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Isoperimetric problem for uniform enlargement
by
S, G. BOBKOV (Syktyvkar and Bielefeld)

Abstract. We consider an isoperimetric problem for product measures with respect
to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets
for the infinite produet of the exponential measure.

1. Introduction. Let (X, ) be a separable topological space equipped
with a Borel probability measure. Assume that to each point z € X there
corresponds an open neighborhood D(z) with the following symmetry prop-
erty: for any z,y € X,

(1.1) if z¢€D(y), then ye& D(z).
For every non-empty set A C X, we define its enlargement by
(1.2) enl(4) = {_| D(a),

acA

and consider the problem of finding the function
1.3 R = inf u{enl(A4)),
(1.3 up) = inf p(enl(4))

where the sup is over all Borel sets A C X of measure u(4) = p.

Usually the enlargement is built with the help of a metric {or pseudo-
metric) in X, say d, by taking for D(z) the open ball D(z,h) with center
2 and radius & > 0. Then enl(4) = A" is the open h-neighbourhood of
A, and R,(p) = R,(p, h) depends also on h. Next, in applications of (1.3)
to distribution of Lipschitz functions f on X, one fixes p and varies h. For
A= {z: f(z) £ m}, where m is the median of f, we have AP c{z: f(z) <
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m + h}, and (1.2) immediately gives inequalities for deviations of the form
p{f —m >h} <1-R,(1/2,h),
plf = m < =k} S 1= Ru(1/2,h).
Here, the bound 1—R,{1/2, h) is sharp in the class of all Lipschitz functions:
when f(z) = dist{A, z), we come back to (1.3) for the case p = 1/2. However,
we will study R, as a function of p only, and the parameter A will not play
any role in such abstract setting.
Consider the finite product (X™, u™), the nth power of (X, 1), The und-
form enlargement In X7 is defined by the family of cubes

Dpfz) = D(z1) X ... x D(zg), @@= (21,...,2,) € X",
so, again as in definition (1.2), for any 4 C X",

(1.4) enl(4) = | | Du(a).

agA
If the enlargement in X is defined via a metric d as above, then the uni-
form enlargement in X™ corresponds to the uniform metric (or supremum-
distance) dn (2, y) = SUP;<;<p 4(%:, ¥i) With the same parameter h.

The isoperimetric problem in {(X™, u") with respect to the uniform en-
largement consists in finding the function R,». To solve the isoperimet-
ric problem in the infinite product (X u*) for the enlargement gen-
erated by the infinite-dimensional cubes Doo(x) = D(zy) x D(z2) x ...,
2 = (zi)i>1 € X*, one needs to find the function Ry« (p) = inf, R, (p),
0<p<l,ie, '

1.5 w(p) =1 inf "

(1.5) Ry (p) = inf #n%%fzpu (enl(4)),
where the second infimum is over all Borel sets A C X™ of measure u"(4) >
p. That is, R« provides the optimal function for the dimension free inequa1_~
ities pu"(enl(A)) > R(u"(A)).

In this note, we prove that, in many “good” cases, R, = is completely
determined by R,,. I

' THEOREM 1.1. If the function R, is concave on (0,1) and R, # 1 iden-
_w%zca,l_ly, then Ree represents the mazimal function among all increasing bi-
Jections R < Ry, in (0,1) such that, for any p,q € (0,1),

(1.6) R(pq) < R(p) R(q),
(1.7) S(pg) = S(p) S(q),
where S(p) =1— R(1 —p).

The case R, (p) =1 for all p is possible, and then obviously R#Qo = 1.
Anyway, for concave R, we thus get from Theorem 1.1:
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COROLLARY 1.2. Ryee = Ry, if and only if Rys = R, and this holds if
and only if the function R = R, satisfies (1.6) and (1.7).

CGleometrically the properties (1.6)~(1.7) mean that the extremal sets in
the “one-dimensional” problem (1.3) remain extremal “on the plane” and for
all bigher dimensions. Or, in other words, if for all p (some of) the extremal
sets “on the plane” are of the form A x X, then for all p (some of) the
extremal sets in X™, n > 2, are of the form 4 x X*~!, When X =R is
the real line with the canonical enlargement enl(A) = A+ {(—h, k), and the
measure 4 is log-concave (that is, p has a logarithmically concave density
with tespect to Lebesgue measure), then the extremal sets in (1.3) are of
the form (—o0,a] or [b,00), and thus the function R, is concave ([B2]):

(1.8) Ryu(p, h) = min{ F(F ' (p) + h), 1 — F(F"'(1 —p) = )},

where F(z) = pu((—00, z]) denotes the distribution function of 4, and Flig
the inverse function. It is further simplified for 4 symmetric around a point:
Ru(p,h) = F(F~{(p) + h).

In such a situation, one may wonder when the condition (1.6) is satisfied
for all A > 0 (the condition (1.7) becomes equivalent to (1.6} since 5 = R,
that is, when the standard half-spaces {z : 1 < const} provide the minimum
for (A + (—h, h)™) with (A} > p, whenever p € (0,1)and A>0(n =2
i fixed). This turns out to be equivalent to the fact that the support of p
is the whole real line, and for all p,q € (0, 1),

FEpe))  FF @) FFT())
pq - p q

where f is the density of p.

Of course, the Gaussian measure, with density f(z) = exp(~—x?)/v/2m,
satisfies (1.9). Moreover, the standard half-spaces are extremal when the
enlargement in R™ corresponds to the Euclidean metric ([ST], [Bor]), and as
can easily be shown ([BHL]), this extremal property of standard half-spaces
characterizes Gaussian measures,

As concerns the uniform metric, there is a relatively large family of sym-
metric log-concave probahility distributions satisfying (1.9). For example,
the measure with the distribution function F(z) = 1/(1 + exp(—z)) is
such a case. The related two-sided exponential distribution, with density
Fz) = exp(—|x])/2, does not satisfy (1.9), and thus for n > 2 the extremal
scts are not half-spaces. In Section 7, we illustrate Theorem 1.1 on a non-
syminetric example: we apply it to the one-sided exponential distribution
v, with density f(z) = exp(~%), z > 0. In this case, according to (1.8), we
have

(1.10) R, (p,h) = min{(1 — a) + ap, p/a}, a=exp(—h).

(1.9)

b
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THEOREM 1.3. For all p € (0,1) and h > 0,

(1.11) Ry (p,h) = min{p®, 1 — (1 - p)"/*}, &= exp(~h).
Note that
(1.12) Ry (p,hy= Inf (A< h(-1,1)),
v=(A)zp

where »2° stands for the inner measure, and the infimum is taken over all
Borel sets A C R™ of measure v™(4) > p. With the help of (1.11), one can
indicate asymptotically extremal sets in (1.12). Namely, take for A, (p) the
standard n-dimensional cube (—00, an(p)]™ x R x ... of measure p, hence
an(p) = —log(l — p'/™), and for B,(p) the complement of A, (1 ~ p). We
observe that, for all & > 0,

vR(An(p)") = 2% P (Ba(p)?) - 1~ (1-p)/e,
as n — 0o, where A" denotes the Minkowski sum A+ h(—1,1)%. Therefore,
the infimum in (1.12) is attained asymptotically either at the standard n-
dimensional cubes of measure p, or at the complements of such cubes of
measure 1 — p. Note that these sets do not depend on the parameter h, but
in order to choose the type (either A,(p) or B,(p)), one should compare p*
and 1~ (1—p)*/%. A simple analysis shows that, for all p & [1/2,1) and for
all @ € (0,1), p* < 1= (1 — p)*®, and consequently, for all 1, > 0, we have

Ryes(p,h) = p%,

and thus the cubes A,(p) are asymptotically extremal whenever p > 1/2.
For p < 1/2, the type of extremal sets depends on A.

2. Existence of multiplicative moduli. We need several elementary
analytical propositions on so-called multiplicative moduli.

DEFINTTION 2.1. A non-decreasing function R from (0, 1] into itself will

be called a multiplicative modulus (or simply a modulus) if, for all p,g &
(0,1),

(2.1) R(pg) < R(p) R(g).

We use this definition also for a non-decreasing R ; (0,1) = {0, 1] which
satisfies {2.1); then R can be extended by R(1) = 1.

LeMMA 2.2. Let R be an arbitrary modulus. Then

(a) R(1) = 1;

(b) if R(p) < 1 for some p € (0,1), then R(0F) = 0;

{c} if R(p) <1 for all p € (0,1), then R is increasing in (0,1}

(d) if the function S(p) = 1~ R(1—p) satisfies S(pg) > S(p)S(q) for oll
P,q € (0,1), then R 4s continuous in (0,1). If, additionally, R(p) < 1 for
some p € (0, 1), then R(p) <1 for allp € (0,1).
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Proof. (a), (b) and (¢) are immediate. To prove (d), assume R(po) < 1
for some pg € (0,1), so that by (a), R(0F) = 0, hence $(17) = 1. Given
p € (0,1), let p; and ¢ tend respectively to p and 1 so that p; > p and
pg1 < p. Then from the inequality S(pig1) = 9(p1)S(gi) we deduce that
S{p) = S(p*). Since S is non-decreasing, we get S(p~) = S(pt), that is,
8 is continuous at the point p. To prove the last statement in {d), note that
S{go) > 0 for ¢y = 1 — pg. Therefore, for all positive integers n, S(gf) ._>_
S{go)™ > 0. Since S is non-decreasing, S(g) > 0 for all ¢ € (0,1), that s,
R{p) < 1forall p & (0,1).

LEMMA 2.3. For any non-decrensing function f from (0,1] into itself such
that f(p) > p for all p € (0,1], there exists a maximal modulus R majorized
by f. Nomely,

(2.2) R(p) == inf f(p1)... flpn),

where the infimum is token over oll finite sets {p1,...,pn} C (0,1] with
1. ..Dp = p. In particular, R(p) > p for all p € (0,1]. If f is concave, then
s0 is I.

Proof. Obviously, the function R defined by (2.2) is the maximal mod-
ulus majorized by f, and R(p) > p for all p € (0,1]. Let f be concave.
Since R = inf,, R,,, where R, is defined by (2.2) with fixed n > 1, it suffices
to prove concavity of all R,. Using induction, we only need to show that
for any concave non-decreasing functions f1 2 0 and f; > 0 on (0,1], the
function
{2.3) R{p} = inf f1(p1) fa(p2), ,
where the infimum is over all py,py € {0,1] with p1ps = p, is also concave
and non-decreasing on (0,1]. Moreover, since f, and f2 can be Wrijtten as
pointwise infima over some families of non-decreasing affine -functl.ons, it
guffices to consider the case fi(p) = a; -+ bip with a;, 5 > 0 (i = 1,2). For
such functions, (2.3) gives

R(p) = arag + bibap + 2/ a1a2b1bap

for 0 < p < ¢ = min{abe/{aab1), azby/(a1b2)}, and R is a.fﬁne for p > ¢
with R'(¢*) = R'(¢™). Hence, R is concave and non-decreasing.

DEFINITION 2.4, In the following, we denote the modulus R from Lermn-
ma 2.3 by mod(f).

DEFINITION 2.5. A modulus R will be called a perfect mgdul@s if Rgp)
< 1 for some p € (0,1), and for all p,g € (0,1) the following inequality

holds:
(2.4) S(pg) = S(p)S(a),
where S(p) =1 - R(1 -p), 0 <p <1
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By Lemma 2.2(c), necessarily R(p) < 1 forallp < 1. If one puts R(0) =0,
S(1) = 1, then again by Lemma 2.2, R and § are increasing bijections in
[0,1], and the inequalities (2.1) and (2.4) hold for all p,q &€ [0,1]. Below we
often mean that the perfect modulus is defined at 0. Denote by R~ the
inverse of R, so the “dual” function

R*(p)=1-R"'(1-p),
represents the inverse of S. Hence, (2.4) is equivalent to
R (pg) < R*(0)R*(2), moc[01]

Thus, an increasing bijection R in [0,1] is a perfect modulus if and ounly if
R and R* are moduli simultaneously.

0<psl,

ExAMPLES. 1. The power functions R{p) = p®, with 0 < « £ 1, represent
perfect moduli (Lemma 7.4). In this case, R*(p) = 1 — (1 —~ p)!/«.

2. Let F be the distribution function of the probability measure on R
with even positive continuous density f. Then Rx(p) = F(F~1(p) +h) is a
perfect modulus whenever & > 0 if and only if (1.9) is satisfed ([B2]). In
this case R} = Rp. Note also that Ry is concave for all A > 0 if and only if
the function I{p} = f(F~*(p)) is concave on (0,1). .

‘ P?%OPOSITION 2.6. For any non-decreasing concave function f from (0,1]
into itself such that f(1) =1 and f % 1 identically, there exists o mazimal
perfect modulus majorized by f This modulus is concave.

Proof. We use the following simple properties of “dual” functions:

(2.5) (R =Ry
(2.6) if Ry < Ry, then R} < R3;
2.7 if R is concave, then R* is concave.

Here R, Ry agd 1_22 are increasing bijections in [0,1]. Now define functions
R, by transfinite induction. Set Ry = mod(f). By Lemmas 2.2 and 2.3, Ry

is an increasing concave bijection in {0, 1]. If A = £ + 1 is not a limit ordinal
number, then put

(2.8) By = min{mod(R), (mod(R§))*}.

Otherms«?, put Ry = infe.y Re. Assume in this definition that A < Ag,
where Ag is largg enough. Performing an induction step, assume that for each
£« /\., Reis an increasing concave bijection in (0,1]. Then, for A == €41, the
function Rt in (2.8) is an increasing concave bijection in (0, 1] by Lemma 2.3
and .the property (2.7). For limit ordinals ), Ry has the same properties as
the infimum of increasing concave bijections in (0, 1} T

Thl.ls, we 'ha,ve defined a non-increasing tramsfinite sequence Ry, A <
Ao, of increasing concave bijections in (0,1]. If Ag is large enough, .:suy, if
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card(Ag) > 2°, then this sequence stabilizes at some X < Mg, that is, Ryjq =
R. According to (2.8), this means that
Ry =mod(R,), Ry < (mod(R3))"
Therefore, Ry is a modulus and, in view of (2.5) and (2.6),
R} < {(mod(R3))")" = mod (R}).
Hence, recalling that mod (g) < g, we deduce that R} is also a modulus. As
a result, By is a perfect modulus.

Tt remains to show that R is maximal among all perfect moduli & such
that B < f. This is equivalent to proving (by induction over £) that B < He
for all £ < Ag. Since R < f and R is a modulus, we get R < mod(f) = Ry.
Suppose that B < R, for all n < £ If ¢ is a limit ordinal, then R <
infpce By = Re. If £ = n+1, we have R < mod(Ry) since R < Ry and
R is a modulus. By (2.6), R* < R}, hence R* < mod(R}), since R* is a
modulus. Again by (2.5) and (2.6), R = (B*)* < (mod(R;))*. Combining
both estimates, we obtain

R < min{mod(R,), (mod(R;))"} = Re.
Thus, R < R; for all £ < Ag. The proof is complete.

3. Moduli and integrals
PROPOSITION 3.1. Let R be an increasing concave function from [0,1]
into itself such that R(0) = 0 and R(1) = 1. Then R represents a perfect
modulus if and only if, forall0 <y <z <land0<p< 1,
(3.1) R(pz + (1 — p)y) < R(p)R(z) + (1 — R(P)HE()-
Egquivalently and more generally, for any distribution function F of a prob-
ability measure on [0, 1],
1 1
(3.2) R(jR‘ldF) < | R~ F(2)) dt.
0 0
Proof (see also [B3], Lernma). First note that (3.1) becomes (2.1) when
y = 0 and becomes (2.4) when z = 1, while (3.2) becomes (3.1) at measures
with two atoms. Conversely, given c € [0,1) and p € [0, 1], the left hand side
of (3.1) is constant on the segment
Ale)={(z,9):0<y <z <l pe+ (l-ply=ch
while the right hand side represents a concave function, and on the two
end points of A(c), (3.1) becomes (2.1) and (2.4). Hence, (3.1) holds for all
points of A(c). To derive (3.2) from (3.1), again one can fix ¢ € [0, 1] and

consider the convex compact set M(c) = {F : Sflj R~*dF = c} on which
the left hand side of (3.2) is constant, and the right hand side represents a
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concave functional. Hence, it suffices to check {3.2) for extremal “points” of
M (c), only. But these extremal measures have at most two atoms, and (3.2)
leads us back to (3.1).

4. A functional form of isoperimetric inequalities. Let us now
return to the notations of Section 1. Assume that, for all Borel gets A ¢ X
with 0 < u(A4) <1,

(41) p(enl(A)) = R(u(A)),

where R is some non-negative function defined on {0,1). In particular, § <
R < R,. We need a suitable functional form of (4.1). So, given a function
f:X — [0,1], define its enlargement by

{(4.2) enl f(z) = sup f(y).
y€D(x)
‘We observe the following elementary properties of this operation:
(8) 0 f<enlf <1
(b) {enl f >t} =enl{f >t} forall t € R;

(c) therefore, the function enl f is lower semicontinuous (hence, Borel
measurable); ,

(d) for indicator functions, enlls = Loy a).

ProrosITION 4.1. Let R be a concave perfect modulus satisfying (4.1).
Then, for any Borel measurable function f: X — [0,1],

(4.3) Eenl f > R(ER*(f)),

where R~ is the inverse of R, and the expectations are with respect to u.
Proof. Let F be the distribution functi f i

L pxoo ion of f. Applying (b) and (3.2),

Eenl f = Vulenl f > £)di = | p(enl{f > t}) dt

> {R(u(f > ) dt = | R(1 — F(t)) at

Ol = O b
Oty et O o

1
> R(ER‘l dF) = RER™L(f)).
0
Clearly, (4.3) turns into (4.1) on indicator functions.

N ierfarflf 4.2. Let X = R™ be the Buclidean space with the enlargement
?4 { L_ldA .generated with the Euclidean metric, and for any & > 0, let
d-.t).b old with t.he functions Rp(p) = Fp(Fy'(p) + h), where Fy is the

istribution function of a symmetric log-concave probability measure whose
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support is the whole real line and such that (1.9) is satisfied. Then all Ry
are concave perfect moduli. Put I(p) = fo(Fy 1(p)), where fo is the density
of Fy. Letting h — 0T in (4.3), using Taylor expansion for the right hand
side, and noting that enl f(z) = f(z) + [V f(z)|h + O(R?), we come to

(4.4) I(Ef) - BI(f} <BVF,

for every smooth function f on R™ with values in [0, 1}. In turn, {4.4) implies
(4.1) with R = Ry. When p is the canonical (GGaussian measure, (4.1} holds
for R = R, which is of the above form with fo being the density of the one-
dimensional Gaussian measure, and then {4.4) represents a functional form
of the Gaussian isoperimetric inequality (see [B3]). For another functional
form of isoperimetric inequalities, see [BH2].

5. Extension to product spaces. When R is a concave perfect mod-
ulus, (4.1) and (4.3) are easily extended to product spaces (X", u™) for the
uniform enlargernent defined by (1.4). According to (4.2), given a function
f: X" —[0,1], one should put
(5.1) enl f(zy,...,2n) = SUP  sup Flyt, - o ¥n)-

1<i<n €D (=:)

PROPOSITION 5.1. Let R be a concave perfect modulus satisfying (4.1).

Then, for any Borel measurable function f: X™ — [0,1],

(5.2) Eenl f > R(ER™'(f)},

where the expectations are with respect to p™. In particular, for any Borel
set AC X7,
(5.3) - u™(enl(A)) > R(u"(A))-

Proof Toperform the induction step, assume we have two spaces (X, pt)
and (X', ') with families D(z) and D'(z'), respectively, such that (4.1)
holds in both spaces. Consider the product (X x X', p x u') with the en-
largement generated by the family of cubes D(z)x D'(z"), (z,z') € X x X',
and consider a Borel measurable function f: X x X' — [0,1]. Introducing
V = R—! and fixing &' € X', one can write (4.3) for the function z — flz,z")
as

B9 VU < V(] )dut=).

Set
g(z'y= | sup fly,z')dp(=).
X yeD(x)
The function g is well-defined but it need not be measurable, so we introduce
its measurable minorant g.. By Fubini’s theorem, the left hand side of (5.4)
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is p'-measurable. In addition, V(g.) is a measurable minorant for V(g).
Therefore (5.4) may be written as

(5.5) V V{F(z,2) du(z) < V(g.(z)),
X
which is true for y'-almost all ' € X'. Integrating (5.5) over z’ and applying
(4.3) t0 g4, we obtain
56) | | V(f(z,2) dule) du(z) < v( [ enlg.(a') d,u’(a:’)).
X' X X
It remains to note that g. < g, hence enlg, < enlg, and that

enlg(z’) = sup g(3)= sup sup fy,y') du(z)
y'ED(z") y'eD(z') y veED(x)

< sup  sup fy, v ) du(z) = 1f(, 2" dp(a).
)S{yJED,(mI) A (1, 9") du(z) }S{en F,2") dp()

The proof is complete.

6. Properties of R . Proof of Theorem 1.1

PRO.P.OSITION 6.1. If R, # 1 identically then R o0 is a perfect modulus.
If, additionally, R, is concave then so is R,

Proof. This is the only place where we use {1.1) (except the inessential
properf*ty (b) from Section 4: the definition of enl f can be a little modified
to satisfy (b)). Now, for any set B C X, define its “interior” by

(6.1) int(B) = {z € X : D(z) C B}.
Due to (1.1), whenever X is the disjoint union of sets A and B, then
(6.2) X is the disjoint union of enl(4) and int(B).

The family of cubes Dn(z) = D(z1) % ... x D(z,), © = (21,...,2,) € X",
?.atlsﬁes (1.1), therefore, (6.2) holds in X™ for the same notion of interior as
in (6.1). In addition, for all sets 4; C X™ and Az € X*, we have

(63) enl(A1 X ./-12) = elll(Al) X enl(Ag),
(6.4) int(A4; x Az) = int(A;) x int(4s).
Recall the definition (1.5) of R = R,
(6.5) R(p) =inf ;i i

(p) = in m?ﬁgzp” (enl(A4)),
and sef
(6.6) S(p) =sup sup p™(int(B)).

n un(B)<p
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In view of (6.2), these functions are connected by the identity
Bp)+S1-p)=1, 0<p<l

Let us' check (1.6)~(1.7) for R and S. Given p, ¢ € (0,1) and ¢ > 1, one can
find according to (6.5) some integers n, & > 1 and some Borel sets 4, C X™
and A; C X* with u”(4;) > p and p*(4s) > ¢ such that

(6.7) p"(enl(A1)) < eR(p), pF(enl(A2)) < cR(q).

The set A = Ay x Ay C X"™* i of measure p"*+*(A) > pg, hence by (6.3)
and (6.5},

(6.8) Ripg) < u™F(enl(4)) = p™(enl(4s)) p"(enl(A2)).

Combining (6.7) and (6.8), we get R(pg) < c2R(p)R(g), for any ¢ > L.
Letting ¢ — 17, we obtain R(pg) < R(p)R(q) for all p,q € (0,1). The same
argument by means of (6.4) and (6.6) yields S(pg) = S(p)S(g). Recalling
Lemma 2.2, one can conclude that R is an increasing bijection in (0,1), and
moreover, it is a perfect modulus. Concavity of R will be seen from the
argument below.

Proof of Theorem 1.1. By Proposition 2.6 with f = R, there
exists a maximal modulus R majorized by R,. Therefore, since Ry is a
perfect modulus, we have Ry < R. Again by Proposition 2.6, R is concave,
hence Proposition 5.1 may be applied to R: by (5.3), for any n > 1 and for
any Borel set A C X™,

p"(enl(A)) = R(u"™(A)).
But this means that R, > R. As a result, By = R.

Proof of Corollary 1.2. It remains to show that R,z = R, implies
(1.6) and (1.7). As in the proof of Proposition 6.1, we get

R,2(pg) < Ru(p)Rp(q),  S.2(pg) = Su(p)Sula),

where S,(p) = 1 — Ru(1 —p), 8u2(p) = 1 — Ry,2(1 — p). Therefore, in case
R, = Ry, the function R, is a perfect modulus.

7. Proof of Theorem 1.3. First we make several simple statements
on moduli that will enable us to see how to apply Theorem 1.1. Denote by
F4 (vespectively, F_) the family of all non-decreasing functions f (0,1] —
(0,1] with f(1) =1 such that

Tp(z) = —log f(exp(—2)), =20,

is convex (resp., concave) on [0, o0). For f smooth in (0, 1], this means that
the function

L (p) = pf'(p)/ f(B)
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is mon-increasing (resp., non-decreasing) in (0,1]. Cleaxly, if f1, fo € F.,
then f = min(f1, o) € Fy, since Ty = max(Ty,, Ty, )

LEMMA 7.1, If R ¢ F_, then R is a modulus.

LemMA 7.2, If f € F_, then the function R = mod(f) is representable
as

(7.1) R(p) = inf fpY")", 0<p<l

Proof. First let R € F,. The function Tg(x) + Tg{a ~ z) is convex in
0 < z < q, and therefore attains its maximum either at z = 0, or at z = q.
Hence, for all ,y > 0, Tr(z+y) > Tr(z)+Tr(y), that is, R(pg) < R(p)R(q)
for all p, ¢ € (0, 1]. Thus R is a modulus. Now let R € F.. In accordance with
(2.2), we should minimize the products f(p1)... f(p.) under the condition
Pr...pn =p, or in terms of T¥, we should maximize the function
"u,(.T,]_, ey T = Tf(ml) + .+ Tf(:cn)

on the symplex @1 + ... 4+ 2, = &, ; > 0 (with & = —~logp). By Jensen’s
inequality, T (z1)+...+T¢(z,) < nTy(z/n), that is, u attains its maximum
at the point (z/n,...,z/n). Thus,

supu = nTs(z/n) = —nlog f(p*/").
It remains to maximize over all n.

COROLLARY 7.3. Let o € [0,1). For the function flo)=(01—a)+ap, we
have mod(f)(p) = p°.

Indeed, f € F_ and inf,, f(p'/™)" = limy, o0 Fpt/ ™) = pe,
LeMMA 7.4. The function R(p) = 1—(1—p)}/* belongs to Fi(0<agl).
Indeed, for @ € (0,1), set 8 =1/ > 1, and ¢=1-—p. Then

alpp)=PA-2 1ot
1—(1-—p)r@_ 1—¢gf

decreases in p € (0,1) if and only if the function u(t) = (L—7)/(1 —t)

decreases in t € (0,1) (here v = (8 — 1)/8 € (0,1) and ¢ = ¢®). The last
statement is obvious.

Since the function f(p) = p® for & > 0 belongs to F.., from Lemmas 7.4
and 7.1 we obtain

CoroLLARY 7.5, Let & € (0,1]. The function
R(p) = min{p®, 1 - (1~ p)V*},  pe(0,1],
belongs to F. Since B* = R, R is thus a perfect modulus.

Far the ex_ponentia,l measure v, R, is given by (1.10). Hence, to prove
Theorem 1.3, it remains to show the following;
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PROPOSITION 7.6. For o € (0,1], the function R{p) of Corollary 7.5 is
the mazimal perfect modulus majorized by the funcilion

f(p) = min{(1 - &) + ap, p/a}.

Proof Let Ry be the maximal perfect modulus majorized by f. By
Corollary 7.5, R < Ry, and we need to show the converse inequality. Indeed,
Ei(p) < fi(p) = (1 — @) + ap, hence, according to Corollary 7.3, Ri(p) <
mod (f1)(p) = p. Recalling the property (2.6), we obtain

Ri(p) < mod{(f1)*(p) = 1~ (1~ p)*/*.
Both inequalities give R1 < R = min(mod(f1), mod{f1)*). The statement
follows.

8. Remarks. For the supremum-distance, the isoperimetric problem was
earlier considered in [AM], where some general estimates for R,-(1/2,h)
were obtained and applied to the case of the d-sphere X = §¢, and in [B4],
where the problem was studied on the class of monotone sets; see also [B2}
which was a continuation of [B1]. As concerns other types of enlargement,
the extremal sets are known in some special cases only. For the Euclidean
distance in X = R™, these cases are:

1) Lebesgue measure: the extremal sets are balls (the classical isoperi-
metric theorem);

2) uniform distribution on the sphere: the extremal sets are again the
balls (theorem of P. Lévy [Lev] and E. Schmidt [Sch});

3) Gaussian measure: the extremal sets are half-spaces (theorem of
V. N. Sudakov and B. S. Tsirel'son [ST] and C. Borell [Bor]); note that
the half-spaces can be viewed as balls of infinite radius;

4) uniform distribution on the ball: the extremal sets are balls with
specific centers and radii (Yu. D. Burago and V. A. Zalgaller [BZ]);

5} uniform distribution on the diserete cube X = {0, 1}": the extremal
sets have been found by L. Harper [H]; in particular, they are the balls
A = D(a, k)N Xy in Xy with center at o € Xo when such balls exist for the
given measure p, that is, when

i
p=2""% CF
im0
for some 0 < k& < n—1 (usually, Harper’s theorem is forinnlated for the
Hamming distance).

These classical results inspire the idea that, under some weak general as-
sumptions, the extremal sets in the isoperimetric problem should be among
balls and their complements (including set-limits of balls like half-spaces in
the Euclidean space). In this note (as well as in [B2]), we tried to confirm
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such a conjecture on the example of the supremum distance (in which case
the balls are cubes). It should, however, be pointed out that the uniform
enlargement of sets is relatively large, and therefore the appropriate isoperi-
metric inequalities, even when they are sharp, represent weak estimates in
the context of the concentration of measure phenomenon (see, e.g., [Tall],
[Tal2], [Tal3], [Led], [BH3]).
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