™)(T)
where (T") denotes the smallest closed subalgebra of £(X) containing T, . . .
..., T, and the identity operator and ¢‘T}(T) denotes the spectrum in the
commutative Banach algebra (T"). Thus og_(T') is bounded and hence com-
pact.

LEMMA 5. Let T3, ..., T, The1 be mutually commuting operators in o
Banach space X. Suppose codim R*®(Ty,...,T,) == 0o and let k € N. Then
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there exists o compler number A such that
(2) codim[R(TH) + ... + R(T®) + R((Tny1 — M) > k.
Proof. Using condition (c) of Theorem 1 we can distinguish two cases:

(a) (T1,...,T,) & 8™ (X) so that (0,...,0) € oa_(T1,...,Tn). By the
projection property for og_ there exists A € C such that (0,...,0,A) €
oo (T, .o T, Trp1), L€, codim[R{TF) + ...+ R(TE) + R({(Than ~ A)¥)] =
00. Hence we have (2).

(b) codim M, (T) < oo and My, (T') 5% M1 (1) for every m > 1 where
T = (Ty,...,T,). Fix k € N. Then there exists 4,1 £ i < n, such that
R(TF™Y) ¢ My(T) (otherwise Mi_1(T) = My(T)). Set Y = X/My(T),
so that dimY < oo and let S : ¥ — Y be defined by S(z + Mp(T)) =
Tyz + My (T). Clearly S* = 0 and S*~1 5 0.

Consider the operator U : Y — Y defined by U{z + Mp(T})) = Tnhr1z +
M (T). Clearly US = SU. Let Z be a subspace of Y satisfying Z @ N(5%"1)
=Y. In this decomposition I/ can be written a3

Uy 0 )
U= .
(Um Uso
Choose a coraplex number A such that Uq; — A is singular, i.e., there exists

anon-zero z € Z with (U — X)z € N(S*~1). Since 2 € N(S*)\ N(S**) we
have

§5 "y e N(S™ANIS™ Y (m=1,...,k).
Fuarther
(U = X)§F~™z = 5™/ — Nz € §F—™N(8¥1) ¢ N(S™ 1),
For m=1,...,%k we have
dm[N(S™)/(U = " N(S™)] = dim N((U = A)™|y(sm)
2 dim N((U = X)™|ar),

where M = N(Sm_l) \% {S"“"mz} and (U —-A)"M ¢ (U~ )\)m‘lN(Sm"l).
Further

dim N((U — A)™|pr) = dm{M /(U ~ A\)™ M)
> dim[M/{U =A™ IN(§™ )] = dim[N(S™ Y /(U - )™ TN (S™ )] +1,
since $¥~™z ¢ N(§™~1). Thus, by induction,
dim[N{(S™)/(U -~ A"N(S™)]=2m (m=1,...,k).
In particular, dim(Y/(U — A)*Y) > k. Consequently,
codim[R(TF) + ...+ R(TF) + B((Tpy1 — NF)] > k.
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CoroLLARY 6. Let T1,.. ., T, Tyo1 be mutually commuting operators in
a Banach space X. Suppose that codim R™(T1,...,T,) = co. Then there
exists A € C such that

codim B> (Th, ..., Ty, Tnt1 — A) = oo
Proof. For each k& > 1 we can find A\x € C such that
codim R (T, ..., Tn, Tg1 — Ag)
> codim[R(TF) + ...+ R(TF) + R{(Tri1 — A)®)] > k.

Clearly Ay € o(Thq1) for every k. Thus we may assume (by passing to a
subsequence if necessary) that the sequence {Az} is convergent, Ap — A €
o(Tny1). We have

klim codim R (11, ...\ Tny Tn1 — Ai) = o0
=0
By Corollary 2 this implies that codim B*(T},..., Ty, Thit — A) = oo.

CoroLLARY 7. If T4,..., T, Thy1 are mutually commuting operators,
then
FB_ (T].: e :T’n.) = PUB_ (T:].: B ;Tn+1);
where P ; TVt — C" 4s the projection onto the first n coordinates.

Proof The inclusion C was proved in Corollary 6. If (Ty,...,Tn) €
B™ (X} then clearly

Rw(Tl, e .,Tn,Tn+1‘— A) ] Rm(Tl, - ,Tn),

so that (T1,...,Tn, Tny1— A) € Bf_n+l)(X) for every A € C. This proves the
other inclusion.

COROLLARY 8. og_ is a subspectrum in the sense of Zelazko [25]. Con-
sequently, by {17], op_ has the spectral mapping property:

fop (T)=o0p_f(T)

for every n-tuple T' = (T%,...,Tn) of mutually commuting operators and
every m-tuple f = (f1, ..., fm) of functions analytic in a neighbourhood of
the Taylor spectrum of (Tx, ..., Ty).

The following lemma is a well-known stability result for semi-Fredholm
operators.

LevMA 9. Let T = (Ty,...,In) € o (X). Then there exists £ > 0
such that codim M7(S) < codim M1 (T) for every commuting n-tuple § =
(Sl'n sy S’n—) € ‘C’(X)n with Z?:l “S'fv - Ti” <E.

The previous lemma enables us to generalize the result of [12] to n-tuples
of operators.
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THEOREM 10. Let T = (T1,...,Tn) € BE,”)(X). Then there exists € > ()
such that § € BT)(X) for every commuting n-tuple S = (81,...,5,) €
,C(X)n with Z?:l HS»L — T1|| < E&.

Proof. Choose k such that My (T) = R®(T) and codim R*(T) < k.
Then (TF, ..., T+1) € 37(X). By the previous lemma there exists & > 0
with the following property: if § = (S1,...,5) is a commuting n-tuple of
operators in X with S0, [|S; — T;|| < e then (STF,..., 55+ € & (x)
and

codim My (SF™ ..., S5 < codim My (TP, ..., TR+
= codim M1 (T") = codim R*(T) < K.
Since Ml(S) i} MQ(S) .02 Mk_;_]_(S) and codimM;cH(S) < k, there
exists § < k such that M;(S) = M;4+1(5). Consequently, S € B (x).

From the general theory of joint spectrum it is easy to deduce the fol-
lowing consequences:

(a) The mapping (T4,...,Th) — os_(Th,...,Tn) is upper semicontinu-
ous. In particular, if T} € £(X} and U is a neighbourhood of o5_(77), then
os_(S1) C U for every operator Sy close enough to 17.

(b) op_ is continuous on commuting elements (see {11, Theorem 1.9]).
More precisely, if {Tp}52, € L(X), T € L(X), im Ty = T and T} T = T'T},
k=1,2,..., then A € op_(T") if and only if there exist Ay € op_(T%) such
that Ay — A.

(c} Let T, § € £L(X), TS = ST. Then (cf. [11, Proposition 1.8])

8(op_(T),08.(9)} < 7e(T = ),
where § denotes the Hausdorff distance and r, the essential spectral radius,
re(7") = max{|A| : T"— A is not Fredholm} = max{|A|: T - A ¢ B_(X)}

(see [7]).

(d) Let T,8 € £(X), T'S = 5T. Then

TSeB (X)&T,5eB_(X)

(see [6] and [16, Theorem 2.1]).

(e) Let T and Q be commuting operators acting in X, let T ¢ B_(X)

and let Q) be a quasinilpotent. Then T + @ € B_(X) (see e.g. [11, Remark
after Theorem 1.9}, [18, Theorem 4.1] or {21, Corollary 2]).

Analogously we can define the upper semi-Browder n-tuples. Let T =
(T1,...,Ty) be an n-tuple of mutually commuting operators in a Banach
space X. We say that T is upper semi-Fredholm (T' € fPEf ; (X)) if the map-
ping T : X — X™ defined by Tz = (Ti=,...,Tnz) is upper semi-Fredholm.

icm
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We say that T is upper semi-Browder (T € Bin)(X)) if T e E"P'S’_z) (X) and
dim N*{T") < oo, where
N = [ JINIF) N ... N(TH).
k=1

Define T™ = (T7,...,TX) € L{X*)™.

THEOREM 11. Let T' = (T4, ..., Ty) be an n-tuple of mutually commuting
operators in o Banach space X. Then

T e B™(X) & T € B{(x%)
and
T e B\ (X) & 7" e B™(x*).

Proof. The corresponding equivalences are well-known for semi-Fred-
holm n-tuples. Further it is easy to check that

N(TF) N ... ON(TEY = L[R(T7*) + ... + R(T*)).
and .
[R(TF) + ...+ RITD] = NTF) 0. O N(T).
The statement of Theorem 11 is now an easy consequence of these identities.

For a commuting n-tuple T = (T1,...,T,) € £{(X)™ we define the upper
semi- Browder spectrum of T' by
o5, (T) = {1, da) €C* 1 (Ty = Ay, T — An) € BUV (X))

By the previous theorem it is easy to see that op . has the same properties
as op_.
Define further the Browder specirum og of a commuting n-tuple 77 =
(Tl, .. .,Tn) by
G’B(T) = 0B_ (T) Uog, (T)
For a single operator T this definition coincides with the usual definition of

the Browder spectrum of T as the union of o.(71) and the limit points of
o(T1), where oo(1}) denotes the essential spectrum of Ty, i.e.,

ve(T1) = {A € C: T — X is not Fredholm},

and ¢{71) denotes the ordinary spectrum of T}. Again it is easy to see that
op has all the properties proved for og_.

Remark The possibility of extending the Browder spectrum to com-
muting n-tuples was proved in [3]. Our extension

UB(T1) ree )Tﬂ.) =oB_ (T11 v :Tn) U UB+(T1: s ;Tn)
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exhibits similar properties to the spectrum
O‘b(T]_,...,Tn):G'Te(Tl,...,T)U(O’T Tl,.. T))f

defined there. (Here or and ore denote the Taylor and the essential Taylor
spectrum and M’ denotes the set of all limit peints of a set M.) However,
these extensions differ for n > 2; an example will be given later.

The semi-Fredholm and semi-Browder operators are closely related to
semiregular and essentially semiregular operators which were intensively
studied (under various names; see e.g. [5], [9]-{11], [13], [15], [18], [19] and
i23]). An operator T € L(X) is called semzregulwr if it has closed range
and N(T) ¢ R®(T). T is essentially semiregular if R(T') is closed and
dim[N(T)/(N(T) N R=(T))] < oo.

From a number of equivalent properties of essentially semiregular opera-
tors we point out the following Kato decomposition (see [16, Theorem 3.1,
119, Theorem 2.1]).

PROPOSITION 12. An operator T € L{X) is essentially semiregulor if
and only if R(T) 15 closed and there exist closed subspaces X1, Xs C X
invariant with respect to T such that X = X3 & X, dim Xy < o0, T|x, 15
nilpotent and T'|x, is semiregular.

If T € £(X) is a lower semi-Browder operator then the space Xz in the
Kato decomposition is uniquely determined and X» = R™(T). Thus Tlx,
is onto. The analogous statement for n-tuples of commuting operator is not
true.

ExAMPLE. Denote by H the Hilbert space with an orthonormal basis
{eij i, €Zi>0o0rj>0}U{e_1_1} Define operators T3, Tz € £(X)
by

Theij = €ip1,y, T2€i; =eqj11.
We list some properties of the pair (7, Th):
(a) Ty and T» are commuting isometries so that (T7,7%) € BSF")(X ).
(b) Set

Y=\/{eij: 4, €% i200rj>0}={emg,-1}"

Then ;Y C Y (i =1,2), {Y +12Y = Y and codim Y = 1. Thus (T}, Ts) €
B™(X).

(c) Denote by op the Taylor spectrum. Then (0,0) € o (T, T3). Indeed,
€_1,-1 ¢ TWH +ThH so that TV H + T H 7"1 H,

(d) (0,0) is a limit point of the Taylor spectrum of (T1,T%). Indeed, if
(0, 0) were an isolated point of o (71, T%) then, using the Taylor functional
calculus, it would be possible to decompose H as H = Hy @ Hy where T;H; C
H; (1,7 = 1,2), or(Th|m,, Talm,) = {0,0} and {0,0} & or(T1|m,, T2lm,)-

Semi-Browder spectrum 9

Since T4 and T% are commuting isometries it would mean that the approxi-
mate point spectrum

U‘ﬂ'(Tl[Hla TQ\HJ.)
= {(M, %) € C* :inf{|(T1 - A)al| + (T2 — Xa)z|| : x € Ha, [Jo]| = 1} = 0}
is empty. Thus Hy = {0}, a contradiction with the fact that
(0,0) € ov(Ta|ar > Talmy )-
(e) We have
(U, 0) & O’T(Tl,Tg)’ C O“‘b(T]_,Tz)
and
(0,0) E’ O'B(Tl,Tz) =08, (Tl,Tz) U Fr_ (Tl,Tz).

Thus the joint spectra og and oy, are different.

(f) In the same way as in (d) one can show that there is no (not nec-
essarily orthogonal) decomposition H = Hy @ Ha such that T;H; C H;
(¢, = 1,2), T1|m, and T3|m, are nilpotent and TYH; + ToHy = Hz Thus

there is no analogy to the Kato decomposition of a single semi-Browder
operator.

PrROBLEM. Let T = (T4, ...,T,) be a commuting n-tuple of operators in
a Banach space X. Denote by og the defect spectrum of T, i.e.,

os{T) = {{(A1,.. A €C" (1 - A X + ...+ (Th — X)X # X}
Using Theorem 1 one can obtain
os_(TYUos(TY C op(T).

For n = 1 the opposite inclusion also holds. It is an open problem whether
os_(T)Uos(T) = op(T) forn > 2.

ProrosrtioN 13. Let T be an es‘sentially semiregular operator on a Ba-
nach space X Then R*°(T) is closed, TR (T) = R*(T") and the operator
T : X/R*®(T) — X/R®(T) induced by T is upper semi-Browder.

Proof. Set M = R™(T). Let X = X;&X; be the Kato decomposition of
T (see Proposition 12) and set T; = T'|x, (1= 1,2). Clearly M = R*(T3) C
Xo. Tt is well known that M is closed and TM = M (see e.g. [16 Lemma
1.4). Let k > 1 and 2 = 21 @ £ € X satisfy TFz € M. Then Tz € M
s0 that z, € M (see [16, Lemma 1.4]). Thus z € X + M and dim N(T*) <
dim X;. Consequently, dim N°°(T') < dim X; < co.

Let m : X — X/M be the canonical projection. As M C R(T) and
R(T) = {T:r: + M : 2z € X} = wR(T}, the range of T is closed. Thus 7T is
upper semi-Browder.
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THEOREM 14. Let T be an operator on o Banach space X. Then the
following conditions are equivalent:

(a) T is essentially semiregular.

(b) There exists a closed subspace M of X such that TM C M, Ty is
lower semi-Fredholm and the induced operator T : X /M — X/M is upper
semi-Fredholm.

(¢) There emists a closed subspace M of X .iuch that TM < M, T\ s
lower semi-Browder and the induced operator T : X/M — X /M is upper
semi-Browder,

(d) There ezists a closed subspace M of X such that TM C M, T|u
is surjective and the induced operator T : X/M - X/M is upper semi-
Browder.

(e) There exists a closed subspace M of X such that TM < M, Ty is
lower semi-Browder and the induced operator T « X/M — X/M is bounded
below.

Proof. By Proposition 13, (a)=-(d). The implications (d)=>(c)=>(b) are
straightforward.

(b)=>(a). First we show that R{T) is closed. Let 7 : X — X/M be the
canonical projection. If y € R(T), y = T'x for some z € X, then my =
Tz + M = T{z + M) € R(T), so that R(T) € »~'R(T). Let y € X and
my € R(T), e, y+ M =Tz + M for some z € X. Then y € R(T") + M =
R(T)+(F+TM) C R(T)+F for some finite-dimensional subspace F of M.
Thus 7~ (R(T)) C R(T) + F C 7~ Y(R(T)) + F. Further 7~ *(R(T)) + F is
closed since 7 is continuous, R(T) is closed and F finite-dimensional. Flence
R(T)+ F is closed, and so R(T} is closed.

As wN(T) ¢ N(T) and dim N(T) is finite-dimensional, there exists a
finite-dimensional subspace Gq C N(T) such that N(T) C Gy + N(T|ur).
The operator T'| s is lower semi-Fredholm and consequently essentially semi-
regular, i.e., there exists a finite-dimensional subspace G2 of M such that
N{T'n) C Ga+ R*(T\ar). Thus

NIT)C G+ N(T|u) C G+ G+ R®(Tu) C (G + Ga) + R™(T,
and T is essentially semiregular.

(a)=(e). Let X == X1 & X, be the Kato decomposition of T, L.e., dim X
< oo, TX: C Xy, TXy C Xy, Tlx, is nilpotent and Ty = T'| x, is semiregu-
lar. Set M = X; & R™(Ty) = Xy & R*(T). Clearly, M is closed and since

TR®(T) = R*(T), we see that T'|ss is a lower semi-Browder operator.

Let T : X/M — X/M be the operator induced by T. If z = zy & 2
satisfies Tt € M then Tpz, € R>®(1}), so that z; € R™(T,) and z € M.
Hence N(T) = {0}.
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We show that R(T) is closed. Let z,2;, € X (k = 1,2,...) and let
Trey + M — z + M in the topology of X/M. Then ¢ € R{(T)+ M =
R(T)+Msince M ¢ R(T) + X;. Consequently, z -+ M € R(f) Hence R(T)
is closed and T is bounded below.

(e)=(b). Clear.

It is well known that if 7 € L£(X) is essentially semiregular and K
is a compact operator commuting with 7" then 7'+ K is also essentially
semiregular [5, Theorem 5.9]. Now we can prove a sharper result. Let us
denote by

rr(T)=sup{e > 0: T — A € &,.(X) for |A| <=}
and
r (T)=sup{e > 0: T - M €®_(X) for |A| <&}

the semi-Fredholm radii of T'. An operator T' € £{X) is upper (lower) semi-
Fredholm if and only if ro () > 0 (r_(T) > 0).

LeMmma 15. Let A be an operator on o Banach space X and let M be
a closed subspace of X such that AM C M. Then ro(Alns) < re(A) and
re(A) < ro(A) where A: X/M — X/M is the operator induced by A.

Proof. Let A € £(X) be a Fredholm operator and let AM ¢ M. Then
R{A|pr) is closed (see [2, Lemma 4.3.1]) and dim N(4|x) € N(A) < oo.
Thus Al is upper semi-Fredholm, Further, codim R(4) < codim R(4) <
oo, and hence A is lower semi-Fredholm.

The rest follows from the fact that upper and lower semi-Fredholm spec-
tra contain the boundary of the essential spectrum [7].

THEOREM 16. Let T,5 € L(X), TS = ST and let T be essentiolly
semiregular. Let T = T|geo(T) and let T X/R°°(T) — X/R%(T) be the
operator induced by T. If re(S) < min{r_(T T, r5(T)} then T+ § is essen-
Yally semiregular.

Proof. By Theorem 14, T € #_(X) and T e &,(X). As TS = ST, we
have SR™(T) C R*(T) and we can define the operators S: X/R>(T) —
X/ R""(T) and § = 3| Reo(T y. Clearly, T8 = 5T and T8 = §7. By Lemma
15, 7¢(8) < 74(S) < r-(T) and 76(5) < 7o(S) < 74 (T). As in [11, Theorem
1.9] we deduce that T + § is lower semi-Fredholm and 7 + § is upper
semi-Fredholm. By Theorem 14, T + 5 is essentially semiregular.

CORGLLARY 17. Let T be an essentially semiregular operator on a Ba-
nach space X, S € L(X), TS = ST and let S be a Riesz operator (i.e.,
re(8) = 0). Then T + S is essentially semiregular.
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For T € L{X) define
oo (T) = {A € C: T — A is not semiregular}
and
Tye(T) = {A €C: T — X is not essentially semiregular}.
The spectrum o-(T) and its essential version o.(7) were studied (un-

der various names) by many authors (see e.g. [9)-[11], [13], [15], [16], [19]
and [23]).

CoOROLLARY 18, Let T € L(X). Then
Tye(T) = ﬂJ‘Y(T +5)

where the intersection is taken over all Riesz operators in X commasting
with 1.

Proof. The inclusion D follows from [19, Theorem 3.1]. The opposite
inclusion follows from the previcus corollary.

THEOREM 19. Let X be an infinite-dimensional Banach space and 5 €
L(X). Then the following conditions are equivalent:

(a) Oge(T'+ 8) = a1e(T) for every T € L(X) commuling with S.
(b) 8§ is o Riesz operator.

Proof (b)=(a). See Corollary 17.
(a)=(b). Take T = 0. Then o4e(5) = 0,6(0) = {0}. By [19, Corollary
3.4] or [16, Theorem 3.8], oo(T") = {0} so that S is a Riesz operator.
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