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A new Taylor type formula and > extensions
for asymptotically developable functions

by

M. A. ZURRO (Madrid)

Abstract. The paper studies the relation between asymptotically developable func-
tions i1 sevoral complex variables and their extensions as functions of real variables. A
new Taylor type forinula with integral remainder in several variables is an essential tool.
We prove that sivongly asymptotically developable functions defined on polysectors have
0™ extensions from any snbpolysector; the Gevrey case is included.

1. Introduction. The goal of this paper is to prove a new type of the
Taylor formula and to obtain a characterization of strongly asymptotically
developable functions by means of C* extensions. These functions agpear as
solutions of integrable connections with irregular singular points (see [Mj]).
In dimension one the Poincaré asymptotic expansions were used to study
irregular singular points, but Malgrange [M] suggested that the C*° exten-
sions would be more convenient. Here we prove that in any {inite dimension
the two procedures are equivalent.

Two types of asymptotic expansion have been introduced to understand
the irregular singular points of integrable connections and Plafl systems:
strong expansions (see [Mj)]) and weak ones (see [GS]). Here we prove that
the two approximations are essentially different. We give an example of a
function which is weakly, but not strongly asymptotically developable.

The author wishes to express her thanks to Professor J. M. Aroca from
the University of Valladolid (Spain) for introducing her to the problem.

2. Notations. Let K be the field of real numbers, R, or the field of
complex numbers, C. Let » be a positive integer > 1. An interval in K™ is a
set of the form Q = Iy ... x I, where the J; are convex connected open sets
in K. Suppose that 0 is a limit point for each I; and let O = (0,..., 0) € K.
We then call O a vertex of @. For instance, the following sets are intervals:
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{0,00) x...x(0,00) C R™ and 51 x...x 8, C C", where S; are open sectors
in C.

For any o € K", v, denotes the segment from O to @, that is, v.(f) = tz
for t € [0,1].

We use the following multiindex notations:

Let J = {j1,...,4s}: 71 < ... < Jq, be a nonempty subset of {1,...,n}
and let & = (aq,...,q,) be in N*, Then

ol = oy + ...+ ap, a.yz(ajl,...,ajn)ENJ,
ly=(l....,00)eN, 0;,=(0,...,00 e N,
and Q7 = I3, x ... x I, for aninterval @ =11 x ... x I, in K*. Moreover,

we write J® = {1,...,n} \ J and, if J = {s}, ¢* stands for {s}¢. We put
(agyape) = 0, €5 = (1;,05¢),

v with 2 = (21, ...,2,) € K,

[ S @
=zt .2,

and for s = (s1,...,5,) € [0,00)",

ol? = *t Ll
Now, for o = (o, ..., 0m) and 8= (B1,...,5.) in N?, we say a < 3 if and
only if 3; — o, is a nonnegative integer for each 5 = 1,...,n.

Let @ be an interval in K* and n = (n1,...,71,) € N*. We denote by
CI(Q) the set of functions f : @ — K whose partial derivatives D f, a < n,
exist in @ and are continuously extendable to Q. For simplicity, we also
write [)° f for the extension to Q.

Let F bea family of continuous functions of the form

= {faJ}w?éJC{l,...,'l’l},ﬂJGN‘i 2
where f,, : Qze — K and fa{1 wy EK Leta€ N* and z == (¢1,...,3,) €
Q. We put
@ Appa(Fz)= 3 (DTN (e
0#JC{1,..,n} 0LBrSar—1s
Given f in CJ(Q), j € {1,...,n} and x; € I}, we define
Lif: @3z | flt,ap)die K

RET

.....

and for s < 7,

A‘gs)fggm;__;f(o]’wja)ﬂ« la{(OJ,mJ )w € K.

Next, we introduce the operators

If:Ijo.?.on for g € N\ 0.
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For each nonempty subset J = {ji,..., 4.} of {1,...,n}, 41 < ... < js, we
put

I =I;%0 oIl AR = .A?:jl) ©...0 A_g?“),

£21 = T37 o DIos 1),

that is,
(= f)(a)
e ‘ dtjl,l S dtjl,z . S dtjl.&jl FINN S dtjk,l S dtj,ng AN
"T'm..,'l Tegy 'Ytjlvo‘jl‘l ’dek Tfij
310u|f
S Py Ty (tj:‘wajl s e, s Tge) dtjk,ajk .
RPN R B 9V 7

Finally, £* = €% for J = {1,...,n}.

3. The formula

THEOREM 3.1. Let @ be an interval in K* and O = (0,...,0) € K* o
vertex of @. Let n e N*\ 0. Foralla € N*\ O and f & C*’(Q,) we have
equality

() fla) — App,(f, z) = (Ef)(z)  for every z € Q,

where App,, (f, ) = App, (F,x) for the family F = {fa, tozrcq1, .. n}, azent
with

1
Jar(21e) = a—ﬂD(aI’ofc)f(Oramrc)-
Remark 3.1. Observe that the remainder is of order |z®|:

Im"\

[(£%7) ()] < Mo
where M, = sup{|D*f(z)|: z € Q}.

4. Prelirninary results
Remark 4.1. Let § € {1,...,n}. If g € CI(Q) does not depend on z;,
then for every (0 < p < n; we have
(126)(z) = gig(m)m? for z € O,
PROPOSITION 4.2, Let @ = Iy x ... % I, be an interval in IX™. For all f
in CI(Q), we have:

(1) 8F/0zy is in Cd “(Q).
(2) Z; f belongs to C;H-e"(Q)-
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(3) Ifﬁ ?é j, then Ii(ij) = Ig(l-zf)

(4) If i 7, then T,(8f/8z;) = (0/0x;)(T:f).

Remark 43 Letj e {l,....n},neN andge N g<n -1 5K
f eCiHQ) then

107 f
J q-+1
o’
by induction on ¢ and Remark 4.1, as

grviy  gef  BPf
Io‘a?jqz = 5at '3"5?(% )

=f - A1,

This is nothing but the classical Taylor formula (with respect to z;) with
the integral remainder.

PROPOSITION 4.4, Let 4,5 € {1,...,n}, i # J, and let p be a positive
integer. For all f in CJ(Q), we have the following two equalities:

(1) AP (Z: ) = T(AP' £).
(2) AP (81 /0a,) = (8)82:) (AP 5).

Proof. The proposition is an easy consequence of 4.2.

5. The proof of the formula. It is sufficient to establish the formula
with @y in place of @, where J = {1,...,p}, for every p < n. We proceed
by induction. If p = 1, then our statement is Remark 4.3. So assume the
formula to be valid for Jg = J \ p in place of J.

Let App,/ denote the function z v App,(f, ). By (i) of Section 2 we
can write

APP(a, 0,0) (%) = APP(a 0,03 (£ 8) + (A7 ) (1) + S(c)
(we put Aﬁ,_l) = (), where

S@= Y (DS p (k.

PELCT OnSpr<ar—Ir
{p}GL
Observe that § = —A,(f‘"“l)(App(w0 0, since
a
18 fg,

vl dzy (Zxe\p: Op} = Flugue) (Trcerp)

forv=20,...,0p—1and 0 # K C J\ p. So, using the induction hypothesis
(it) EX0f=F = APP(ayy 0,6 f
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we get, by 4.2-4.4, the equalities
EXTF = E%0 f — £%R, (Ag“”—l)f)
= f- ADP(aJﬂ,o_,g)f — Alee =1 (g0 f)
= f = ADP(e0,0)f - AL~V — 8 = f— APy, 0,0 F

as desired.

6. Asymptotic expansions in several complex variables. In the
literature we can find two different notions of asymptotic behavior of a
holomorphic function f defined on a polysector V' = Vi x ... x V¥, near the
vertex O = (0,...,0) € C* of V. From now on, each V; will be supposed to
be open and to have an amplitude < 27. In 1979 Gérard and Sibuya [GS]
introduced the following idea:

Given a formal power series f= 3 aq2z® with complex coefficients, we
will call f the weak asymptotic expansion of f as z — O in V if for every
t € N there exists a constant C; > 0 such that

‘f(z) = > fa2®| S G’y Vz=(a1,..,z) €V,
|| <
where |z] = max{|z;| : 1 < j < n}. Later, in 1984, Majima [Mj] defined the
following beautiful concept:

Let F = {fas }osc{1,..n},0sens be a family such that fo, € O(Vie)
(recall that O(U) is the algebra of holomorphic functions on the open set
). Suppose that for each proper subpolysector (1) W # @ of V' and for
N ¢ N*, there exists Kw y > 0 such that

|f(2) — Appn(F.2)| < Kw,v|2"|  forall z € W.

Then we say that F is the fotal asymptotic expansion of f (in V) and we
call f a strongly asymptotically developable function. We put TA(f) = F.
The formal power series

FA(f) - Z ‘fa{1,...n}za{1 ..... n}

oq1,...,n} EN

is called the formal asymplotic series of f.

Set
Ax (V) = {f € O(V): f is strongly asymptotically developable in V'},
Awik(V} = {f € O()) : f has a weak asymptotic expansion in V'}.

(XY A proper subpolysector of ¥ = V1 % ... x Vs ig a subset of V of the form W =
W1 % ... x Wy whare W; is a sector of € such that W,; Cc V; UG,
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PRrROPOSITION 6.1. Let f be a strongly asymptotically developable function
in a polysector V. Let F = {fa;}1a, be the total asymptotic expansion
of f in V. Then fo, s strongly asymptotically developable in Ve, for all
Jc{l,...,n}, J #0, and ay € N/. Moreover,

1 : e r,0 ye
#) DY fa, (wie) = = lim DEr2a) £z, 20),

agl (zrzre)=(05wre)
(z),250 )EW 7 X W ye
where W # 0 is a proper subpolysector of V., wye € Wye, ay € N,
Proof. Let TA(f) = {fax } k.5 - Set
Foy = {faru, (2irune ) oprcre, aren -

We claim that TA(fa,) = Fa,. We proceed by induction on #J and |ay|.
For all Ny. € N/° we have

(a) APP(aJ+1J,NJc)(7:aZ)

= (~10)F N [ fs, (20e) — APy, (Fa,, 20)]
0281 %as

+App(0j.NJc)('F?z)
NS
BAK G O <Br S

Now fixx w = (wy,...,w,) € W. Suppose J = {p}. If o, = 0, then, by (a),

2 AP (0 N o) (Ficr 2K = for (55c2)].

ifOJ('zJC) - APPNJC (fo_)')zjc)l S Iz_‘;\iJc[(KW,(lJ,NJc)lel +KW,(DJ,NJG))!

where K1, n,.) and Ky o, n,.) are given by the hypothesis. Define
Cwye 00 = Ewa; v |ws| + Kwyo, w0 ¥ |og] > 0, then, by (a)
and the induction hypothesis,

|f05J'(ch) - AppNJc ("F'OCJ} Z_]'c)i S. OWJ(:,&J,N_,: |z_]ch ‘7
where Cw oo, N0 18 defined inductively by

1

Cwye.az,Nre = Kwitos1y,8,0) wr] + KW(OJ,NJU)W
J

o
0r<Brfag—1yg

So our claim holds if #J = 1. Suppose it is true for every subset I of

{1,...,n} such that #L < k— 1. Let J C {1,...,n} have cardinality k. If
oy = 07, then (a) implies

!wg,;-—a_; |C{WJ‘=;ﬁJ:NJ“'

| fo, (24e) — Appy . (Foss20e)| < CWJc,o,,NJ.JZ?ZJ“I

icm
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with
Cw e 05,85 = Bwiy wpe) [wal + Kwy0; 5 7)
+ Z CWKC,OKA(OK"DJsNJ‘:)’
PLECT
where Ky 1,,nv.) and Kw, o, n) are given by the hypothesis, and
CW e 0k, (Oxcemy ,Nro) Were constructed by induction. If |eey| > 0, then

‘fcv; (z-fn) - AppN]G (fﬂt.r)z-fc)l

1
N e
< 25| [Kw,(aJ+1J,NJc>Ew1 + KW,(UJ,NF)W
Pfr l B
w wy’|
- Z Z TJQ(T:CW,ﬁKa(DK:NJC)+ Z |waJ|OW=ﬂJ,NJc )
PEKGI 0k <Pr<ox 7 OJﬁSﬁ;JSaJ I
JFey

where Ky (a;+15,55) and Kw,0;,n,.) are given by the hypothesis, and
CW e Bre (Orcery Nye) a8d Owrie g, N, Were constructed by induction. So, we
get our claim.

The proof of (#) goes as follows. For n = 1 it is a classical result (see
Wasow [Wa)). It is now enough to prove the two equalities
(b) lim D(OCJ,C(.JGJ(]C(Z) - APP(QJ+1J,0JC)(FT Z)) =0

(zd,240) =0, 0)
(27,240)EWI X Wje

and

(C’ lim D(Q:J,CXJC)APP(CEJ+1_I,OJG)(f, Z) = QJIDQcho:J (ch)'

(21,250 )=(01 e}
(zr.270)EWs X Wye
Proof of {b). Let A > 0 be such that for all z = (z1,...,2,) € W we
have
vy = {z; + Nzgle® 00, 2n]} CV;, e
The Cauchy formula for the function f — Appa, 41,,0,.) (7 ) integrated on
v1 X ... X v, implies
| D02 ) (f(2) = APD(ay414,050) (F5 2))]

AT
sl K gy 41,0001 + Mylesl+i 1)
= )\|QJ|+|QJCHZKC;&;¢1 J b

where W is a proper subpolysector of V containing W. Hence we get (b).

Proof of (c). An easy computation gives the formula

(d) DI ADP (41505000 T3 2) = S0 (~1#F e DY fo, (210).
d£ELCT
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The cardinality of L® is < n; so, by induction on n,

lim DachaL(ch) == aJ\L!DaJGfQJ(wJC).
(zs,250)—{0r,wye)
(21,200 )W X Wic
Then, by (d), we obtain

(24,27¢ )}‘1?(10.1 wye) D(aj,aJC)App(aJ-f-lJ,OJc) (F= z) = a D% JC!J (wJ")v
(Z;,ZJC)EWJ XWJC
as
k

Yo (FpEEH =y (?)(—1)”1 =1 (with & = #J).

B#ELCT iml
COROLLARY 6.2. If f € Ag(V), then D*f € A (V) for all w & N™,

COROLLARY 6.3. The total asymptotic expansion F of a strongly asymp-
totically developable function f is unique in a given polysector V.

7. The main theorem
THEOREM 7.1. Let V' be a nonempty polysector in C* and f o holomor-
phic function on V. Then the following two statements are equivalent:

(1) f is strongly asymptotically developable in V.
(2) For every proper subpolysector W # 0 of V, the restriction of f to
W, fw, admits a C*® extension to R* gs g Function of real variables.

Remark 7.2. If we replace (2) by

(2) f admits a C> extension to some neighbourhood of 7 ¢ R

then the assertion of the theorem is false (take flz} = e¥* in V =
{Rez > 0}).

8. The proof of Theorem 7.1. Let us start with the proof (1)=(2).

Lemma 8.1 Let W # ) be o polysector in C* = R2" gnd let F be g O
Function defined on W. If for all o N, D*F has a continuous extension
to W, then F' hos o 0 extension to R2"™.

Proof Let F, be a C™ extension of f to R#" (the extension exists
because W is a convex domain; see [W2]). Let J™F,, be the m~jet of the
restriction of F,, to W. So, the Whitney map (J™F,,)men on W has a, %
extension, by the Whitney extension theorem (see [W1J).

PROPOSITION 8.2, Assume (1) of T.1. Then the partiol derivotives
olel+HPlRe §  glel+l8) Im f
Dpxdys dzedyf B eN,

each have a continuous extension to W.
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Proof. This is an easy consequence of (#) in 6.1.

In order to prove (2)=(1} we will use our formula (%) of Taylor type.

Let W be a nonempty proper subpolysector of V. By (2) we have fi €
C& (W, Set

1 8lal

O!J! 623“1
for 0 # J C {1,...,n} and ey € N/, This function is holomorphic. Observe
that the right-hand side does not depend on W (when Wy 3 z¢). So,
all these functions define a function f,, that is holomorphic in Vje. Set
F o= {fas}-

In order to evaluate f — Appy(F, 2) let us proceed as follows:

Given a proper subpolysector W # D of V, let N = (Ny,..., N,) € N?
and put Cw x = max{|D¥ f(2)| : z € W}. By (%) we get

f(2) = App(F, 2)| = [EnF(2)] < Ow,w|2"]
for all z € W, as desired.

fW,aJ(zJ“)"—" (OJ,ZJc) in Wje

9. Applications. Let V # § be a polysector in C*. Set
Un(V)={f € Ax(V) : 1/f € Au(V}].
The following proposition completes the result of Haraoka [Ha] on the inverse

of a strongly asymptotically developable function.

PROPOSITION 9.1. Let f € Ag(V). Let TA(F) = {fa,}. Then the fol-
lowing statements are equivalent:

(1) f € Ug (V).

(2) Forall z€ V and for all J C {1,...,n}, J # 0, we have f(z) # 0
and fOJ (ZJ'E} 5/: 0.

Proof. Suppose (1). For h = 1/f, we have

1= limé F(zYh(2) = fo, (zgeYho,(2<)
z.lJ,EW‘j

and we get (2), since V is connected.

To deduce {1) from (2), take a nonempty proper subpolysector W of V.

Choose a proper subpolysector W' of V' such that W is a proper subpo_ly—
sector of W', By Theorem 7.1 we obtain a C* extension F' of the restriction

fwre of f to W', So, by 6.1,
fo,(zre) = F(0g,25), 23 € Wi,
therefore,
F(OJ,ZJC) # 0, Zje € W‘}c
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Given z € W, we have an open neighbourhood f2, in R2" such that
F(u) # 0 for w € 2,. So Aw = |J, (2, is an open neighbourhood of W
where F' never vanishes. Hence the mapping

Aw 2w 1/F{u)

is a C™ extension of 1/f to an open set Ay containing W, and, in conse-
quence, we get (1), by 7.1.

PROPOSITION 9.2. Let V' be u nonempty polysector in C*. If f € Ay (V),

then D* f € Ay (W) for every nonempty proper subpolysector W of V' and
a €N,

Proof. It is enough to verify this when o = 0, by 6.2, Let W = 0
be a proper subpolysector of V, and let F be a C*® extension of fyr, the
restriction of f to W. For each z € W consider the function

w:[0,1]2t— F(tz) e C.

The usual Taylor formula in one variable gives the equality

) 1
fl2) =) +...+ & (t)(l-—t)m-i-%S(l—u)mcp(m"'l)(u) du.

)

Since
koo
dt"" (t) llzk =77 D*F(tz),
we obtain
d*p o : ko
Jimn W(t) = ﬁ:,cz fa with fo= E;!D F(0).
So, we have
f o
-3 Elso ¥
[81=0 |cel=mA-1

with a constant C > 0, and that gives our statement.

Remark 9.3. The converse is also true. The first proof of this fact was
given by J. A. Hernédndez in [He]; here we present another proof based on
Theorem 7.1.

By hypothesis all D*f are bounded, which implies that all the deriva-

tives of f are Lipschitzian in W. Hence, we can extend them to W. Then
Lemma 8.1 and Theorem 7.1 imply the statement.
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9.4. Construction of a funcition which has a weok asymptotic expansion
and is not strongly asymptotically developable

LeMmma 9.4.1. Let V be a nonempty polysector in C*. For f & Ay (V)
such that f(z) # 0 in V', denote by fy the limit of f at0 € C*. If |f(2) — fol
< |fo|l in 'V, then 1/ f is in Ag(V).

Proof. Set a(z) = f(z) — fo. Our assumption implies (V') C B(0, | fo)
={ze C":|z| <|fol|}. Let

1
: B(0, 3

75 B0, fa) 3 2
So, 1/f = voa € AwdlV) (by [GS]).

Now, consider a positive integer p > 2. Let V 3 () be a proper polysector
in C”. Let ¢ € Ag(V) be such that TA(p) = {0} and ¢ # 0. Choose a
proper subpolysector § # @ of V. We have max{|p(z)|: z € §} = |@p(A)| for
some A= (ay,0se), J C{l,...,n}, J#0

Congider V! = {w € C: 0 < |uw| < 1/2,argw € (—=/4,7/4)} and for
{(z,w) € W the function

Flz,w) = p(4) —p(2)(1 —w

defined on W = § x V'. It is easy to see that f is in Ag (W) and A, (W),
Moreover,

fo=e(A)#0 and [f(z,w) = fol < le(2)]-[1—w| <|fol-
Thus, f(z,w) # 0 in W. So, by Lemma 9.4.1, we have 1/f € Ay (W). But
we have, by 6.1,
foye 0,41(ar) =0
and so it follows that 1/f ¢ Ag (W), by 9.1

10. The Gevrey case. Let us recall some definitions for the Gevrey
case (following [Hal).
Let ¥V be a polysector in C* and f a holomorphic function in V. Let
8 = (81,...,8,) € [0,00)". We will call f s-Gevrey strongly asymptotically
developable as z — 0 if f € Ay(V) and
(G)  for each proper subpolysector W s D of V' and each N € N” there
exists g > 0 such that

|f(z) — Appn(F, 2)| £ KwN© oM 2V for all z € W,
where Appy{(F,z) is defined as in Section 2. Set

A (VY= {f € O): fis s-Gevrey strongly asymptotically
developable in V'}.
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Let V be a nonempty proper polysector of C*. A holomorphic function f
on V is s-Geuwrey if for every proper subpolysector W # @ of V there exist
Cw > 0 and gw > 0 such that, for all o € N”,

|Df(2)] < Cwaltonmglel vz ew.
The algebra of s-Gevrey holomorphic functions on V will be denoted by
0,(V). Haraoka states the equality ([Ha])
(D) :t(v) = Ast(v) n OS(V)-
For the convenience of the reader we include a proof of this fact.

Given f in A% (V) and W, we choose a proper subpolysector W' =
W] x...x W/ of V such that W is a proper subpolysector of W'. Let X>0
be such that for all z = (21,...,2,) € W’ we have

v = {z; + Alzje” : 0 € [0,27]} € W,

The Cauchy formula for the function f—App, (¥, -) integrated on 71 X. . . Xy
gives

1<j<n

because D*f = D*(f — App,(F,-)). Therefore, f € O,(V).
Conversely, let f € Ay (VINO,(V). Then for every proper subpolysector
W # B there exist Kw > 0 and pw > 0 such that, for all @ € N*,

ID%f(2)| € Kwolttm pltl Yz e W
The integral formula () from 3.1 implies
\f(z) — App,(F, )| £ Kwel®oiy|2®], VzeW,
since f € C°(W); s0 f € AL (V).
Remark 10.1. ¥ f is s-Gevrey strongly asymptotically developable,

then FA(f) is a formal power series of Gevrey order s (see [Hal). This series
approaches f with an exponentially flat error (see [Z]).

THEOREM 10.2. Let V # 0 be a polysector in C*. Let f € O(V) and
s € [0,00)". Then the following statements are equivalent:

(1) f is a s-Gevrey strongly asymptotically developable.

(2) For every proper subpolysector W # @ of V, the restriction of f to
W, fw, has a C™ extension to R*™ as a function of real variables such that,
for some K > 0 and p > 0 we have, for oll o € N*,

el
e

Bz < Kal*tHnm glod,

where z € W C R,

icm
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Proof. This is an easy consequence of {(J) and Theorem 7.1.

Remark 10.3. The extension in 10.2(2) can be chosen of Gevrey class
s, that is, the extension F' of fy can be chosen in such a way that

|DeF| < Kal T am glel 2 e B2,

The proof goes as the proof of 7.1, with Whitney’s theorems replaced by
their Gevrey versions (see K], [B], [BBMT]).
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