234 G. Lysik

Proof. The proof goes along the same lines as the one of Corollary 1,
with Theorem 2 (resp. Theorem 4) in place of Theorem 1.

Analogously we get

COROLLARY 3. Let (M,) satisfy (M.1) end (M.3'), and let 4 & L’(&ﬁ)(ﬂ@)

(resp. LEMP; (R)) with some & € RU {~oo} and w € RU{oo}. Then there
exists at most one F* € O({Imz > 0}) of emponentiai type in {£Imz > £})

for all € > 0 such that b(F*) € L'(,fx,wm)(R) (resp. L fﬁ”wﬁ)(]&)) with some
vt € RU {~o0} and w* € RU {oo}, and b(F=) — i € Li, ,(R) (resp.
L(M” (R)) with some v < w. Furthermore, if § < & then F= = 0,

(v)
We remark that in the case # > &, in general, the problem of existence
of such an F* remains open.
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Compact homomorphisms between algebras of analytic functions
by

RICHARD ARON (Kent, Ohio), PABLO GALINDO (Valencia),
and MIKAEL LINDSTROM (Abo)

Abstract. We prove that every weakly compact raultiplicative linear continuous map
frax H* (D) into H® (D) is compact. We also give an example which shows that this is
not generally true for uniform algebras. Finally, we characterize the spectra of compact
composition operators acting on the uniform algebra H°(Bg), where By is the open unit
ball of an infinite-dimensional Banach space E.

Let E denote a complex Banach space with open unit ball Bz and let
¢ : Bgp — Bg be an analytic map. We will consider the composition oper-
ator Cy defined by Cy4(f) = f o ¢, acting on the uniform algebra H*(Bg)
of all bounded analytic functions on Bg. This operator may alse be re-
garded as acting on the smaller uniform algebra A,(Bg) of all analytic
functions on By which are uniformly continuous, in which case we assume
that fo¢ € Ay (Bg) whenever f isin A,(Bg). These algebras, which are nat-
ural generalizations of the classical algebras H*°(D) and A(D) of analytic
funections on the complex open disc D, have been studied in [ACG].

Several results automatically vielding compactness of composition oper-
ators from weak compactness have appeared recently. For instance, D. Sara-
son in [Sa] proved that every weakly compact composition operator on
HY(D) is compact, and K. Madigan and A. Matheson [MM] obtained the
analogue {or the little Bloch space By. In the first section we study com-
pactness of Cy and prove that every weakly compact homomorphism from
H™ (D) into H*(D) is automatically compact. This result has also inde-
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pendently been obtained by A. Ulger in [U), where he proves that every
weakly compact homomorphism from a logmodular algebra into any uni-
form algebra is compact. In fact, this also follows by combining the Wer-
mer embedding theorem (see, e.g., [Ga], VI.7.2) with results of J. Galg,
7T. Ransford and M. White [GRW] and K. Hoffman [H]. Earlier S. Ohno and
J. Wada [OW] had found sufficient conditions on function algebras A and B
to ensure that weakly compact homomorphisms between them are actually
compact.

In [U] A. Ulger also asks whether every weakly compact homomorphism
between uniform algebras is compact without the logmodularity condition.
We conclude the first section with an example which shows that this is not
generally true. Our example is the uniform algebra H°°(Bg) when E is the
Tyirelson space.

In Section 2 we determine the spectrum of compact composition opera-
tors of the form Cy. In the one-dimensional case H. Kamowitz [K] used the
Denjoy—Wolff theorem to determine the spectra of coempact composition op-
erators on A(D), and in the setting of the open unit ball By in CV, B. Mac-
Cluer [Ma)] characterized the spectra by proving the existence of a unigue
fixed point of ¢ : By — By when Cjy is compact. For E infinite-dimensional
the main tool we use to determine the spectra of compact cornposition oper-
ators Cy is the remarkable fixed point theorem of C. Earle and R. Hamilton
[EH].

We wish to thank H. Jarchow and A. Pelczyiiski for some helpful com-
ments while this paper was being prepared. In addition, we would like to
thank the referee for suggesting a number of improvements to this article
and also for calling our attention to the references [OW], [GRW].

Preliminaries. The reader is referred to [D] and [M2] for background
information on analytic functions on an infinite-dimensional Banach space.
The algebra H*({Bg) is a Banach algebra with the natural norm ||f|| =
SUPuepy | (2)] Au(Bg) is a uniformly closed subalgebra of H>(Bg). A
hemomorphism between Banach algebras is a continuous linear multiplica~
tive map. By an operator we mean a continuous linear map from a Banach
space into arnother Banach space. The space of all operators from E into
F is denoted by L(E, F)). We denote the adjoint operator of T' € L(¥, F)
by T : F' — E'. We say that T € L(E, F) is (weakly) compact if T maps
bounded sets in F into relatively (weakly) compact sets in F. Equivalently,
T & L(B, F) is weakly compact if and only if T%(E") C F. ¥ T € L(E, E)
the spectrum of T' is denoted by o (1), Recall that if T’ € L(E, E) is compact
and 0 # A € o(T), then A is an eigenvalue of both T' and T* [R, p. 109].
We also recall that a Banach space F is called a Grothendieck space if every
weak™ null sequence in E' is weakly null [Di, p. 121]. -
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1. Compactness of homomorphisms. Suppose that T : H*(D) —
A{D) is an operator. For any bounded sequence (¢4) in A(D)’, one can find
a weak™ convergent subsequence, since A(D) is separable. The image of this
subsequence is weak™ convergent in H* (DY, Using J. Bourgain’s result that
H® (D) is a Grothendieck space {[B1]), it follows that T* is weakly compact
and therefore so is T. Further, J. Bourgain also showed that H>(D) has
the Dunford-Pettis property {B2], and so the weakly compact operator T
is in fact always completely continuous; that is, T maps weakly convergent
sequences into norm convergent sequences. Is T’ always compact? The answer
is no. Consider the natural inclusion map of I; into cq. This map factors
through H*{D) (see, e.g., [Di, p. 223]). Since ¢ has a complemented copy
in A(D), we obtain a non-compact operator from H®(D) inte A(D). On
the other hand, it is an casy exercise using the Dunford-Pettis property of
H® (D) that for any two operators $,1' : H®(D) — A(D) ¢ H*(D), the
composition § o T is compact.

Now, one can ask when a completely continuous operator T' from. a Ba-
nach space E into a Banach space F is compact. It is well known that this
is the case if E' does not contain a copy of l;. For completeness we give a
proof: Suppose that T' is not compact. Then there is a bounded sequence
() in B and & > 0 such that |[T(z,) — T{zm)|| = € for all m,n € N with
n 3 m. By Rosenthal’s [; theorem [Di, p. 201] there is a subsequence {z,, )
of () which is weakly Cauchy. The sequence (Zn,, — Tn,,_,) is weakly null,
so the complete continuity of T" gives a contradiction. Recently, J. Cima and
A. Matheson [CM, Prop. 2, Theorem 2| have studied completely continuous
composition operators and obtained a somewhat weaker result. Notice also
that 7% : A(D) — H*(D)" is completely continuous since the dual of A(D)
has the Dunford-Pettis property [B2, p. 3].

After this introduction we are ready to forrmilate our problem:

Is every weakly compact homomorphism from H*(D) into H*{D) com-
pact?

To study this problem we shall uge results due to K. Hoffman [H],
[(] concerning the analytic structure of M (H®), the set of all complex-
valued homomorphisms of H° (D). When endowed with the weak™ topol-
ogy, M(H®) is a compact Hausdorff space. We may regard D as a subset of
M(H™) by identifying A € D with the evaluation homomorphism &y, For
m,n € M(H>), the pseudo-hyperbolic distance is given by

o(m,n) = sup{|Fin)| : F € HX(D), || flleo <1, Flrn) =0},

where f is the Gelfand transform of f. The norm topology induced by the
dual space H®(D) is the topology of the metric space (M(H*),p). If
Mp € D, then o(A,p) = |(A~ p)/(1—5A)|. For m € M(H™), P(m) =
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{n € M(H®) : o(m,n) < 1} is called the Gleason part containing m.
If P(m) # {m}, the Gleason part is called non-trivial. In [H} K. Hoffman
shows that for each m € M(H®) there is a continuous map Ly, from D onto
P{m) such that fo L, € H®(D) for every f € H*(D) and L,(0) = m
Moreover, he proves [H, pp. 103-105] that if P(m) is non-trivial, then the
map Ly, preserves pseudo-hyperbolic distances: For A, u € D, o(A, ) =
o{ L (A}, Lin(11)). Thus Ly, is a homeomorphism into the metric topology.
Further, by [H, pp. 90-91] there exists a sequence ofﬁ Blaschke products
An € H*(D) such that for every A € D we have An(Lw(A)) ~ A as
n — 00. Since the sequence {A,) is bounded, this shows that L,, is also a
homeomorphism into the weak topology of H*({D)'. This fact is very crucial
for us.

Let T : H*(D) — H*(D) be a homomorphism. We will now show that
if T'is weakly compact or if T factors through A{D), then T is compact.
As we mentioned in the Introduction, this result has also been obtained
by A. Ulger. However, there are differences in the proofs, although both
essentially use the result that, unless the Gleason part P of the maximal
ideal space of a logmodular algebra reduces to a singleton, there is a homeo-
morphism of D onto P, when P is given the metric topology or the weak
topology. In the proof of ﬂ”lger it 18 shown that the weakly compact and
the compact subsets of the maximal ideal space of a logmodular algebra are
the same. We do not need such a result since in our specific case we apply
Carleson’s corona theorem which implies that the dual map of the given
weakly compact homomorphism takes the maximal ideal space of H> (D)
strictly inside one single Gleason part. Therefore the proof below contains
some information that cannot directly be found in ﬁlger’s proof.

TuroreM 1 (cf. [U]). Let T : H°*(D) — H*°(D) be a homomorphism.
Suppose that one of the following conditions holds:

(i) T is weakly compact;
(i) The range of T is contained in A(D).

Then T is compact.

Proof. We have already observed that every homomorphism T : H> (D)
— A(D) C H>(D) is weakly compact. Thus, it suffices to prove the result
under assumption (i).

Now, the induced map ¢r : (M(H*), w*) — (M(H®*),w*} defined by
n +— no T is continuous and analytic on D. Hence, by Lemma 1.1 in [G,
p. 402], there is an mg € ¢p(D) C M (H*) such that qﬁT(D) ¢ P(my). We
only need to consider the case when P(mg) is non-trivial, so from now on
we assume that this is the case.
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CLAIM 1. (M (H™)) C P(my).

Indeed, let no € M(H*)\ D. We shall use Theorermn VL.2.1 in [Ga],
which states that two homomorphisms 6 and ¢ are in the same Gleason

part of M(H °°) if and only if whenever (f;) is a sequence in H* such that
Ifill <1 and |fa( )l = 1, then |f;(¢)| — 1. Consider (f;) in H*(D) with
1]l €1 and \f_.,(qu(éA)ﬂ — 1forall |A < 1. If |fj(¢T(no))| #r 1, then
there exists a subsequence (f;,) of {f;) such that |}, (dr(no))| < 8 < 1 for
some f and all k. Since T is weakly compact, there is another subsequence,
which we still denote by (f;,), with (T(f;,)) converging weakly to some
fe H®(D). In particular, n(T(f;,)) ~ n(f) for all n € M(H), so that
| f5 (@7 (n))] — [n(f)] for all n € M(H™). The corona theorem asserts that
D is dense in (M(H®),w*), and hence there exists anet (63, ), with |Aa] <
L, couverging in the w*-topology to np as a — oo. For all e, |65, (f)] =
limy, |75, (¢7(65,))] = 1 and, further, |na(f)| = lim |3, (é2(no))| < 8 < 1.

Thus, 1 = limg |6, (f)] = Ine(f)] < ,6’ < 1, and we have obtained a contra-
diction.

CLAM 2. Ly, (D.) s open in (P(mg),w) for all 0 < r < 1, where
D.={ eD:|)<r}

Indeed, equip P(mg) with the weak topology of the dual H> (DY, that
is, (P(mg),w). The map Ly, : D — (P(myp),w) is a homeomorphism, so
every Ly, (D.) is open in the weak topology.

Now we are ready to finish the proof. We have ¢p(M(H™)} C Ly (D)
and by weak compactness of T we deduce that ¢p(M(H)) is compact in
the weak topology. Thus

o

U Lmo (Dl—l/n):
n=2
from which it follows by Claim 2 that there is an integer Ny such that
by (M{H®®)) C Ly (Dy-1/n,). This means that ¢o(M(H)) is compact in
the norm topology, that is, in (P{mo), ||-||). Therefore ¢ : (M (H™®),w™) —
(P(mg), ] -]} is continuous. In order to show that T': H>°(D) — H*°(D) is
compact, we take a sequence (f;) in H* (D) with |51 < 1. According to the

Arzeld-Ascoli theorem we must show that {T(f;) : 7 € N} is equicontinuous
in C(M(H*)) endowed with the uniform topology. By the continuity of ¢r
we infer that, for every ¢ > 0 and for every mo € M(H>), thereisa 6§ > 0
such that

T(F5) (m) = T3 ) (mo)] = |dr(m) f; — dr{mo)fyl < e

for all m € M{H®) with |m(g;) —mo(g:)] < & for gi € H>*(D),i=1,...,k,
and all j € N, This completes the proof.

¢r(M(H™)) C
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Our next aim is to show that Theorem 1 is not generally true for uniform
algebras. To do so, we describe the relation between compactness and weal
compactness of composition operators Cyg. This is done in a way that is also
convenient for the characterization of the spectra of compact Cy in the next
section. But we start with some general facts about the uniformn algebras
H>*(Bg) and Ay(Bg).

Using a theorem of K. Ng [N}, it follows that there is a Banach space
(G*°(Bg) whose dual is isometrically isomorphic to H°°(Bg). This fact has
been pointed out by S. Dineen in his book [D] and developed by J. Mujica
in [M1].

PROPOSITION 2. H®(Bg) and A,(Bg) contain complemented copies of
H>(DY) and A(D), respectively. Consequently, A,(Bg) containg a comple-
mented copy of co, and H(Rg) containg a complemented copy of le but not
a complemented copy of co. Furthermore, G®{Bg) contains a complemented
copy of ;.

Proof. Let zp € E with |[zgf] = 1. Choose | € B with I(z) =1 = ||I]],
so that [I(z)| < 1for all z € Bp. Define J : H®(D) — H®(Bg) by g +— gol,
and define P : H*(Bg) — H>(D) by P(f)(A) = f(Azp). Both J and P are
well-defined continuous linear maps. For every g € H° (D} and every A € D,
P(J{g))(A) = g(M(zo)) = g(A), so J(H>®(D)) is a complemented subspace
of H®(Bg). In a similar way one can show that there is a complemented
copy of A(D) in A,(Bg).

Recall next that I, Delbaen [De] has shown that A{D) contains a copy
of ¢p. The rest of the assertions in Proposition 2 follow from results obtained
by C. Bessaga and A. Pelezyiiski (cf. p. 48 in [Di]), by using the facts that
to has a complemented copy in A, (Bg), and H*{Bg) is the dual space of
G*°(Bg).

Remarks. (i) H®(Bg) contains a copy of l; and 4,(Bg) is never a
Grothendieck space.

(ii) If £ and F are Banach spaces, then the Banach space A,(Bg, F)
of all analytic maps from Bp into F' which are uniformly continmous on
Bg, endowed with the supremum norm, contains a complemented copy of
co. This follows from Proposition 2 and the fact there is a complemented
copy of A, (Bg) contained in A,(Bg, F). To see this elementary fact, take
Yo € F and [ € F' with ||I]| = I(yo) = |lw]| = 1. Define the continuous
linear maps J : Ay(Bg) — Au(Bg, F) and P : Ay(Bg, F) — Ay(Bg) by
J i f(z— f(z)yo) and P : f — lo f. Finally, for each f € A{Bg) and
each x € Bp, P(J(f))z = U f(z)y) = f(z).

Qleaxly, Cy will act on A, (Bg) if ¢ : Bg — Bp is analytic and uniformly
continuous. Example 1 shows that when dealing with composition operators
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on .Au(BE), we have to require that ¢ be uniformly continuous in general,
while in Example 2 we will see that in the special case of F = e, the
assumption of uniform continuity is unnecessary.

EXAMPLE 1. Define an analytic map ¢ : By, = By, by z — (7). If
r=1-1/nand s = 1-2/n, then |p(re,) — P(seq)|| = |r™ — s®| — 1/e
as n — oo. From this we conclude that ¢ is not uniformly continuous. In
addition, if f € Au(By,) is defined by f(z) = S22, then f o ¢ ¢ Au(By,).

EXAMPLE 2. It is trivial that the analytic mapping ¢ : B,, — B,
defined as in Example 1 is not uniformly continuous. On the other hand,
fo¢ € Au(Be,) for every f € Au(B.,). To see this, observe that every such
f is uniformly approximable on B, by polynomials. By the Littlewood—
Bogdanowicz-Pelczyfiski theorem (see, e.g., [ACG, p. 58]}, every polynomial
on ¢ 18 weakly uniformly continuous on B,,, and so for any £ > 0 there exist
6> 0and wy,...,up € Iy such that if 7,y € B, with jui(x) — ui(v)| < 6,
i=1,...,k then |f(z) - f(y)| < &. Now, we can find a positive integer
N and a constant g > 0 such that |u;(z — y)| < 6,4 = 1,..., k&, provided
z and y are in Be, |z ~ ;| < p, j = 1,...,N. For |z; — y;| so small
that ol — 7] < p (j = 1,..., N), we get [F($(z) — F(6(y))| < c. Thus
Fop & Ay(Be,) for all fe Ay(B,).

An easgy argument using Cauchy’s inequality and the Hahn-Banach the-
orem. shows that if the analytic map ¢ : B — Bg maps Bg into a relatively
(weakly) compact set in F, then the differential operator d¢(z) : E — E is
(weakly) compact for every z € Bp. Indeed, there is an absolutely convex
zero-neighbourhood U in F such that 24+ U C Bg. Since dé{z}(U) is a sub-
set of the absolutely closed convex hull of ¢(x -+ U}, we are done. Following
[EH], we say that the subset ¢(Bg) of Bg lies strictly inside Bg if there
exists 0 < e < 1 with ||¢(z)|| <1 -¢ for all z € Bg.

The following result was obtained independently by Manuel Maestre in
the case of A, (E).

ProrosITioN 3. Consider Cy as o composition operator on H*(Bg) or
Aul{Bg). The following statements are equivalent:

(1) Cy is compact;
(2) Cy 1s weakly compact and $(Bg) is relatively compact in E;
(3) ¢(Bg) lies strictly inside Bg and ¢(Bg) is relatively compact in E.

Proof We only give the proof for H>°(Bg) since the proof for 4. (Bg)
in identical. .

(1)=>(2). If $(Bg) C E is not relatively compact, then there exist a
sequence (z,) C By and & > 0 so that [|¢(zn) — ¢{zm)| = £ for all m # n.
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For each pair (m, n) with m # n, choose a unit vector Iy, € E" such that

Tna(@(@0) — lman(d(zm))| = &

By compactness of C}, the set {Sp0) + ¢ € Bp} = {C4(8:) : © € Bg}
is relatively compact in H°(Bg)', where 8, is the evaluation (at y) map.
But the above inequality yields ||64(z,) ~— fo(e,) || = €, for m 3 n. Thus, we
obtain a contradiction.

(2)=-(3). Assume that there is a sequence (z;) € Bp such that ||¢(z;)| >
1-1/4 for all 5. Since ¢(Bg) is relatively compact in F, we may assume that
(¢(x;)) converges in norm to some yo with [[yo|| = 1. Choose [ € E' with
I(yo) = 1 = ||!||. Since Cy is weakly compact and the set {I"z, : n € N}
is bounded in H*®(Bg), we may assume without loss of generality that
(I* o ¢) converges weakly to some f € H*(Bg). For every j, the norm
of the evaluation map &,; € H*(Bg)' is 1, so by Alaoglu’s theorem (é,)
has a weak*-cluster point uw € H®(Bg)'. Therefore, for every n we have
1 = I{yo)™ = lim; I(p{z;))" = lim; 6, (I" 0 ¢) = u(l™ o ¢). Now, since
|¢(z;)l] < L for all 4, 0 = limy, {{¢(x;))" = flz;) = x,(f). Hence, 0 =
lim; |62, (f) = |u{f)] = lima [u(l® o ¢}| = 1, and we have a contradiction.
Actually, the function f must be identically 0.

(3)=(1). Suppose that ¢(Bg) C F is relatively compact and ¢(Bg) C
rBg for some 0 < r < 1. If Cy is not compact, then there exist £ > ) and a
sequence (fn) C H®(Bg) such that || f,|| <1 and Cy(fn) — Co(fm)ll = ¢
for all n # m. By Montel’s theorem [C, p. 274] the set {f, : n € N} is
rvelatively compact in H(Bg) with respect to the compact open topology.
Therefore (f,)} has a subnet, say (fs), which converges uniformly on compact
sets in Bg. For every a, choose 3 > « such that f, # f5. Then

sup )Ifa(y)—fﬁ(y)lm sup | fo($(z)) — fole(@))]

yEH(B fol<1l -
= [Co{fa) — Co(fo)] = &.

Since ¢(Bg) is relatively compact in Bp, we have a contradiction. Thus G,
is compact, and we are done.

Examples of mappings ¢ which satisfy condition (3) in the above proposi-
tion abound. For example, any polynomial mapping ¢ : ¢g = 1, 1 < p < oo,
with norm strictly less than 1, works.

EXAMPLE 3. We now show that: there is a weakly compact, non-compact
composition operator on H**(Bg} when E is the Tsirelson space, thus an-
swering negatively a question raised by A. Ulger in [U, §6]. We note in pass-
ing that there is no completely trivial counterexample to this question, i.e.
there is no infinite-dimensional uniform (Banach) algebra which is reflexive
[Go, p. 285].
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Recall that the original Tsirelson space E = T" is a refiexive space
with an unconditional basis such that every continuous polynomial on F
is automatically weakly uniformly continuous on weakly compact subsets
of B (cf. [AAD]}. Let ¢(z) = /2. Since ¢(Bg) is not relatively com-
pact in E it follows from Proposition 3 that the composition operator
Cy : H®(Bg) — H*™(Bg) is non-compact. Notice that Cy(f) € Awu(Bg),
the Banach algebra of analytic functions on B which are weakly uniformly
continuous equipped with the natural norm. Indeed, we have

oo &‘m
flaf) = Y T gy o
me=(
and this series is uniformly convergent in By since ||r‘1\m FO)/mY) < £}l
Since every continuous polynomial on E is weakly uniformly continuous on
Bg, the assertion follows.

Recall that any function in Au,{Bg) has a contimious extension to the
closed unit ball Bg endowed with the weak topology (also, By is a weakly
compact set). Thus we may also consider Ay, (Bg) as a closed subalgebra.
of C(Bg), and hence the weak topology of Awu(Bg) is the one induced by
the weak topology of C(Bg).

We shall now prove that Cy : H*°(Bg) — Awu{BEg) is a weakly compact
operator. First of all, observe that Cy(f)(2) = f(2/2) even for z € Bg. Let
{gn) C H*(Bg) be a sequence with ||g,|| < 1, and let (z,,) be a norm dense
gubset of Bg. By a diagonal argument one can find a pointwise convergent
subsequence (g, ) on (Zn,). Since the family (gn, } is uniformly bounded, it is
equicontinuous on Bg. Therefore, {g,,,) converges pointwise on Bg. On the
other hand, since (gn, ) C H(Bg) is uniformly bounded, there is an analytic
function g which is a cluster point of {g,, ) for the compact-open topology
of H{Bpg). Necessarily, g € H®(Bg) and g(z) = limg g,, (%), = € Bg.

Finally, (Cylgn,)) converges weakly in C(Bg) (hence in Awu(Bg)) to
Cy(g) because it is uniformly bounded and limy Cy(gn, ) (x) = limg gn, (=/2)
= g(x/2) = Cy(g)(z) ([Di], Theorem 1, p. 66).

2, Spectra of compact composition operators. In order to be able
to determine the spectrum of Cy we need a fixed point theorem for an-
alytic maps from Bg into Bg when F is an infinite-dimensional Banach
space. T. Hayden and T. Suffridge [HS] pointed out that analyticity of ¢
is not sufficient, by considering the analytic map ¢ : B,, — B, given by
d(€1,€a,...) = (3,61, ). The map ¢ has no fixed point, since the only
possible fixed point of ¢ is (3,2,...), which is not in Bg,. In [W] K. Wio-
darczyk has considered the problem of existence of a unique fixed point in
By of ¢ when ¢(Bg) does not lie strictly inside Bg. He showed that this
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problem is solved whenever (i} ¢(Bg) is relatively compact in B; (ii) ¢ ex-
tends continuously to By and ¢#(Bg) ¢ Bp; (i) ¢ has no fixed point on
the boundary of Bg; and (iv) for each z € Bg, 1 € o(de(z)).

If ¢(Bg) lies strictly inside By, C. Earle and R. Hamilton [EH] com-
pletely solved the existence and uniqueness of a fixed point of ¢ by proving
the following remarkable result:

EARLE-HAMILTON FIXED POINT THEOREM. If ¢ : By — DBg is an
analytic mapping and ¢(Bg) lies strictly inside By, then ¢ has a unique
fized point zg in Bg.

Now, when we know how o get a unique fixed point for ¢, the charac-
terization of the spectra of compact Cy is not hard. The proof is based on
the following two lemmata. In their proofs we only deal with H*(Bg) but
everything works as well for A,(Bg).

Lemma 4. If Cy is compact, then {0,1} C o(Cy) and {J]ri At A €
o(dd(z0)), i=1,...,n end n € Z+} C o(Cy).

Proof. Clearly 0 € o(Cy), as otherwise H*°(Bg) would be finite-dimen-~
sional since Cy is compact. The function e(z) = 1 belongs to H*®(Bg).
There is no f € H*(Bg) with f(z) — f(¢(z)) = e(z), since for o = 2z
we get 0 = 1. Thus 1 € o(Cy). Take 0 # X € o(de(20)). Since do(z) is a
compact operator, A is an eigenvalue of dé(zp). Thus there is 0 # x5 € B
with d¢{z0)zg = Axg. Choose ! € F’ such that [{zq) % 0. Suppose that there
exists f € H*°(Bg) with

Af(@) — f(d(w)) = U(z).
Differentiation gives Adf(z) — df (¢(z)) o dé(z) = di(z) = I For z = z
we get Adf(zo) — df (20) o dgp(z0) = I and consequently 0 == Adf{z)zp —
df (z0) (de(20)0) = Uzo) # 0, which is a contradiction. Thus A € o(Cy).
Suppose now that A;,..., A, are non-zero eigenvalues of de(zg), and hence

they are eigenvalues of Cy. Let f1,..., f, be corresponding non-zero eigen-
functions in H*(Bg). Hence

Xfile) = filg(@), 1si<n
Let =Ty A and g(z) == fi(2) ... fu(z). Then g € H°(Bg) and, since
Bpg is connected, g # 0. Now
py(@) = f1(3(z)) .. . fa(d(z)) = g(d(z)).

Thus u € 0(Cy), and we are done,

For the proof of our next lernma we need the following result due to
M. Schechter [S] (see also A. Brown and C. Pearcy [BP]) concerning the
spectrum of tensor products of . operators on complex Banach spaces:
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Let H;, i: 1, Ty be complez Banach spaces and let Ti € L(E;, By).
Then o{(T) @r ... @y Tw) = H?=1 o{T3}.

'Actua,lly, we only need the fact that o(T) &, ... &, T,,) C T, (T,
which follows from a standard application of the following result (see |R,

p- 293]): Let A be a Banach algebra with unit, z,y € A and zy = yz. Then
o(xy) Coz)o(y).

. E[..EMMA 5. Assume that ¢ . By — Bp is analytic and maps Bg strictly
inside By. If p # 0 is an eigenvalue of Copy then p € {JI11 Mt N €
a(dp(z0)), i=1,...,n and n € Z+} U {1}.
Proof Let f € H®(Bg) be an eigenfunction corresponding to u, so
that _
uf(z) = f(g(2))-
Suppose that y % 1 and is not a product of elements in the spectrum of

dp(zp). Our aim is to show that f = 0. In some neighbourhood of zg in Bg
we have the uniformly convergent Taylor series of f around zg:

o
d™f(z
flay= 5 Tl ym
ml
Trs=()
Thus we must show that d™f{z) = 0 for m = 0,1,2,... For 2 = zg,
pf(zo) = flzo) so f(zg) = 0 as p # 1. Assume now that d™f(zy) = 0 for
m < n., Thus

flay = TEC) i dI) .

n! s ml
Since
gb(:r) = 2n + d(ﬁ(Z(})(iE - ZU) + Z i—{f@(m — Zo)m
m==2 '

converges uniformly in a neighbourhood of z, it follows from pf(x) =
F(d(x)) by comparing the terms of (z — 2p)™ that

U J (z0) = d" F(z0) © (dd(20) & - - B d(20)),

whare we have used the isometric isomorphism between L, ("B) =~
(B .o B, which associates A € Ly("E) to A € (&n,s,xF)’. Thus we have
T F i) = (db(z0) B .. B di(20))" T F (z0).
As is well known o(dp(z) & . . . B dd(20)) = o{(dg(z0) Br .. Brdo(z0))b).
If d™ f(zg) % 0, this means that u € o{dp(20)®x . - . Brdd(20)). In viewnof the
above-mentioned result of M. Schechter this would imply that p =T A4,
where all A; € o(dé(z0)). But this is a contradiction, so that d*f(z) = 0
and hence f =0. ' L :




246

R. Aron ef al.

From Lemmata 4 and 5 we obtain
THEOREM 6. If Cy is compact and z is the unique fized point of ¢, then

n
o(Ce) = { T Me+ M € o(dd(z0))i = 1,...,nand n € z+}u{o,1).
g=1
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