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Almost multiplicative functionals
by

KRZYSZTOF JAROSZ (Bowling Green, Ohio, and Edwardsville, IlL.)

Abstract. A linear functional F' on a Banach algebra A is almost multiplicative if
|[F(ab) — F(a)F(d)| < 8llali - bl fora,be A,

for a small constant 6. An algebra is called functionally stable or f-stable if any almost
multiplicative functional is close to a multiplicative one. The question whether an algebra
is f-stable can be interpreted as a gquestion whether A lacks an almost corona, that is, a
set of almost multiplicative functionals far from the set of multiplicative functionals.

In this paper we discuss f-stability for genera! uniform algebras; we prove that any
uniform algebra with one generator as well as some algebras of the form R(K), K C C,
and A(2), 2 € C", are f-stable. We show that, for a Blaschke product B, the quotient
algebra, FI°° /B H™ ig f-atable if and only if B is a product of finitely many interpolating
Blaschke products.

1. Introduction. Let G be a linear and multiplicative functional on a
Banach algebra A and let A be a linear functional on A4 with ||4] < .
Put F = G + A. We can easily check by direct computation that F is
§-multiplicative, that is,

|#(ab) — F(a)F(b)| < 8|all - ||?]
where § = 3¢ -+ g2. The problem we want to discuss here is whether the
converse is true; that is, whether an almost multiplicative functional must

be near a multiplicative one. We are interested mostly in uniform algebras.
We shall call a Banach algebra functionally stable or f-stable if

Ve>036>0VF € M(A) 3G e M(A)  ||F-G| Le,

where we denote by W(A) the set of all linear multiplicative functionals
on A4, and by 90%5(4) the set of §-multiplicative functionals on A. We shall

for a,b e A,
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38 K. Jarosz

call a family of Banach algebras uniformly f-stable if any algebra from the
family is f-stable and for any ¢ > 0 we can choose the same § > ¢ for all the
members of the family.

2. History. The question whether an almost multiplicative map is close
to a multiplicative one constitutes an interesting problem per se; never-
theless, It originated in the deformation theory of Banach algebras. There
are two basic concepts of deformation of Banach algebras: metric and alge-
braic [14].

DErFmNITION 1. We say that a Banach algebra B is a metric §-deformation
of a Banach algebra A if there is a linear (but not necessarily multiplicative)
isomorphism T : A - B such that |7 - |77t < 1+ 6.

DEFINITION 2. For a Banach algebra (A, -) we say that a new multipli-
cation x defined on the same Banach space A is an algebraic §-deformation
of (4,-)if || x — || £ 6; that is, if

la-b—axbj < dlaf- ] forabe 4

While the two definitions lead to different theories for general Banach
algebras, they are equivalent in a natural way for all uniform algebras [14].
In particular:

(i} two uniform algebras are isometric if and only if they are isomorphic
as algebras,
(ii) a lincar map T : A — B between uniform algebras almost preserves

the distance if and only if it almost preserves the multiplication of the alge-
bras [14].

By a uniform algebra we mean a closed subalgebra of an algebra C(K)
of all continuous functions on a compact set X, equipped with the sup
norm. Equivalently, 4 is (isometrically isomorphic to) a uniform algebra if
la?|| = [|a||? for any a € A. We always assume that an algebra has a unit,

There are several important links between the deformation theory and
other areas. For example, the theory provides a natural definition of defor-
mation of an analytic manifold, or a domain 2 in C*. We may define the
distance between two domains (2 and 2 by

(2, @) = mt{||T| - JT7H] - T+ A(2) — A2},

where A(f2) is the Banach space of analytic functions on 2. It is an im-
portant and deep result due to R. Rochberg [24] that for one-dimensional
Riemann surfaces the distance defined above is locally equivalent to the
Teichmiiller distance involving quasiconformal homeomorphisms. Still, al-
most nothing is known about domains in C* for n > 1 [15].
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If % is a small algebraic deformation of a Banach algebra (4, -), then any
multiplicative functional on A is almost x-multiplicative. Since the main
objective of the deformation theory of Banach algebras is to compare struc-
tures of two close algebras we would like to know if an almost multiplicative
functional must be close to a multiplicative one.

It is not difficult to show that the class of C(K) algebras is uniformly
f-gtable. More precisely, we have the following result.

ProrOSITION 3 ([17]). For any compact Hausdorff space K, for any
§ < .1, and for any F € Ms(C(K)) thereds a G € M(C(K)) = K such that
|F - G| <104

In 1986 B. E. Johnson [17] also proved that the disc algebra A(D) and
some related algebras are f-stable (Johnson uses the name AMNM algebras).
It was then conjectured that all uniform algebras are f-stable. However, very
recently 8. J. Sidney provided an ingenious counterexample [27).

Later in this paper we show that any uniform algebra with one generator,
as well as some algebras of the form R(K), K C C, and A(02), 7 C C*,
are f-stable. We show that, for a Blagchke product B, the f-stability of
the quotient algebra H*/BH™ is related to the distribution of the zeros
of B: H®/BH™> is f-stable if and only if B is a product of finitely many
interpolating Blaschke products,

It is still an open problem if H%°(I} is f-stable. In view of the importance
of the Corona Theorem for H*(D) it is particularly interesting to know
whether H* (D)) does not have an almost corona, that is, a set of almost
multiplicative functionals far from the set of multiplicative functionals.

3. Basic properties. Let A C C(K) be a uniform algebra. A subset .L
of K is called a weak peak set if for any open neighborhoed U of L there
isan f € A with ||f|| = 1 = f(k) > |f(k')| for any k € L and k' € K\ U.
Any intersection and any finite union of weak peak sets is a weak peak set
[7]. We denote by Ch(A) the Choquet boundary of A, that is, the subset of
K consisting of all k such that the functional 8k of evaluation at the point
k is an extreme point of the unit ball of the dual space A*. Equivalently,
k& Ch(A) if and only if {k} is a weak peak set [7]. Any continuous linear
functional § on A can be represented by a regular measure » on Ch(A) with
|| S = var(v). .

PROPOSITION 4. If L i3 o weak peak set of a uniform algebra A then
there is o net fo of clements of A such that :

() Hlr=1=15l,
(2) £ — 0 uniformly on compact subsets of M(A)\ L, and
(3) |1~ fy] = 1.
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Proof. The existence of such a net is well known even for more general
function spaces A (see for example the proof of Lemma 1 in [13]). If A is a
uniform algebra the construction is simple: Directly from the definition of a
weak peak set there is a net f, of functions satisfying (1) and (2). By the
Riemann Mapping Theorem there is an analytic horneomorphism x of the
unit disc I onto :

. ={2e€C:|z| <1, |Imz| <& Rez> —c}

any such homeomorphism can be extended to a homeomorphism of T onto
12 ([5], p. 50). Composing x with an appropriate automorphism of the unit
disc we assume that x(0) = 0, x(1) = 1. If we replace f, with x ¢ f,, where
£ 5 0, we get a net satisfying conditions (1)-(3). m

Let F' be a é-multiplicative map on A and let pur be a measure on
Ch(A) representing F and such that var(uz) = |F||. Any §-multiplicative
functional is continuous and |[F|| < 1+ 6 (see [14]). Since |F(1)—(F(1))?|
< 8§, F(1) is close to 1 or close to 0. In the latter case F(a) = F(la)
7 F(1)F(a) ~ 0, and F is close to the zero functional. If (1) ~ 1, then ur
is close to a probability measure. By straightforward computation one can
show the following.

ProposiTioN 5 ([17]). If A is a uniform algebra and F € OMs(A) with
6 < 1/4, then either |F|| < 26 or there is a map F' € Mss(A) such that
| F'—F'|| <26 and [|[F'|| = 1= F'(1).

Hence, considering the f-stability we may always assume that the func-
tional F' in question is represented by a probability measure up. The next
proposition shows we may also assume that gz has no atoms and has some
other nice properties.

PROPOSITION 6. Let A be a uniform algebra on K. Assume F € OMs(A)
with & < 1/4 is represented by a nonnegative measure up on Ch{A). Then

1. If L is a weak peak set, or a complement of a weak peak set, then
pr(L) <26 or 1-26< up(L) <1+ 26
furthermore, if Fy is the functional on A represented by the restriction of
ur to L then Fp € M5(4).

2. If pr = 37 Xjby; + v is the decomposition of up into an atomic and
a nonatomic part then either 3° A; < 26 or there is an atom kj, such that
Ajg > 1 26.

3. Biher |F — G| < 26 for some G € Ch(4) C K C M(A), or thers
is an F' € Mys(A) such that |F — F'|| < 66 and F' is represented by o
nonatomic probability measure pr: on Ch(A).
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Proof. 1. Let-L be a weak peak set and let f, € A be a net given by
Proposition 4. Since pp is regular, § f, dup — pp(L) and we have

62 |F(f7) = (F (7))
= [§2nr = (Vrrdur) | = lue @) ~ () 20

Hence pp(L) <26 or 1426 2 pp(L) 21— 26.
Let Fr, be the functional on A represented by the restriction of ug to L.
Let f,¢ be norm one functions in A. If f, are as before then we have

Fu(79) = Fu(NPu(o)] = | § fgdpr ~ § Fdur § gduur
L i L

= ’ lim (Sff'ygf'y dup — | £ £y dup\afy dw) ‘
= El%n(F(ff*rgf’y) - F(ffw)F(gf’r))‘
< 1i§1(5||ffw|| Nady ) = éllflzliglz < 81FI - Ngll,

so Fy € img(A).

Replacing above the net f, with the net g, = 1 — f, we get the same
conclusions for the complement of a weak peak set.

2. Assame {ky,...,k,} € Ch{A) is a set of atoms of pp. By the first
part of the Proposition, up({ki,...,ks}) is close to one or to zero. Since
this holds for any subset of atoms, it follows that either pp has one atom of
mass clogse to 1, or the sum of all the atoms of pp is small.

3. From the previous part, either ||[F — G| < 2§ for some G € Ch(A4) or
the sum of all the atoms of up is gmaller than or equal to 26. Assume the
latter. Put F = F — 3 Ajbk, = F|p where L' is the complement of the set
of all atoms of yp. Put F' = F/|F|. It is clear that F' can be represented
by a nonatomic probability measure.

Any finite set of atoms is a weak peak set, so by the first part of the
proposition

< 26,

IFl 2 pp(L) 2126 and || S A,
hence ~ _
1P =B < |57 Mgt || = 1F = F')l <28 = ||| 1] < 46,

From the first part of the proposition we also have F € 95(4), and simple
computations give F' € Mos(A4). m
THEOREM 7. Lef A be a uniform algebra and let K C M(A) be a weak

peak set for A. Then A is f-stable if and only if both Alg = {f|x : f € A}
and Ay = {f € A: f|x = const} are f-stable.
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Proof. We first assume that A is f-stable.
Let F € Ms(Alg), and put F(f) = F(f|x). For any fi, fo € A we have

F(fLfa) = FURF(f)] = [F(Afeix) — F(filx)F(f2lx)]
<8l fulxll - If2lxll < 814112l

So F € Ms(A). Assume |F — 6, < e < 1 for some z € M(A). If = were not
an element of K then, since K is a weak peak set, there would be a norm
one element h of A such that Alx = 1 and h(z) = 0. Hence (F—&)(h) = 1.
The contradiction shows that z € K = MM(A|x).

For any g € A|x there is a § € A such that §|x = g1 and [jgl| = ||7
([7]). So we get

IF{g) - g(=)! = |F(3) — §{=)| < ellgll = <llgll,
and hence ||F — &;|| < e. Thus A|x is f-stable.

Let now F € DMs{Ax). We may assume that F' is represented by a
nonatomic probability measure up on A C M(Ax). The maximal ideal
space M(Ag) of Ak is a quotient space of 9(A), where the set K has
been collapsed to a single point which we denote by {K'}. Since pr has no
atoms we have pr({K}) = 0, so F(f) = SEDI{A) fur is a well defined linear

functional on A. Let f, be a net of elements of A given by Proposition 4,
that is, such that

fle =1=1£l,

and f, — 0 uniformly on compact subsets of IM(A)\ K. Put g, = 1 - f,.
For any f, g € A we have

|F(£9) = F(H)F(9)] = tim| F (g, 070) = F(9,§)F(9:9)]
= m | F(9;fgv9) = F(g+£)F(g+9)]
< lun8llg, - gl = 81711 gl

Thus F € Ms(A). We assume that A is f-stable, so there is a ¢ € I (A)
close to F, and the restriction of G to the subalgebra Ay is close to F.
Hence Ax is fstable, which proves the necessity part of the theorem.
To prove sufficiency assume now that both A|x and Ag are f-stable.
Let F € 9M4(A). Since Ay is a subalgebra of A obviously F & Ms(Ax).
‘We may assume that F' is represented by a probability measure gy on A C
9M(A). By Proposition 6, up is concentrated almost entirely on M(A) \ K

or-on K. In the first case, since Ay is f-stable, there is an z € P(A) \ K
such that

tm L - £l = 1,

|F{(f) — f(z) <ellfll  for f € Ax.
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Using the same argument with the net g, we show that

\F(f) — fl@) s elfli for fe A4,
so [|F—6z|| < . Inthe second case pup generates a §-multiplicative functional
F|x on Alg, and since Al is fstable there is an & € P Alg) = K close
to F|x. Again, using the net g, we show that @ is close to F. Hence A is
f-stable. w

The next result establishes an equivalence relation between f-stability of
a uniform algebra and that of its antisymmetric components. We first need
to recall some definitions and results.

Let A € C{K) be a uniformn algebra on K. By taking a quotient space
we can always agsume that A separates points of K. A set L C K is called a
set of antisymmetry if any f € A which is real-valued on L is constant on L,
and L is a mazimal sei of antisymmetry if it is not contained in any bigger
set of antisymmetry. Any maximal set of antisymmetry is closed and it is a
weak peak set [20], consequently, A|z := {f|r € C(L): f € A} is a closed
subalgebra of C'(L). Furthermore, the quotient norm on A|y coincides with
the sup norm on L, so Ay is a uniform algebra on L, and if M(A) = K
then M(A|z) = L. Two distinct maximal sets of antisymmetry are disjoint,
hence K can be decomposed into the disjoint union of maximal sets of
antisymmetry, called the Bishop decomposition. The Bishop Decomposition
Theorem says:

TueoreM 8 ([1]). Let A be a uniform algebra on K and let f € C(K).
Then

feA f flo € Aln for any mazimal set of antisymmetry L.

For a uniform algebra A on K we denote by QA the largest C* subalgebra
of A; that is, QA = AN A where A = {f : f € A}. For z € K we call

By ={heK:Vf Q4 f&)=Fk)}
the QA level set corresponding to ¢, Two distinct QA level sets are disjoint;,

hence K can be decomposed into the digjoint union of QA4 level sets, called
the Shilov decomposition. The Shilov Decomposition Theorem states:

TueorEM 9 ([26]). Let A be o uniform algebra on K and let f € C(K}.
Then '

feA iff floe Ay for any QA level set L,

The first impression may be that the Bishop and Shilov decorapositions
must coincide. This is indeed the case for many uniform algebras. Further-
more, for any uniform algebra the Bishop decomposition is at least as fine
as the Shilov decomposition; however, in general the Bishop decomposition
may be strictly finer than the Shilov one. This means that for a QA level
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set L the algebra Al may again have nontrivial QA level sets, which is in
striking contrast with the Bishop decomposition: for a maximal set of anti-
symmetry L the algebra A|, has no nontrivial maximal sets of antisymmetry.
H>{D)+ C(6D) is an example of an algebra where the two decompositions
are different [9, 25].

We are now ready to state a decomposition theorem for f-stability.

THEOREM 10. A uniform olgebra A is f-stable if and only if the family
{A|& : K is o mazimal set of antisymmetry}
is uniformly f-stable.

Proof. Assume that the family {A|x : K is a maximal set of antisym-
metry} is not uniformly f-stable. Then there is an € > 0 such that for any
§ > 0 there is a maximal set of antisymmetry K and an F' € Mis(Alx) such

that |F — G|| > ¢ for any G € DM(A|g). The composition A 5 A|x ECof
F and the natural projection w is é-multiplicative and at a distance at least
€ from any multiplicative functicnal on A.

Assume now that A is not f~stable. Let & > 0 be such that for any § > 0
there is an F € Ms(4) with |F — G|| > € for any G € M(A4). Without
loss of generality we may assume that F is represented by a probability
measure pup on Ch(A). Since F' restricted to the subalgebra QA of A is
also §-multiplicative and QA is a C(X) algebra, Proposition 3 tells us that
there is a QA level set E such that up(E) > 1 — 106. Any QA level set
is a weak peak set, so if 4 is small enough it follows from the first part of
Proposition 6 that pup(E) > 1 — 26 and Fr € My(A). If the Shilov and
Bishop decompositions coincide then E is a maximal set of antisymmetry
and we are done since Fg gives a 6-multiplicative functional on A|p at a
distance at least £ from any multiplicative one. In the general case we have to
work some more and it will be crucial that in the first part of Proposition 6,
Fg € M5(A) with the same § as the original functional F.

For each ordinal number w we define a partition Py, of M(A) into weak
peak sets: For w = 1, Py, is the Shilov decomposition. Py.4q is the decom-
position obtained from P, by applying the Shilov decomposition to each of
the algebras A|z, where F € Py. If w is a limit ordinal then z,y € MM(4)
belong to the same P, set if and only if z, 7 belong to the same Py for any
w < w.

By an obvious cardinality argument P = P, for any o', w large
enough. Also, Py = Py if and only if all sets in Py are maximal sets
of antisymmetry. Hence, there is an wy such that Py, is the Bishop de-
composition. We already proved that there is exactly one E € Py such that
pr(E) > 1-26 and Fr € Ms(A). By the same arguments as before, applied
inductively, for any w there is an B, € Py such that up(Fg) > 1— 26
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and Fig_ € Ms(A). Hence Ey, is a maximal set of antisymmetry such that
Fg,, gives a é-multiplicative functional on Alg, at a distance at least &
from any multiplicative one. w

The next result provides a tool for constructing non-f-stable algebras; we
will use it in Section 7. The proposition says that if there is a multiplicative
functional on A close to an ideal J but not close to any particular element
of the spectrum of J then it generates an almost multiplicative functional
on the quotient algebra A/J which is not close to a multiplicative one.

ProposITION 11. Let A be a commutative Banach algebro and let J be a
closed ideal in A. Put X = IN(A) eond K = {H € X : H|; = 0}. Assume that
there 18 an Iy € X \ K such that for Fyly 1 J — C we have | Fpls|| << 1
and |[Fy — H|| > B for any H € K. Then there i¢ a Go € Mup(A/J) such
that |Go — HI| > 8 —n for any H € M(A/J) = K.

Proof Let §: A — C be a linear map such that ||S|| = |[Fols]| €7
and S|y = Fol|y. Put G = Fy —~ 5 and let Gy : 4/J — C be defined by
Go(f + J) = G{f). By direct computation, G € My,(4). Let f + J and
g+ J be arbitrary elements of A/J with norms less than one. Let f' € f+.J
and ¢' € g+ J be elements of A such that || f/]] < 1 and [|g']| < 1. We have

[Go(f + J)Golg + J) ~ Golfg + )| = |G(f)C(9") — G(f'9")| < 4m,

hence G € My,(4/7).
Let H € K. Since || Fy — H|| > B there is an fy € A with || fp]] < 1 such
that |Fy(fo) — H(fo)l > 8. Hence || fo + J|| < [|fol <1 and

1Go — Hi| = |Golfo + J) = H{fo)| = |Fo(fo) ~ H(fo) ~ S(fo)l > B~n.

4. The ball algebras. Let 2 be a bounded pseudoconvex domain in
€. By A(f2) we denote the uniform algebra of all functions holomorphic
on {2 and continuous on 2. If 2 is equal to the n-dimensional unit ball

) n 2\ 172
By={a= (o) e C ol = (D) <1,
k==l
we call A(B,) the n-ball algebra. For n = 1, By = 1D g0 A(B;) = A(D) is
the disc algebra.,

THEOREM 12, The ball algebras are f-stable.

Proof. Let F be a S~multiplicative functional on A(B,). We need to
prove that £ is close to a multiplicative functional. By the results of the
previous section we may assume that F' is represented by a nonatomic prob-
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ability measure pp on 8B,. For w = (w1, ..., wn) € B, we define a function

~/i= W= P

&, B, — C" by
Pu(2) = 1—{z,w) ’

where

&, w)
Wy, and P =
=¥ kZ W™
Tt is easy to check ([20], p. 391) that &,, are automorphisms of B,. We
define a function ¢ : B,, — C" by

o{w) = S@w dup.

If wo € 8B, and w; is a sequence of points in B, that converges to wy
1bhen straightforward computations show that @, (z) — wy pointwise on

B, \ {wy}. So, since pr has no atoms, v extends to a continuous function
on B, such that p(w) = w for w € 8B,,. Hence, there is a wg € B, such
that ¢(wg) = 0. Since f +— f o Py, is an isometric isomorphism of A(B,)
onto itself, Fy defined by

Eo(f) = F(f o Bwy) for f € A(By)
is a §-multiplicative functional on A(B,), and
(4) Fy(zey=0 fork=1,...,n

By 2] (see also [28],
copies of A(By) into

Ag(Bp) := {f € A(

pp. 151-153), the linear map 7' from the product of n

Br): £(0) =0}
defined by

T(fis--- fn) szfk

is surjective. Hence, by the Open Mappmg Thcorem there is a constant C
such that for any f € Ag(B,} there are Spf = fr € A{B,) with ||fx] <

C||f|| such that T(f1,..., fa) = f.

For any norm one function f in A(B,) we have

Fo(f) = Fo(£(0) + Y (= $00)) = F(0) + 3 FulauSulf — O
k=1 k=1

Since Fy is §-multiplicative, and | Sx(f — £(0)}|| < 2C, the last expression
is at a distance 2nC'é from

FOY+ ) Folzk) Fo(Sk(f — F(0))),

k=1
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which by (4) is equal to f(0). Hence | Fy — do|| < 2nC6, so ||F — bw,| <
mCo.

As a special case, for n = 1 we get Johnson'’s theorem.
CoROLLARY 13 ([17]). The disc algebra A(DD) 18 f-stable.

In Section 7 we show that the finite-dimensional quotients of the disc
algebra arc not uniformly f-stable.

B. E. Johnson also proved that the polydisc algebras A(D™) are f-stable
[17]. The author does not know if the same is true for the A(f2) algebras
in general. It may be interesting to notice that the non-f-stable uniform
algebra constructed by Sidney [27] contains A(£2), for some disconnected
set 12 ¢ C2.

5. Algebras with one generator

TueoREM 14. The family of oll uniform algebras with one generator is
uniformly f-stable.

Proof. For a compact subset K of the complex plane € we denote by
P(K) the closure of the algebra of all polynomials in the topology of uniform
convergence on K. Any uniform algebra with one generator is isometrically
isomorphic to an algebra of the form P(K) for a simply connected K equal
to the spectrum of a generator. If K is disconnected then any component
of K is a peak set, hence by Proposition 6 we can restrict our attention to
algebras P{K) with K connected and simply connected.

Assume X ¢ € is homeomorphic to a closed unit disc I. By the Riemann
Mapping Theorem int X and I are holomorphically diffeornorphic, and by
({5}, p- 50) any such diffeornorphism can be extended to a homeomorphism of
X onto . Since, by Mergelyan’s theorem [7], P(X') consists of all continuous
complex-valued functions on X that are holomorphic on int X, it follows
that P(X) is isometrically isomorphic to the disc algebra. Consequently,
the family of all P(X) algebras with X homeomorphic to I¥ is uniformly
f-stable.

Fix an € > 0. Let § > 0 be such that any -multiplicative functional
on the disc algehra is within e from & multiplicative functional. Let K be
a compact, connected and simply connected subset of the complex plane.
Let F be a s-multiplicative functional on P(K) represented by a probability
measure 4 on K. Let (X5)8S,; be a decreasing sequence of subsets of C such
that, for any n,

[ 8]
X, is homeomotphic to B, K CintX,, and []X,=K.

ree=l
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For any n we have P(X,,) C P(K) and for any f € P(X,) the P(X,,)-norm
of f is at least as large as the P(K)-norm of f. So F is a ~-multiplicative
functional on P(X,). Hence, there is a multiplicative functional G, on
P(X,), represented by a probability measure p, on X, and such that
|F ~ Grllpx,) < e Without loss of generality we may assume that the
sequence i, is convergent in the weak* topology of (C(X1))* to a probabi-
lity meagure p on K. We denote by G the functional on P{K) represented
by p. For any polynomials p, ¢ we have

G(p)G(g) = lim Gr{p) im Gr(q) = lim G (pg) = G(pq),

and since polynomials are dense in P{K), the functional & is multiplicative.
Assume now that p, is a polynomial with the P{K)-norm less than one.
Since p is uniformly continuous on bounded sets the P(X,)-norms of p are
less than one for all n sufficiently large. Hence

F(p) - G0} = |F(v) - {pdu| = 1im (P(p) - [ pdpsn)
<Hm |F = Gall - [llpx, < &

S0 HF_G”P(K) <E m

6. R(K) algebras. For a compact subset K of the complex plane we
denote by R(K) the uniform algebra on K generated by all rational functions
with poles off K. If K is simply connected then P(K) = R(K). While any
uniform algebra generated by polynomials of a single element is isomorphic
to some P(K), any uniform algebra generated by rational functions of a
single element is isomorphic to R(K). We do not know if all R(K) algebras
are f-stable; we can prove this if K is sufficiently regular.

THEOREM 15. If K C C is such that C\ K has finitely many components
and the closures of the components are disjoint then R(K) is f-stable.

Proof. Without loss of generality we may assume that K is a subset of
the unit disc and that C\ K is not connected. Let T denote the one-point
compactification of the complex plane, let Z be the identity function on T,
let Uy be the component of T\ K that contains the point at infinity, let
Uy,..., Uy, be the other components of T \ K, and let » > 0 be such that
the distance between any two components of C \ K is at least r. For any
k=0,1,...,n we fix a point wy € Uy (with wy not the point at infinity)
and set

o := inf{dist(wy, K) : k =0,1,...,n} > 0.

Fork = 0,1,...,nlet Ak be the (uniformly closed) algebra of continuous
functions on C\ Uy that are holomorphic on T\TUy. By Mergelyan’s theorem,
Ay is the closed subalgebra of R(K) generated by (Z—wp) Yifk=1,...,n,

icm

Almeost multiplicative functionals 49

and by Z if k = 0; the maximal ideal space D A) of Ay can be identified
with C\ Uk ([4]). Furthermore, any f € R(K) can be decomposed in a
unique way into a sum

F=forfit. ..+ fa

such that fr € Ay and fi(o0) = ... = fn(c0) = 0; the maps
R(K) 3 f 5 fu & Ay
are continuous and linear. Put ¢ = sup{||T%| : k¥ =0,1,...,n}.

We define hyperbolic metrics gu(z,w) on D(Ax) by
ou(2,w) = (|82 — bu|| = sup{|f(2) - f(w)| : f & 4p, |f] <1}

A hyperbolic metric 14 locally equivalent to the Euclidean metric. So,
there is a constant ¢ > 0 such that for any k= 0,1,...,n and any z,w €
M(Ap), if the Euclidean distance between C\ M(Ag) = Uy and at least one
of z and w is larger than 7/3, then

(5) or(z,w) < ¢z —wl.
Let € > 0. Let 7 > 0 be such that

12
20 o5 M7 4 (n+1)0n(1—|-—f)<e.

(6) a—~4n ’ a < 3
By Theorem 14 there is a § > 0 such that any é-multiplicative functional on
an algebra A with one generator is within » from the set of multiplicative
functionals on A; we may also agsume § < 7.

Let F be a é-multiplicative functional on R(K). We may assume that
F(1) = 1 = | F||. We need to show that F' is within distance ¢ of M(R(K)).
Let Fi be the restriction of F to Ay; obviously Fy € MM5(Ax). By the
definition of § there are functionals Gy € M(Ax) such that ||Fr — Gil| < 7.
Let z;, be the point in € corresponding to Gy. Let F(Z) = Fy(Z) = Z. Since
K is contained in the unit disc we have ||Z|| € 1. For k= 1,...,n we have
lwg| < 1 and, by the definition of a, ||(Z — we)™']] € 1/a, hence

2p ~ we| " Hag — B = |1 (2 - wg) " HE — wg)
2= |1 Gi((Z = we) Y (Z = wy)|
< |1~ Fy((Z ~ we) 1Y F(Z — wy)|
A 1Ty = Gl 1(Z =)™ [ (1F) - V2~
< 8|2~ ww) M| |2 = i - (= )™ 2
B men
o @ " e

Therefore 2y # oo and

. An -
(7) |zkw2‘|5w§-\zk—wk| for k==1,...,n.



50 K. Jarosz

icm

Alsofor k=1,...,n,

2[F((Z — wi)™")| 2 |F(Z — wi)| - |[F((Z ~ wg) ™)
21— |1 = F(Z - wp) F((Z —we) ™)
> 1= 8(Z — we) M| |12 — will
U

which implies

F(Z —wy) ™) 2 2227 50,

20
and then
|2k — wi| ™" 2 [F((Z — i)™ )| = 1F((Z = wi) ™) = (2~ wp) ™|
a—2
2 —5~ L (B - G)((Z - wi) ™)
a=2n m  a—4n
> S -
= 2g a %% 0.
Hence, by (6) and (7) for k=1,...,n we have |2, — 2| < 12n/a. Since also
|20 — %] = [Go(Z) — Fy(Z)| < ||Go — Fol| <1, we get

(8) |2k — 2;| < 12n9/a <7 /3
Let diSt(zko,Uko) =2 min{dist(zk, Uk)
zy, € K and that F is within € of §,, . By the definition of », for all
k= 0,1,...,n except possibly k = ky, dlst(zk,Uk) < r/3, so in view of
(8), zx, € (C \ Uy, for k = 0,1,...,n. Hence 2z, € K and by (8) we have
0k(2ko, 2) < c|2k, — 2. Let f be a norm one element of R(K). Then

B(F) = £(s10)] < i P(Tf) -

for k=0,1,...,m.
k=0,1,...,n}. We show that

(T f) (2o
=()
< ZIF Tk f) — Gi( Tiuf)I‘l"Zl Tef Yow) ~ (Te f) (20|
k=0
< ZWIIkaIE + Z 1621y — Bkll - |1 Tk f)
k=0

<(n+ 1)n0+nc'—a—0 <{n+ 1)0'.7(1 + 1—277-) < e,

where we have used (8) and (6). Hence ||F - §,, || < ¢ as promised. w

The author does not know if the family of algebras described in the
last theorem is uniformly f-stable. If it is, then using arguments very sim-
ilar to those in the proof of Theorem 14 one can show that all algebras
of the form R(K) are f-gtable. At least some of the algebras not covered
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by the lagt theorem are f-stable. For example, if K = {z € C: |2| £ 1,
|z — 1/2] > 1/ 2} then R{K) is isometrically isororphic to a subalgebra
{f € AD) : f{~ 1) = f(1)} of the disc algebra. Hence, by Theorem 7 and
Corollazy 13 R(K) is [-stable.

7. Quotient algebras H>/BH>, We prove that the quotient algebra
H*®/BH™ is f-stable if and ouly if B is a product of finitely many inter-
polating Blaschke products; equivalently, if the measure defined by B is a
Carleson measure. This type of Blaschke product has been investigated in
a number of papers; see for example 3, 6, 10, 18, 19, 21, 22, 23, 30].

We first need to recall some basic properties of H*> = H* (D) and the
Blaschke products as can be found in [8]. First, there are several natural
and equivalent ways we will interpret an element f in H*: it can be seen as
a bounded analytic function on [3, or as an element of L* = L*(dD)}, or as
a continuous function on M(H™), or as a function on M(L>) C M(H=).

Suppose {c, } is a sequence in [ such that

[=%]

Z(l - lann < oo

sz ],
This is the necessary and sufficient condition for the sequence {an} to be
the zero sequence of a bounded analytic function on 2. When the condition
is satisfled, we have the associated Blaschke product

Ty,
B(z,{a,}) = H ol T-anz

This product converges uniformly on compact subsets of I, and defines a
function in H™ (D). Furthermore, a function f in H°°(D) vanishes on {an}
if and only if f = B(., {cty })g, where g € H*(D) and || f|| = ||g|. Hence, for
any Blaschke product B,

BH™ = {Bg:ge H*®}

is a closed ideal; we clenote by mp the natural projection from H® onto
the quotient algebra H™/BH, The algebra H™/BH can be seen. as a
subalgebra of [%°:

H®/BH™ 3 [f] =5 {f(om)} € 1%,

We call a Blaschke pmduct B interpolating if the map tg o : H® — %
Is surjective; in that case tp” is automatically continuous, and we denote by
Mp the norm of ¢ ', Recall that the hyperbolic distance on I is defined by

o(z,w) = ||6; — u|| = sup{|f(2) — F(w)] : f € H>, |f] =1},



52 K. Jarosz

and that

2 T|1-Fuw
The following is the most fundamental result in the theory of Blaschke prod-
ucts.

< olz,w), zweb

THEOREM 16. If {a} is a sequence in I and B is the corresponding
Blaschke product, then the following are equivalent:

1. {a,} is an interpolating sequence.
2. We have the inequality

il;.:f H ola, o) =1 6p > 0.

I#Ek
3. We have -
(9) 31%; o(ey, o) =t ap >0
and
(10) sup Z (L= |en|)/r = Ap < o0
0gr<l
0<8<y  l-r<|an]

A sequence {a,} in I which satisfies (10) is called a Carleson sequence.
The next result is a combination of results from [18, 19, 21, 22| (see also [3],
pp. 68-69). We will need only the implication (2}=>(3) (see [19], p. 534).

THEOREM 17. If {an} is a sequence in D then the following are equiva-
lent:

1. {an} is a Carleson sequence.
2. For any g9 > 0 there is a 6 > 0 such thet for any z € I we have

if |B(z,{an}})| <& then mf{o(z,0n):n=1,2,...} <eq.

3. {an} is o union of finitely many interpolating sequences.

THEOREM 18. Let B be a Blaschke product. Then H™> /BH® is f-stable if

and only if B is ¢ product of finitely many interpolating Blaschke products.

Proof. We first observe that if B is an interpolating Blaschke product
then the quotient algebra H°°/BH® is isomorphic to the algebra I°° =
C(BN) of all bounded sequences, so by Proposition 3 it is f-stable. One
should, however, notice that the isomorphism between H*/BH® and I
may have a large norm, so while it follows that each of the algebras
H*/BH®, with B an interpolating Blaschke product, is f-stable, it does
not follow and is not true (see Proposition 19) that the family of all alge-
bras of the form H*/BH® with B an mterpolatmg Blaschke product is
uniformly f-stable.
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Assume now that B = []., By, where B; are interpolating Blaschke
products and F' € Ms(H>/BH*). Without loss of generality we may as-
sume that [[F|| =1 (see [17]).

In the algebra H*®/BH™ we have [[7_;(B; + BH*®) = B+ BH> =,
so, since F' is almost multiplicative, we have

P p
1 7(8; + BH®) ~ F( I8+ BHC"’)) = F(0) = 0.
i=1 je=1

It follows that one of the vumbers F(B; + BH®) is small. By a direct
computation we can verify that
4/ (p - 1)6 = 1,

(11) |F(Bj, + BH™)| <
for at least one index jo.
Put I = B, H®/BH>. Since F € M(H*°/BH>), by (11} for any
f+ BH® € H*®/BH> we have
|F{(f + BH®) - (By, + BH™))|
< §||f + BH®| + |F(f + BH™) - F(B), + BH*)|
< 8||f + BH™| + 6,|F(f + BH™)]
< (64 6)|f + BH™,
so |Flz|| € 6+ 6. Let A € (H*®/BH®)" be such that {|4| = {|F|]
and Aly = F| ;. Put Fy = F — A. Since I C ker Fy, Fy induces a linear

functional F on the quotient algebra (H°°/BH°°)/I H*/B;, H*. By a
direct computation, Fy € Mg, (H>®/BH>), s

F & M5, (H™ /By, H).

Since Bj, is an interpolating Blaschke product, the algebra H*° /B H®
is 1som0rphm to [™, By Proposition 3 there is a G e M(1*°) such that
\F G | € 6y, where &, depends on § 481 and the norm of the isomorphism
between 1% and H™ /B, H*, and tends to zero as 6 — 0. Let 7 be the
natural projection from H>/BH> ounto H®*/B; H™ and'put G = Gor.
We have

G e MH*/BH®) and |[[F-GY <|A|+|F -G <6+6+6

Now assume that B = B(.,{an}) is not a product of finitely many
interpolating Blaschke ]:JI'OC].U(‘L&, and lot K = {H € DUH®): H|gg= =0}
be the spectrum of BH, By Theorem 17 there is an g > 0 such that for
any § > 0 there is a 25 € ]D with

(12)  !B{zs, {an})| < & and .} = eo.

inf{o(zs,0m) 1 n =1,2,.
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Notice that K is the union of the set {a, : n = 1,2,...} and a subset of
M(H*) \ D. Since D is a Gleason part of A ([12]), the norm distance
between z5 and any point from IM(H*>) \ D is equal to 2. Hence, and by
(12), any point of K is far from 2, so by Proposition 11, H*®/BH ig not
fstable. w

PROPOSITION 19. Let BF be the set of finite Blaschke products. Then
the families

(13) {A(D)/BA(D) : Be BF} and {H>/BH*:DB¢BF}
of finite-dimensional algebras are not uniformly f-stable.

Note that all of the algebras in the families (13) are finite-dimensional
so they are all f-stable.

Proof of Proposition 19. Let A be equal to A(D) or to H*, let
5 >0, and let oy, 7 =1,...,n, be points in a disc of radius 1/2 around the
origin such that

ﬁ o(3/4,05) < 6.

Jj=1
Let B be a finite Blaschke product with zeros at {a;}. Let
J =BA= {f : fl{'lj};},_“l = (]}
For any 4 =1,...,n and for any f € J of norm 1 we have
o(3/4,0;) > 1/4 and |f(3/4)] < 6.

Hence, by Proposition 11, the families A/J of (13) are not uniformly -
stable, m

8. The algebra H* (D). The question whether a Banach algebra A is
f-stable can be interpreted as a question whether A has an almost corono,
that is, a set of almost multiplicative functionals far from the set of multi-
plicative functionals. In view of the importance of the Corona Theorem for
H* (D) it would be particularly interesting to know whether H*°(D) has
an almost corona. We have been unable to answer this question; we prove,
however, some results linking f-stability with the approximation properties
of interpolating Blaschke products.

We need to use repeatedly the Douglas-Rudin Theorem ([8], p. 428):

THEOREM 20. Suppose u € L and |u| = 1 almost everywhere. Let
g > 0. Then there exist inferpolating Blaschke products By and By such
that

|w— B1/Ballee < E.
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PROPOSITION 21. For an arbitrary regular, nonatomic probability mea~
sure p on OH™ (D) = M(L™) there is an interpolating Blaschke product B
with |§ Bdu| < 3/4.

Notice that we do not assume that 4 is abgolutely continuous with respect
to the Lebesgue measure, nor even that u is a measure on the unit circle; it
is a measure on a vauch bigger set ML), In this setting B is a continuous
function on ML),

Proof of Proposition 21. Because g is regular and nonatomic,
there is a compact set K < W(L™) such that p(K) = 1/2. For any n € N
let fr € C{IM(L>)) & L™ be such that f, : ML) — [0, 1],

1
fn=1lon K and ‘ S Fn d,u,| <3 + .1
M(Loo) n

Put g, = — exp(wify,). The function g, is a unimodular function equal to 1
on K and is p-close to -1 on the complement of K. By Theorem 20 there are
interpolating Blaschke products Bn,1, Bna with ||gn — Bn,1/Bn 2llee < 1/n.
Hence

”.qn-Bn,Q - Bn,l“oc < l/n
80 Bp,1, By,2 are almost identical on K and almost opposite off K. Put

)\'n-,’i, = S -B'n,,'i dl‘*": ‘
K M(LeoNK

Bpidu=X,;, fori=1,2

As n — oo we have

| T Buagadi— Qs+ X,0)| -0,

M Lee)
‘ S B agndu — (Anz — A:n,z)‘ - 0,
M{Leo)

50

(14) ‘(’\w-,l + ’\;1,1) - ()‘n& - A"n,'l)i — Q.

Since the absolute values of all the A’s are smaller than or equal to 1/2, for
any n we have
‘)‘mil - )\;?,,2[2 + |)\n‘2 + }"n,2|2 = 2(|)‘m,'2|2 + Ww,ﬂg) <1
50
. 2
Iiminf’ S B2 d,wl = liminf [ Az + Ap o] S %,
ML)
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or, by (14),

[

1iminf| B 1d,ul = liminf|[Apa — Ap ol £

ML)
Hence, some of the numbers | S,m(bw) B idyl, v =1,2,n €N, are smaller
than 3/4. m

PROPOSITION 22. For any € > 0 there is ¢ & > 0 such that for any
F € Ms(H™), either there is an © € OH™ with | F — bz| < 26, or there is
an interpolating Blaschke product B with |F(B)| <.

Proof. Let k be such that (3/4)* < £/4 and § such that k5 < /4. By
Propositions 5 and 6 we may assume that F € M(H>°) is represented by
a nonatomic probability measure on M(L>°) so by Proposition 21 there is a
Blaschke product By such that |F(Bp)} < 3/4. Since F is §-multiplicative,
by a simple induction, we have

|F(B5) — (F(Bg))"ﬂ <(k-1)6<e/d—-06.
Put I = Bf. We have | F(I)| < &/2— 6. By Theorem 20 there are - interpolat-

ing Blaschke products B, B with |1 — B/B||se < £/2. Hence ||IB — Bl|os <
£/2, so since F is §-multiplicative, we get

F(B)| <|F(B) - F(IB)| +|F(IB) - F(I)F
<eg/246+(c/2-6)=¢€.m

Remark 1. Assume that for a given F' € Ms(H ™) we could replace,

in the last proposition, ¢ > 0 with & = 0 and that we could control the

interpolating constant Mp. Then F' induces a é-multiplicative functional

on an f-stable quotient algebra H*/BH*. Hence F has to be close to a
multiplicative functional &, for some z € M(H>/BH®) C M(H>).

The maximal ideal space M(H} of H> is the union of four disjoint
sets: the unit disc I, the Shilov boundary 8H®, the set P of all trivial
Gleason parts not in 8H®, and G, the union of all nontrivial Gleason parts
other than I ([12}). If x € P then |6, — ;|| = 2 for any point y € OH™, so
by Proposition 22, there is an interpolating Blaschke product B such that
{B(z)| < &. Combining this with classical results by Hoffman [12] we get the
following (known} proposition.

PROPOSITION 23. Let z € M(H>®)\ D. Then

(i) z € 8H* if and only if B(z) # 0 for any Blaschke product B;
Jurthermore, if @ € 0H™ then |B(z)| = 1 for any Blaschke product B.

(i) x € dH*® UP if and only if B(z) # 0 for any interpolating Blaschke
product B; furthermore, if x & P then for any ¢ > O there is an interpolating
Blaschke product B such that |B(z)| < e.

(B)| + |F(I)F(B)|

icm

Atmaost muliiplicative functionals 57

9. Open problems. We list here some open problems concerning f-
stability of uniform algebras.

ProBLEM 1. Is H™ f-gtable?
ProeLEM 2. Are Douglas algebrag f-stable?

ProOBLEM 3. Let K be a compact subset of the complex plane. Is R(K)
f-gtable? Iy H™(K) f-stable?

PROBLEM 4. Let £2 be a bounded psendoconvex domain in C*, Are A()
and H®(2) f-stable?

ProsrLEM 5. T4 any uniform algebra with two generators f-stable?
ProBLEM 6. Let A be an Fstable uniform algebra. Is the algebra
“(A) = {(fa)nz V0, fo € A, and [|(fu)]| = sup | fall < oo}

ki

f-stable?

ProOBLEM 7. Let A be an f-stable uniform algebra. Is an ultrapower of
A f-gtable? {See [11, 16] for hasic properties of ultraproducts.)

ProBLEM 8. Let A be a uniform algebra such that the family of all
quotient algebras A/l is uniformmly f-stable, where I is a closed ideal in A.
Is A = C(K) for sore compact set K7

The author would like to express his gratitude to the referee for several
valuable comments and suggestions.
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Two-sided estimates of the approximation numbers
of certain Volterra integral operators

by

D, B EDMUNDS (Brighton), W. D. EVANS (Cardiff)
and D, J. HARRIS (Coardiff)

Abstract. We consider the Volterra integral operaior T : LP(R*) — LF(R™) defined
by
&
(7)) = o) | u(t) F(£) di.
0
Under suitable conditions on » and v, upper and lower estimates for the approximation
numbers s (T) of 1" are establishod when 1 < p < 00, When p = 2, these yield
o
lin naee (1) = S ()] dt.
ok (3 s

¥

We also provide upper and lower estimatos for the £% and weak £ norms of {an (T')) when
l<a<eo.

1. Introduction. In this paper we study the approximation numbers of
the Volterra integral operator T' given by
iy
(11) (TF) (=) = v(w) | ult)f(2) db
0
for € R* == [0, 00) and f & LP(R*). Here 1 < p < o0, and w,v are real-
valued fanctions, with w ¢ LE (R*) and v € LP(R"); as usual, p’ = p/(p-1).
The paper is a continuation of our earlicr work [4], in which we gave a
necessary and suflicient condition for T': LP(R*) — LP(RT) to be compact
and also provided a scheme for obtaining upper and lower_ estimates for
the approximation numbers of 7. As an illustrative example we showed
that when u(z) = ¢4* and v(z) = ¢~ ?®, where 0 < A < B, then the
nth approximation number a,(71") of T' is bounded above and below by
positive moultiples of n~t. However, the general scheme mentioned above
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