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Suppose that m > n and a < n/{n + 1). 2 is generated by the m
generators z;(6) = exp(if;), j = 1,...,m, and, by considering functions
which are constant on the other 8y, each n-element subset of these generators
lies in a subalgebra isomorphic with lip, T”, which is n-dimensionally weakly
amenable. Thus if T is an alternating n-derivation with values in a symmetric
Banach ¥-module, by restricting to the subalgebra we see that 7" is zero for
any n-generators, and so by Corollary 2.6, 7' = 0.

Suppose that m > n and a > n/(n + 1). By restricting to {6 : # &
T, Opyr = ... = b, = 0} we see that lip, T" is a quotient of lip, T™
and so by Theorem 3.1{i) the latter is not n-dimensionally weakly arnenable
because the former is not.
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Hereditarily finitely decomposable Banach spaces
by

V. FERENCZI (Paris)

Abstract. A Banach space is said to be HDp if the maximal number of subspaces
of X forming a direct sum is finite and oqual to n. We study some properties of HDn
spaces, and their links with hereditarily indecomposeble spaces; in particular, we show
that if X is complex HDy, then dim(£(X)/S(X)) < n?, where S(X) denotes the space of
gtrictly singular operators on X, Tt follows that if X is a real hereditarily indecomposable
space, then £(X)/S(X) is a division ring isomorplic either to R, C, or H, the quaternionic
division ring.

1. Introduction

General introduction. The problems discussed in this article came as
natural questions after the article of W. T. Gowers and B. Maurey ([GM])
solving the unconditional basic sequence problem. In a Banach space X, a
sequence (en)nen is said to be a basis if every vector z in X can be written
uniquely in the form ¢ = 25_20 Aie;, where the )\;’s are scalars. It is an

unconditional basis if there is a constant C such that the inequalities

IS nie| < 03 ne
e E i==0

hold for all subsets E of N and all coefficients A;. A sequence is a basic
sequence (resp. an unconditional basic sequence) if it is a basis (resp. an
unconditional basis) of its closed linear span. Details about these notions
can be found in [LT].

A lot of classical spaces have an unconditional basis (spaces lp, for p > 1,
have one) but for example Iy does not have one; an example of a Bana(?h
space without a basis is even harder to find, but was given by P. Enflo in
1973 ([E]). On the other hand, it is a classical result that every Banach
space contains a basic sequence; but the question “Does every Banach space
contain an unconditional basic sequence?” has remained unsolved for many
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years. In 1991, Gowers and Maurey finally gave a counterexample, that we
shall call Xan, to this question.

In fact, the space Xan has a stronger property, namely, it is heredi-
tarily indecomposable (or H.IL), which means that no subspace of Xqu is
decomposable (i.e. the topological direct sum of two infinite-dimensional
subspaces). A Banach space X with the LI property is easily shown not to
contain unconditional basic sequences, but also not to be isomorphic to its
square, and, with a lLittle more work, not to be isomorphie to its proper sub-
spaces. But the H.I. property not only provides counterexamples to many
questions about general Banach spaces; it also appears in the following im-
portant dichotomy theorem, proved by Gowers, According to Gowers’ the-
orem, every Banach space contains a subspace that is either hereditarily
indecomposable or spanned by an unconditional basis ([G1], [G2]). Because
of this theorem, it is particularly important to know about general properties
of hereditarily indecomposable spaces.

Most known results on H.Y. spaces are about operators on complex H.I.
spaces. In particular, Gowers and Maurey showed in [GM] that if X is H.L
complex, then every operator on X is a strictly singular perturbation of a
multiple of the identity (we recall that an operator S is strictly singular if
no restriction of S is an into isomorphism). The author generalized their
result showing that for every subspace ¥V of X, every operator from ¥ to
X is a strictly singular perturbation of a multiple of the canonical inclusion
map from Y to X ([F1], and Theorem 1 below). The fact that the space of
operators on a H.I. space is, in a sense, small is a crucial point for proving
properties of these spaces.

In this article, we study the property HD,: a space is HD,, if the supre-
mum of the m’s such that X contains a direct sum. of m infinite-dimensional
subspaces is equal to n. For n > 2, these are spaces without an unconditional
basic sequence that are not H.I., so they give a good illustration of Gowers'
dichotomy theorem. On the other hand, we show that HD,, spaces are spaces
with “few” operators, which provides them with properties similar to the
properties of H.I. spaces. Finally, our results allow us to solve the real case:
in a real H.I. space, the quotient of the space of operators by the space of
strictly singular operators is a division ring that is either real, complex or
quaternionic.

Notation and definitions. In the following, X, ¥, Z, W are complex or
real Banach spaces. The real field is denoted by R, the complex field by
C, and the quaternionic division ring by H. By a space (resp. subspace)
we shall always mean an infinite-dimensional closed space (resp. subspace).
The set of bounded operators from Z to X is denoted by £(Z, X). Re-
call that an operator § from Z to X is said to be strictly singular if for
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every subspace W of Z, the restriction S of § to W is not an into
isomorphism. This is equivalent to saying that for every ¢ > 0 and ev-
ery subspace W of Z, there exists a subspace W' of W such that [|S)w-||
< &. The set of strictly singular operators from Z to X is a subspace of
L(Z,X) that we shall denote by 8(7, X), and we recall that when TU
is defined, it is a strictly singular operator whenever T or U is strictly
singular,

Let Z ¢ X, and A € £(Z,X). By Proposition 2.c.10 of [LT], if A is
of the form Id +S, where S is strictly singular, then it is an isomorphism
on some finite-codimensional subspace of Z. If such an operator A iz an
isomorphism on Z, we say that A is an Id +5-isomorphism. Then the inverse
isomorphism A~ of A defined on A(Z) satisfies A~ ~Id = (Id —A)A~!, s0
it is an Id +S-isomorphism on A(Z). Two subspaces ¥ and Z of a Banach
space X are said to be Id+S-isomorphic if there is an Id +S-isomorphism
from ¥ onto Z. Replacing “strictly singular” by “compact” in the above,
we also define ¥ 4-K -isomorphisms. We recall that every compact operator
is strictly singular.

T'wo spaces are said to be totally incomparable if no subspace of the first
is isomorphic to a subspace of the second.

Let R be a finite set. Then |R| stands for its cardinality. Given sub-
spaces (X;)icr of X, their sum is direct if for every 4, the projection p; from
Y icr Xi to X; is well defined and continuous; the sum is then denoted by
@Dicr Xi- For any @ C R, we will denote by Xg the sum Pico Xi- For
any operator 7' on X g, we will denote by Tjg the restriction of T' to Xo (if
Q = {i}, we write Tj; for T)(;}). Given another direct sum X%, we say that
X', is smaller than Xg if there exists a permutation o on R such that for
alli € R, X! C X, (notice that when two sums are comparable, they are
necessarily sums over the same finite set).

Recall that a space that can be written as a direct sum of at least two
(infinite-dimensional) subspaces is said to be decomposable and that a space
X is said to be hereditarily indecomposable (or H.L) if it has no decompos-
able subspace.

More generally, we say that a space is HD,, if the maximal number of
subspaces of X in a direct sum is finite and equal to n (Definition 2) and we
will prove (Corollary 2) that a simple example of a HD,, space is the direct
sum of n H.I. spaces. In Section 2, we define and study the convenient
notion of quasi-mazimality (Definition 1). In Section 3, we show that the
sum of a HD,, and of a HD,, space is HDyqn (Proposition 1). This leads to
cousidering a certain type of HD,, spaces called fundamental (Definition 3),
which we study in Section 4. In Section 5, we show that consequently, if X
is complex HD,,, then the dimension of £(X}/S(X) is smaller than n? (Pro-
position 4}. In Section 6, we study spectral properties of (real and complex)
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HD,, spaces. In Section 7, we show our main theorem: if X is a real H.I
space, then £(X)/8(X) is a division ring isomorphic either to R, C, or H
(Theorem 2).

2. Quasi-maximality. We first define an important technical notion.

DErINITION 1. Let X be a Banach space. Let X be a subspace of X.
The space X is said to be quasi-mazimal in X if for every subspace Z of X,
the sum X + Z is not direct.

Lemma 1. Let X be a Banach space, Let Y, Z be subspaces of X. If for
every subspace W of Z, the sum Y + W dis not direct, then 'Y and Z have
Id 4-K -isomorphic subspaces.

Proof. Let Y, Z satisfy the hypothesis. Passing to a subspace, we may
assume that Z has a basis. For every ¢ > 0, for any subspace W of Z
the sum ¥ + W is not direct, so there exist two unit vectors y € ¥ and
w € W such that ||y — w|| < e. Using repeatedly this remark, one can huild
a normalized block basic sequence (2;);en in Z and a sequence (y;)ien in
Y such that ), w|[lvi — 2| < oco. Let Z' be the subspace generated by
(#:)ien. The operator A from Z' into ¥V defined by A(z) = v; for all i is
of the form Id+K, where K is compact as a uniform limit of finite rank
operators. Passing to a finite-codimensional subspace, we may assume that
it is an isomorphism. Then Z’ and A(Z'} are Id +K-isomorphic subspaces
of Z and Y.

COROLLARY 1. Let X be a Banach space, and X a subspace of X. Then
X is quasi-magimal if and only if for every subspace Z of X, Z and X have
1d +S-isomorphic subspaces. The same statement holds if we replace Id +8
by Id +K.

Proof This follows from Lemma 1, from the definition of a strictly
singular operator, and from the fact that every compact operator is strictly
singular.

We now prove two lemmas about quasi-maximal subspaces X of X . They
show that, as long as we study operators on X only up to strictly singular

operators, it is enough to study operators on some quasi-maximal subspace
Xof X.

LeMMA 2. Let X be a Banach space and let X be a quasi-mazimal sub-
space of X. Let Z be any Banach space, and let T € L(X,Z). Then T

is strictly singular if and only if the restriction Tix of T to X is strictly
singular.

. Proof. The direct implication is clear. Now suppose that Tix is strictly
singular. Let ¥ be a subspace of X. According to Corollary 1, there is a
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subspace ¥’ of ¥ and an embedding 4 = Idjy+ +S of ¥ into X. Then we
can write Ty, = T(Id)y+ +5 ~ §) = Tjx A — T'S. As T|x and § are strictly
singular, o is T|y+; in particular, for every £ > 0, there is a unit vector ¥ in
Y’ such that |Ty|| < e; so 1" is strictly singular.

LeMmMa 3. Let X be a Banach space and let X be a quasi-mazimal sub-
space of X. Let & be any Banach space, and let T € L{Z,X). Then there
evist Z' C Z and T' € L(Z',X) with ImT" < X such that Tz — T" is
strictly singular (or compact).

Proof. It is easy to check that for every strictly singular cperator § on
Z, there exists a subspace W such that S}y is compact; so it is enough to
prove the strictly singular part of the assertion. Now let ' ¢ £(Z, X). If T
is strictly singular then we can choose Z’ == Z and 7" = 0. If not, passing
to a subspace, we may assurne that T is an isomorphism into X. Applying
Corollary 1 to TZ and X, we find a subspace Z’ of Z such that T'Z’ embeds
into X by an isomorphism A = Id+5. Let T/ = AT|z.. We have ImT” C X;
furthermore, Tjz: — T' = STz is strictly singular.

3. HD,, spaces

DEFINITION 2. A space X is hereditaridy finitely decomposable if the
maximal number of (infinite-dimensional) subspaces of X forming a direct
gum in X is finite. For n > 1, X is HD,, if this number is egual to n.

Some easy remarks. A space is HDy if and only if it is H.I. More generally,
we will see that the direct sum of n. HI spaces is HD,, (Corollary 2).

A space X is HD,, if and only if it contains direct sums of n subspaces
and every such sum is quasi-maximal. In particular, X is H.I if and only if
every subspace of X is quasi-maximal.

For every HD,, space X, every subspace Y of X is HD,y, for some m < n.

ProOPOSITION 1. Let X be HD,, and Y be HD,,. Then X &Y is HDyn oy,

Proof. It is based on a type of Gaussian elimination method. Let p be
the projection from X @Y onto X, and g be the projection from X &Y
onto ¥. By dofinition, there exist m subspaces of X forming a direct sum
in X, and n subspaces of Y forming a direct sum in ¥. The sum of all
these subspaces is a direct sum of m + n subspaces of X & Y. Now let
K = {1,...,k} and let Zx form a direct sum in X @Y. It is enough to
prove that & < m -+ n.

Passing to subspaces of the Z;’s, we may assume that each p|; and each
g); is either strictly singular or an isomorphism. Let Ix be the set of i such
that p; is an isomorphism. For ¢ in Ix, let X; = p(Z;). .

Let R be the set of subsets B of Ix such that p is an isomorphism
on Zg or on some smaller sum (in the sense of the definition given in the
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introduction). Let r = max{|R|: R € R}. As X is HDy,, we have r <m. We
may assume that r is attained for R = [1,r| and, passing to a smaller sum
for the Z;’s, that pjp is an isomorphism. Let prﬁl be the inverse isomorphism
of p|r. Let i be in Ix \ R. By the definition of », p is not an isomorphism on
any sum smaller than Zz @ Z;. This implies, in particular, that no subspace
of X; forms a direct sum with Xr: indeed, assume X; C X; and Xp form
a direct sum, and let Z! = p~1(X!); then on Zp @ Z{, p is an isomorphism.
By Lemma 1, it follows that some subspace of X; is Id +S-isomorphic to
a subspace of Xg. So, passing to a subspace of Z;, we may assume that
X; embeds into Xp, by an operator of the form Idj; +5;. This yields an
embedding b; = pﬁg(Id“ +8;)py; of Z; into Zg. For 4 not in R and not in
Ix, welet b; = 0. Let b be the operator from Zy\ g into Zg whose matrix is
the (r, k — r)-matrix [bry1, ..., bs). We now consider another decomposition
Zte =0 ® ... @7, of Zg, defined by Z] = Z; for 1 <4 < r and Z] =
{(=bizi,z) 1z € Ziyforr +1 <1 < k.

We show that the restriction of p to Z}{\R is strictly singular. Let 4 €
K \ R. Then either i € Ix and then the restriction of p to Z| is defined by

p(——bizi, Z-g) = —-—(Id +S;.;)pzi +p2~; = ——S,-pzi,
so it is strictly singular; or ¢ ¢ Ix and then the restriction of p to Z] is
defined by
p(—bizi, 2;) = Pz

(where py; is strictly singular), so it is strictly singular.

Thus the restriction of p to ij\ p is strictly singular, and as g = Id —p,
it follows that the restriction of ¢ to some finite-codimensional subspace
of Zj.{\ g is an isomorphism: up to a finite-dimensional perturbation, Zirc\ B

embeds as a direct sum into Y. As Y is HD,, it follows that & — 7 < n, so
E<m+n.

CoroLLARY 2. Letn € N, Fori=1,...,n, let X; be a H.L space, Then
the space P, Xi is HD,,.

Remarks. A hereditarily finitely decomposable space does not contain
any unconditional basic sequence. Indeed, if X contains an unconditional
basic sequence (ex)nen, then for every n > 1, X contains the direct sum
GB;;I E?, where BT is the space generated by (eniy;)ien-

Corollary 2 provides us with the first examples of HD,, spaces for n > 2;
by the previous remark, notice that these are spaces without an uncondi-
tlonal basic sequence that are not H.1. However, direct sums of n H.I. spaces
are net the only examples of HD,, spaces: a HD,, space not of this form was
built in [F2], for a different purpose.

Finally, notice a property that was already known for H.I. spaces: if X
is finitely hereditarily indecomposable, then for every k # I, X* and X' are
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not isomorphic. Indeed, by Proposition 1, if X is HD,,, then X* is HD,z,
while X! is HD,,,.

4. Fundamental HD,, spaces. In this section, we study a particular
type of HD,, space, called fundamental: fundamental HD,, spaces are direct
sums of n LI, spaces, with some “normalizing” condition. We will see that
given a HD,, space X, it is enough to know about the operators on any of
its fundamental HD,, subspaces to know about the operators on X.

DEeFINITION 3. A Banach space X is a fundemental HD,, space if it is
the direct sum of n H.I spaces any two of which are either isomorphic or
totally incomparable.

Let X be a fundamental HD,, space of the form X = @], X;. For 4,
in {1,...,n}, we say that 4 ~ j if X; and X are isomorphic. For every 1,
we denote by p; the projection from X onto X;. For every i o~ j, we denocte
by o;; a fixed isomorphism from X; onto X, by pi; the map a;p; from X
onto X;. We denote by a{X) the set of equivalence classes of indices for the
relation ~. We also want to define a set $(X) that does not depend on the
choice of the labelling: ordering the classes by decreasing cardinality, we let
5(X) be the finite sequence of these cardinalities. We also define a positive
number n(X) by n(X)? =5, o(X) |5]%. Writing these numbers as functions
of X is an abuse of notation, because a priori, they depend on the choice of
the decomposition of X as €B;._; X;; we will allow this notation because we
will see (Proposition 2) that s(X) and n(X) are in fact uniquely determined
by X. Until then, we think of s and n as functions of X under a particular
decomposition.

We will see that s(X) and n(X) characterize in a way the space of oper-
ators on X. Notice also that n{X) < n.

Remark. Let X be fundamental. A sum smaller than X can always
be chosen fundamental, by passing to further subspaces (if two spaces are
not totally incomparable, then, passing to subspaces, we may assume that
they are isomorphic; repeating this procedure, we end up with a fundamental
sum). We will always choose such smaller sums, without necessarily saying it.

Tt is clear that both s(X) and n{X) are preserved when we apply an iso-
morphism to X. Notice also that neither s(X) nor n(X) changes when we
pass to a smaller sum; again this is an abuse of notation, but we can allow
it here because comparing two fundamental sums is by definition comparing
two given decompositions of the sums (see the definition in the introduc-
tion). The proof is the following. Let X be a fundamental sum, and Y a
smaller sum, and to simplify the notation, assume that for all 4, Y¥; C X;.
Then if X; and X; are totally incomparable, then so are the subspaces Y;
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and Y;; if X; and X are isomorphic, then by the H.I. property (apply Corol-
lary 1, for example), ¥; and Y; are not totally incomparable, so they must
be isomorphic.

LEMMA 4. Bvery HD,, space contains a fundamentol HD,, space.

Proof Let X be HD,,. Then X contains a direct sum of n subspaces.
Each of these subspaces must be H.I., otherwise X would contain a direct
sum of n + 1 subspaces. By the previous remark, passing to appropriate
subspaces, we may assume that this sumn is a fundamental HD,, space.

Remark. If X is HD,, then every fundamental HD,, subspace X of X is
quasi-maximal in X. This is an important remark with respect to Lemmas 2
and 3.

We now study the relative position of fundamental subspaces of a HD,
space X. We will see that the fundamental HD,, subspaces of X form a filter
for the inclusion up to isomorphism.

NoTATION. Let X = €., X; be a fundamental HD,, space and let
Y =2, ¥; be a fundamental HD,,, subspace of X. We denote by Iy x
the injection of Y into X, written as an (n,m)-matrix with coefficients in
LY;, Xy, for1 <j<mand 1 <4< n Forl <1< n, werecall that
p; denotes the projection on X;, and according to the notation defined in
the introduction, p;); is the coefficient on the ith line and jth column of the
matrix of Iy x.

LeMMa 5. Let X = @, X; be a fundamental HD,, space. Let Y =
D, Y; be a fundamental HDm subspace of X. Then there exist a sum Y'
smaller than Y, en isomorphism L from Y' into Y, and a permutation
matriz B aon X such that

EF =
v,xL ( v
where D stands for the block-diagonal (m,m)-matriz of an isomorphism,
S for the (m,m)-matriz of a strictly singular operator, and V for some
(n — m, m)-matriz.

D+S)

Proof. We use a type of Gaussian elimination method. We shall say that
the matrix of an operator from Y’ to X is of Gaussian form on the first k
lines if it is of the form (D{*/“S 5:), where D is the block-diagonal (k, k)-
matrix of an isomorphism, § (resp. S') the (k, k)-matrix (resp. (k,m — k;)-
matrix) of a strictly singular operator, and V (resp. V') some (n — k, k)-
matrix (resp. {n -~ k,m — k)-matrix).

Assume A1 is a matrix of Gaussian form on the first & — 1 lines and
the matrix of an isomorphism. Clearly, it is enough to show that, for some
further restriction of Y’, we can find an automorphism B on Y’ such that,
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up to a permutation on the X;’s, Ap = A;_; B is of Gaussian form on the
first k lines (it is then clear that A; is the matrix of an isomorphism).

Let N ={Ll,...,n}, M = {1,...,m}. As Ag_; is an isomorphism, the
restriction of Ak—y to Y} is not strictly singular, so there exists ¢ such that
the restriction p;; of p; to Y, is not strictly singular, and by our hypothesis
on the form of A;_1, we bave ¢ > k. Up to a permutation on the X;, we
may assume that i = k. Passing to a smaller sum, we may assume that
for every j, the restriction py; of py to YJ’ is either strictly singular or
an isomorphism. Let J he the set of j such that py; is an isomorphism.
In particular, & & J. For every j in J, let H; = pe(Y}); H; and Hy are

infinite-dimensional subspaces of the H.I. space Xy, so by Corollary 1, H;

and Hy, have Id 4-S-isomorphic subspaces. Passing to a smaller sum, we may
assume that Hy = (Id+s;)(H;) (in particular, we choose s; = 0).

For j € J, let b; be the operator p;|}c(1dlj +8;)pry; from Y] to Yy; for j &
J, let b; = 0. Let b be the operator from Y}, to ¥} with matrix [by, ..., bm]-
Let B be the automorphism on Y}, with matrix

Idy_1 0 0
b1 1d =bjpp1m)
0 0 Tdm—z
Then let Ay = Ag..1B. As Ag_1 is of the form
Diag(pi)i " + 51 52 53
Prll1,k—1] Prk  Pk|lk+1,m] | »
" Va Vs
it follows that A is of the form
Diag(p)i™ + 85 5, s
Dk — Peb)|,k—-1]  Prle {(Pr — Peb)k|(rs1,m]
Vi V2 Vy

All the coefficients of the kth line except pijz are now strictly singular.
Indeed, let j 5 k; then either 7 € J and then (py —Pkb)u is equal to p);,
strictly singular; or 7 € J and then

(P = b5 = Prj; — (d); -+85)Pri; = —55Px)5)
so that it is also strictly singular.
So Ay is of Gaussian form on the first & lmes and is the matrix of
an isomorphism. Repeating this procedure until k = m, we finally get the
regult.

COROLLARY 3. Jet X = i, X be a fundamental HD,, space. Let
Y = P, Y; be o fundamental HDy, subspace of X. Then there exist a
sum Y' smaller than Y, a subset M' of {1,...,n} of cardinality m and an
isomorphism A onY' such that AY' is smaller than X .
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Proof Let Y/, I}, L be as in Lemma 5. Then Z = DLY’ is smaller
than Xy for some M’ of cardinal m.

ProprosSITION 2. Let X be o HD,, space. Let X and X' be fundomental
HD,, subspaces of X. Then there exists a fundamental HD,, subspace Y of
X {resp. Y’ of X'} such that Y and Y’ are isomorphic.

Proof Write X = @, X;, X' = @}, X! We first find a sum Y
smaller than X that Id+S-emhbeds in X', As X' is fandamental in X, it
is quasi-maximal: applying Corollary 1 for every 4 in {l,...,n}, we find
a subspace Y¥; of X; that embeds into X' by an Id--S-isomorphism. The
sum Y = @7, ¥; is smaller than X and embeds into X' by an Id +8-
operator B, which we may assume to be an isomorphism by passing to
finite-codimensional subspaces. Let Z = B(Y). As Y C X, we may apply
Corollary 3: without loss of generality, taking a new restriction of the ¥;’s,
and up to relabelling, we may assume that there exists an isomorphism L
such that for every 4, L(Z;) € X|. The sum Y’ = L(Z) = LB(Y) is smaller
than X’ and is isomorphic to Y.

DermviTION. It follows from the filter structure on the set of fundamental
subspaces of X (Proposition 2), and from the fact that both (X) and n(X)
are preserved when taking a smaller sum or an isomorphism (Remark after
Definition 3) that for X a HD, space and X a fundamental subspace of X,
neither s(X) nor n{X) depends on the choice of the decomposition of X as
a direct sum, or even on the choice of X. We define $(X) {resp. n(X)) to be
this common value.

We are now able to study the space of operators on a fundamental com-
plex HDy, space, and then on a general complex HD,, space.

5. Operators on a complex HD,, space. We first recall a theorem
from [F1].

THEOREM 1. Let X be a complex H.I space end ¥ C X. Then every
operator fromY to X is of the form Alyx + S, where ) is complez, Ivx is
the canonical inclusion map from Y to X, and S s strictly singular.

Let X = @y, X; be a fundamental complex HD,, space. Recall that p;,
denotes cv;;p;, where p; is the projection on X, and o5 a given isomorphism,
from X; onto X;. We denote by 3_,_, the sum 3, Lijec: where C runs
over the classes of indices for o,

PROPOSITION 3. Let X = @B, X be a fundamental complex HD,, space.
Let YCX. Then every operator from Y to X has the form 3

ieeq MigDig
3 I3 J
+ 5, where A\;; is a constant and S is strictly singular,
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Proof. In the following, S always stands for a strictly singular operator.
The space Y is HDy, with m < n. Let Y = €], ¥; be a fundamental
HD,, subspace of Y. According to Lemma 5, we may, renumbering the X;’s,
assurne that the matrix Iy x of the injection of Y into X is of the form
(P#7), where D is the (m,m) block-diagonal matrix of an isomorphism, §
is the (m, m)-matrix of a strictly singular operator, and V' some (n—m, m)-
matrix. We may also assume (passing to a smaller sum) that for all 4 in
{1,...,m}, p;; is an isomorphism. For all such i, let H; = p;(¥;). Let pi—lil
be the inverse operator of p;j; (defined on H;).

Let now T be any operator from ¥ to X. For every j ~ 4, H; is iso-
morphic by a;; to a subspace of X;, so by Theorem 1, every operator from
H; to X; is of the form Aajy; + 5; while for every j % 4, H; and X; are
totally incomparable, s every operator from H; to X; is strictly singular.
As the operator sz._‘il is from H; to X, it follows that Tpi_lil is of the form
¥ ie j Aijij+S;, where Sy is strictly singular. Tt follows that for every i < m,
T|Y1 is of the form (Z )\.,;jp,;j)|y1.+si. If we let )\.gj:U for ¢ > m—+1, then

Ty = Z Aijpi; + 8.
irvg
So the restriction to Y of the operator S defined by § =T — 3., Aipi; is
strictly singular. By Lemma 2, S is also strictly singular on Y.

Jei

PROPOSITION 4. Let X be a complex HD,, space. Let Y ¢ X and let m <
n be such that Y s HD,,. Then dim{(L(Y, X)/S(¥, X))} < n(¥)n(X) < mn.

Proof. Let Y = @}, ¥; be a fundamental HD,,, subspace of Y. Let
X = @), X; be a fundamental HD,, subspace of X containing Y. Without
loss of generality, we may also assume that the injection from Y to X is of
the form given by Lemma 5.

Let T € £{Y,X}. As X is quasi-maximal in X, for 1 <14 < m, we may
apply Lemma 3 with Z = Y;; we obtain ¥/ C Yj, and T} a strictly singular
perturbation of Tyy with ImT] C X. Let Y’ = (B;; Y. Passing to sub-
spaces, we may assume that Y’ is fundamental. The unique operator T” on
Y’ such that for all 4, TJ’Y;’ = T/ takes its values in X and is a strictly singular

perturbation of T}y-. The form of 7" is then the one given by Propos?tion_B,
and T}y is of the same form. As Y’ is quasi-maximal in Y, Lemma 2 implies
that T is of the same form on the whole of Y. Now because of the form of
Y, the elements of any equivalence class in a(Y) embed into the elements
of one and only one equivalence class in (X)), This defines a quotient map
e from a(Y) into o(X). It follows that

dim(L(Y, X)/S(Y, X)) = 3 ol -|e(a)l,
aca(Y)
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so by the Cauchy-Schwarz inequality,
dim{L(Y, X)/S8(Y, X)) < n(Y)n(X).

Now for Z ¢ X and U € £(Z,X), let U be the class of 7 modu-
lo strictly singular operators. We define a map § : L{¥,X)/S(¥, X} —

LY, X)/S(Y, X) by §(T) = Tly. It is clear that ¢ is a linear mapping and,
by Lemma 2, it is an injection. It follows that

dim(L(Y, X)/8(Y, X)) < a(YIn(X) < mn.
COROLLARY 4. Let X be a complex HD,, space. Then
dim(L£(X)/S(X)} < n(X)* < n?.

Remarks. These inequalities are sharp because, by Proposition 3, if X
is for example a HD,, space of the form @B;", Y, we have dim(£(X)/S(X))
=n(X)? = n?

However, the inequalities can be strict. It is clear that n(X)? can be
strictly less than n2, as soon as we know the existence of totally incomparable
H.L spaces. One can see examples of totally incomparable H.I. spaces in [F2],
but the simplest examples are probably a class of different versions of Xgum
with different values for the function f (see [GM] for an explicit definition
of XGM)- :

Also, dim(L(X)/S(X)) is not necessarily equal to n(X)?: take a H.I
space Y, a subspace Z of ¥ of infinite codimension, and let X be the
HDy space Y ® Z; then Z @ Z is fundamental in X, so n(X)? = 4, while
dim(£(X)/S(X)) = 3 because L(Y, Z) = (Y, Z).

It is an open problem whether each value between 1 and n2 can actually
be obtained for dim(£(X)/8(X)); we do not even have an example of a
non-H.I. space for which this dimension is 1.

6. Spectral theory in HD,, spaces

DEFINITIONS. Let X be a Banach space, T be an operator on X. Let
S(T) denote the essential spectrum of T: by definition, it is the spectrum of
the class of T in the Calkin algebra £(X)/K(X). Let 65{(T") be the bound-
ary of 8(T). We say that the operator T is infinitely singulor if for every
finite-codimensional subspace X’ of X, the restriction of T' to X’ is not an
isomorphism. By Proposition 2.c.4 of [LT], this is equivalent to saying that
for every £ > 0, there exists a subspace ¥ of X such that 17y || < e. A scalar
A is infindtely singular for T i T — A1d is infinitely singular. Let I(T) be the
set of infinitely singular values for T.

We also recall that T is Fredholm if its image is closed, and its kernel and
cokernel are finite-dimensional. Fredholm operators are exactly the operators
that are invertible modulo compact (resp. strictly singular) operators. We
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say that T' is semi-Fredholm if its image is closed, and its kernel or cokernel
is finite-dimensional. The generalized Fredholm inder, defined by i(T) =
dim{Ker T") — dim(Coker T), is defined and continuous over the set of semi-
Fredholm operators (see [LT] about Fredholm operators).

We first prove a well-known lemma in spectral theory.

LeMmmMA 6. Let X be ¢ Banach space, ond T be an operator on X . Then
68(Ty C I(T).

Proaof. By definition, S(T'} is the set of A such that 7 — AId is not
invertible modulo compact operators, i.e. is not Fredholm. Now let A be
in 65(T). As S(T) is closed, T — AId is not Fredholm. Neither is it semi-
Fredholm of infinite index, for otherwise, by continuity, T' — A’ Id would
be semi-Fredholm of infinite index for A’ in a neighbourhoed of A, contra-
dicting the fact that A is in the boundary of S(T'). It follows that either
dim(Ker(T — AId)) = oo, or (T — AId)(X) is not closed; in both cases,
T — Ald is infinitely singular.

PROPOSITION 5. Let X be o complexr HD,, space, and T be an operator
on X. Then the cardinality of S(T') satisfies |S(T)| < n.

Proof. It guffices to prove that [I(T)! < n: indeed, it then follows from
Lemma 6 that |§5(1)| < n, so that S(T') is a set of at most n isolated points.

For every A in I{T) and every £ > 0, there exists a space Yy {¢) on which
T — X 1d is of norm at most £. For every A, using a normalized basic sequence
(Yn)nen of vectors such that || T{yn) — Aynl| € 27", we may assume that the
map € — Y,(g) is increasing. We now prove that if N is a finite subset of
I{T), then for some £ > 0, the spaces {Y3(£))aen form a direct sum; then
from the fact that X is HD,, it follows clearly that |I(T")| < n.

Assume that the property is false, and let NV be a finite subset of (1) of
minirmum cardinality among those contradicting the property. It is clear that
|N| > 2. Let ¢ = minasxen |A — X and C = maxyen [Al. Let £ > 0. There
are vectors yx with ¥y € Ya(e), maxaew ([yall = 1 and |3 .y uall < &
Applying T to this inequality, we get

H > AwH < ([T + [N e.
AEN

Let A, in N be such that maxasa, [|¥a]l = 1 (such a number exists because
|N| = 2). We have

|2 0= Adwa] < (el = 1Tl + 1D,
A#Ae

while
max [[(A~ Ayl =z e
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Since £ — Yi(g) is increasing for every A, and A, takes a finite number of
values, we may assume that A; is constantly equal to some Mg, so that we
get vectors g} for A 5 Ap with ¥y € Ya(e), (205,00, YAl £ (CH 1T + [N,
and maxyen, |94 > e

Apgain because ¢ — Y} () is increasing, the sum of the (Y (e)) for A #
Ao is not direct, and this holds for any £ > 0, a contradiction with the
minimality of V.

Remark. Notice that the inequality in Proposition 5 is sharp; for ox-
ample, it is an equality in a fundamental HD, space, for an operator of the
form Z?:l )\ip,;, with )\7; ?é )\j if 4 ;'5 _7

LEMMA 7. Let X be a finitely hereditarily decomposable space. Then every
semi-Fredholm operator on X is Fredholm with index 0.

Proof. Let T be a semi-Fredholm operator on X. First assume that X
is complex. If T' is semi-Fredholm with infinite index, then so is T — A1d for
A small enough, a contradiction with Lemma 6. So T is Fredholm. As S(T)
s finite, C\ S(T") is connected, so ind(T"— ALd) is constantly equal to ind(7)
on C\ 5(T'). Furthermore, when A tends to infinity, 7'~ AId = —A(Id —T/A)
is close to —~AId, so it is Fredholm with index 0, hence ind(T")} = 0.

Assume now that X is real and comsider its complexification X¢ (that
is, Xe = X @ X with the law i(2,y) = (~y,2)). Then X¢ is a real HD,,
space, and as every complex subspace of X¢ is also a real subspace, X¢ is a
complex HD,, space for some m < 2n. Let ip be the generalized Fredholm
index of T. It is easy to check that 7 @ T, the complexification of T on Xe,
is also semi-Fredholm with index 7 (the dimensions in the definition of the
index of T'@& T are over C). By the first paragraph of this prooi, and as Xp
is finitely hereditarily decomposable, ir is equal to 0.

COROLLARY 5. Let X be a finitely hereditarily decomposable space. Then
X is not isomorphic to any proper subspace.

Proof. Every isomorphism from X into X is semi-Fredholm; but by
Lemma 7, it is Fredholm with index 0, so it must be an onto isomorphistm.

7. Operators on a real H.I. space
THEOREM 2. Let X be a real H.I space. Then for all Y C X,
dim(L(Y, X)/S(Y, X)) < 4.
Furthermore, L{X}/S(X) is o division ring isomorphic either to R, C, orH.

Proof The first part of the proof uses a result of [F1]. It was shown
in that article that all the spaces By = L(Y,X)/S(Y, X ) embed in a limit
space F which is a Banach algebra and a division ring. By Gelfand’s theorem
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(whose proof can be found in [R]), the space E is of dimension at most 4
(and must be isomorphic either to R, C or H). It follows that dim By < 4.

The statement relative to the case ¥ = X can be proved directly as
follows. Let 7' be a non-strictly singular operator on X. Then by Lemma 2,
no restriction of T' to a subspace of X is strictly singular; by Proposition 2.c.4
of (L], the restriction of T to some finite-codimensional subspace of X is
an into isomorphism, and so T is semi-Fredholm. Finally, by Lemma 7, T is
Fredholm. This means that every operator on X is either strictly singular,
or Fredholm. As Fredholm operators are invertible modulo strictly singular
operators, this is equivalent to saying that £(X)/8(X) is a division ring,
and so by Gelfand’s theorem it is either real, complex or quaternionic.

This article i3 part of my Ph. . thesis, written under the direction of
Bernard Maurey at the Université de Marne-la-Vallée. I am very grateful to
him for his valuable help.
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