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Some Ramsey type theorems
for normed and guasinormed spaces

by

C. WARD HENSON (Urbana, IlL),
NIGEL J. KALTON (Columbia, Mo.),
N, TENNEY PECK] (Urbana, Il}, IGNAC TERE SCA K (Bratislava)
and PAVOL ZLATOS (Bratislava and Urbana, I1i.)

Abstract. We prove that every bounded, uniformly separated sequence in a normed
space contains a “uniformly independent” subsequence (see definition); the constants in-
volved do not depend on the sequence or the apace, The finite veraion of this result is true
for all quasinormed spaces. We give a counterexample to the infinite version in Lp(0,1] for
gach 0 < p < 1. Some consequences for nonstandard topelogical vector spaces are derived.

0. Introduction. We are concerned with the following problem: given
a bounded sequence in a quasinormed space V' whose terms are uniformly
far apart, can we pass to a subsequence such that each term is uniformly
far from the subspace spanned by the remaining terms?

I V' is a normed space, it is well known that the answer is “yes”. We
strengthen this result by showing that the distance of each term from the
subspace spanned by the other terms can be determined rather uniformly;
in particular, it need not depend on the geometry of the given sequence. The
finite version of thig result turns out to be true for all quasinormed spaces,
and it is tempting to conjecture that the infinite result is also true for all
quasinormed spaces. However, we give a counterexample to this conjecture.

Before continuing the discussion we introduce some definitions and no-
tation:
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DEerFINITION. Let (V; || - ||) be a quasinormed space (see [7]) and (z)ier
be a system of elements of V.

(a) Given € > 0, the system of elements (z;)ies Will be called e-separated
if for any distinet 4,7 € I we have {|z; — z;]| 2 €. The system (z;) will be
called uniformly separated if it is e-separated for some £ > 0.

(b) Given § > 0, the system of elements (z3)ier 18 called é-independent
if for any ¢ € I we have

dist(z;, [z5]i5er) 2 6.
where for any sets X, Y C V,
dist(X,Y)=inf{[|z —y|:2€ X, y€ Y}

denotes their distance with respect to the quasinorm ||-|| and [X] is the closed
linear span of X. The system (z;) will be called uniformly independent if it
is &-independent for some § > 0.

In the first section of this paper we show that in a Banach space, ev-
ery bounded e-separated sequence contains a é-independent subsequence for
each positive § < ¢/2. (As noted in the remark following the statement of
Theorem 1.1, this result in the weaker form with “for some 6 > 0”7 replacing
“for each positive § < £/27, has an easy, direct proof.) Call a sequence (x;)
in a Banach space X M-biorthogonal if there exisls a sequence (f;) in the
dual space X* with || ;|| € A and fi(z;) = &; for all { and j. Evidently, (z;)
is d-independent if and only if it is 1/6-biorthogonal. Therefore, the main
result of this section can be rephrased as follows: Every bounded e-separated
sequence in a Banach space has, for each 5 > 0, a (2/e + n)-biorthogonal
subseguence.

In the second section we prove the finite version of this result for an
arbitrary p-normed space; our proof is based on the finite version of Ramsey’s
Theorem. For our other results neither the finite nor the infinite version of
the combinatorial Ramsey Principle is sufficient; to prove them one must
also use some structural properties of the space in question. Nonetheless,
there is a close connection between the results in this paper and Ramsey’s
Theorem.

In the third section we study various types of irreducible sequences in
quasi-Banach spaces; these are sequences in which any infinite subsequence
generates the same closed linear span as the original sequence, possibly even
when “small” perturbations are allowed. (See the beginning of Section 3 for
the definitions.) One of the main results of this section states that in a sep-
arable infinite-dimensional quasi-Banach space V, a bounded sequence (z,)
contains either a uniformly independent subsequence or a subsequence some
compact perturbation of which is completely irreducible. As a consequence,
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V contains a bounded uniformly separated sequence with no uniformly in-
dependent subsequence if and only if V' contains a cornpletely irreducible
sequence not identically equal to 0. Note that our results imply that in a
Banach space, all completely irreducible sequences are identically 0. There-
fore the dichotomy described above has content exactly in quasi-Banach
spaces that are nonnormable.

Tu the fourth section we construct a bounded sequence (f,) in Ly[0, 1],
for each 0 < p < 1, such that (f,) is uniformly separated and such that
for every null sequence {gn) and for every infinite subset M of N, we have
[fn = Onlnenr = Ly[0,1]. Obviously, (f,) has no uniformly independent sub-
sequence.

Pinally, in the fifth section we use the results in Section 2 to derive some
consequences relating two kinds of compactness properties for nonstandard
topological vector spaces. '

1. The normed case—infinite version

TuporeM 1.1 Let (V, ||-[|) be a normed linear space, € > 0, and (2 )7
be a bounded ¢-separated sequence in V. Then for each positive § < &/2 there
is a 6-independent subsequence (Yr)ioy of (Bn ) -

Remark. The weaker statement: “Buvery bounded uniformly separaied
sequence {@y) in a normed space V' conlains ¢ uniformly independent subse-
quence (yg)”, can be proved rather casily using a Pelczyhski style argument.
Indeed, by the Banach-Alaogh Theorem, the bounded set {z1,za,...} has
a weak® cluster point go € V**. If o = 0, then (zn)5i, contains a ba-
sic subsequence (yx)$,, and we are done. If 4y # 0, take an ¢ > 0 such
that (z,) is e-separated. Then ||z, — yol| < £/2 for at most one n and (see
e.g. [2], Ch. V, Lemma 4} (2y)5%; has a subsequence {y )32, such that
{Yo, 1 — Yo, 2 = Yo, ---) is a basic sequence, hence it is 6-independent for
some § > 0. The -independence of {yx)i%, is an immediate consequence.

Thus the main point of Thoorem 1.3 is the fact that for each given ¢ > 0,
we can choose § » 0 uniformly, regardless of the sequence (#n), and each
6 < g/2 will do. -

Proof of Theorem 1.1. We will be working in the Banach spaces
V* and V**. the first and the second dual of V, respectively. V' will be
identified with a subspace of V™ in the canonical isometric way, and so will
be V* with a subspace of ¥V***. That is, each f e V* will be regarded as a
bounded linear functional on V** and we will write f(z) instead of z(f) for
z € V**, We denote by B the closed unit ball in Ve

Pix a strictly decreasing sequence ()3 such that § < by < gf2 ffor
each n. The sequence ()%, will be constructed by induction, along with
a doubly indexed sequence of continuous functionals ffF € V*,n 21, 1<
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i < m,.such that for all » and i = 1,...,n we have

(1) 2y +8,B) >0
and
(2) FPlty oy Gise o] = 0.

These conditions already imply

diSt(yiv [yla . ':@\i: .- :yn]) > 6?1. > 6

(U denotes the omission of y;) for all n, i, and the é-independence of the
sequence (y,) directly follows.

However, besides the vector y, and the functionals f7',..., fi* we will
have to single out two more auxiliary objects at each step of the construc-
tion—mnamely, a subsequence x™ = (z7)52, of the original sequence {z;)32,
and a weak” cluster point o, € V** of the infinite set mgx" = {z7,25,...}.
Some additional conditions they should satisfy will be formulated in the
course of the proof. ‘

To start the induction procedure let us dencte by x? = (mg)?‘f__l the
original sequence {z;)$2,. Now, take an arbitrary n > 0 and suppose that
we already have selected the terms yy, . .., ¥ from the sequence (z;), as well
as the functionals f* € V=, 1 < ¢ < n, satisfying (1) and (2}). Further, as
for n = 0 this condition is vacuous, hence trivially satisfied, we will assume
that we have a subsequence x™ of the sequence x° such that

O Jim #7(a3) =0

holds for all i=1,...,n.

By the Banach—Alaoglu Theorem there is a weak® cluster point a1
in V** of the bounded infinite set rng x™. As the space [y1,. .., ¥n, Gny1) 18
finite-dimensional, é, < ¢/2 and x™ is bounded and e-separated, there is
obviously a & > 1 such that for all § > & we have

(4) diSt(w_?s [Y1: -+, Yny Gnga]) > 6.
From (3) it follows that at the same time we can require
(5) 7)< (Bn — Sna)|LF7]

whenever 1 <1 <nand j > k. We put yp1 = T}
Now, the Hahn-Banach Theorem for the locally convex space V** with
the weak" topology, applied to (4), gives us an ',7::,':11 € V* such that

(6) Fitt (Ungr + 6n1B) > 0
and

(7) p gill[yla ey yn;an-l-l] =),
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Without loss of generality we can assume
(8) fgﬁ(ynﬂ) = 1.
Consequently,

l.f::ql,ll(énklz)l < fﬁi%(yn-kl) =1
for all z € B, hence

() I < 5
Wo define the remaining functionals fit,..., fatt € V* by
(10) F = 7 = AT ()R
for 1 < ¢ < n. Then (2), (7) and (8) yield
(11) P e oG o Yna] = 0,

and (7}, (11) imply condition (2) with n replaced by n -+ 1.
Next we show the inequality

{12) Sy + 6 B) > 0
for all i = 1,...,n. Take any u,v € B. Then
6ns1% = (6n = Bnsga)vi| < bn,

hence
(5-,—;4.1% - (6n — (5-,14_]_)1} € 6, 8.
Thus by (1) we have '
FM s + St — (B = Snga)v) > 0,
implying
F7 (s 4 ) > (Bn — Enp1 )7 (V)
Hence
12;3 fzn(yi + 51’»-{-1“) = (611 - ‘Srr}-l)IlﬁLll'
U
Now, using the definition (10) and the facts (7), (9) we obtain
nf 77 B

’ , 1,
2 dielfB FP (i A Enasa) — F7° (Yn+1) Slelg Falily+ frt1?)

v

> (6 = Ens AP = FF @) Bl SR

> (6n = s )IFF | = £ (@n1):

The last inequality and (5) already imply (12), Then (6) and (12) give
precisely condition (1) with n replaced by n+ 1.
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Finally, let us recall that f771(ant1) = 0 and any1 is a weak” cluster
point of the set rngx™. Thus x™ has a subsequence x™ "1 such that
: nt+ly nt+ly
Jlﬂflgo fadi (i) =10,
Now, (3} and (10) imply

lim f (2771 =0
j—roo

foralli=1,...,n, too.
This completes the description of the induction procedure as well as the
proof of Theorem 1.1.

2. The quasinormed case—finite version. There is also a finite
version of Theorem 1.1 which surprisingly holds even in a large number of
nonlocally convex spaces, namely in the quasinormed ones. Given any p > 0,
a guasinorm || - | on a real or complex vector space V' will be called a p-
norm if it is homogeneous and its pth power satisfies the triangle inequality.
By the fundamental theorem of Aoki-Rolewicz [1}, [11], every quasinorm is
equivalent t0 a p-norm for some 0 < p < 1. Thus we can restrict attention
to the p-normed spaces, which in turn allows us to formulate our result in
direct analogy with Theorem 1.1.

The basic tool in proving our next result will be the finite version of
Ramsey’s Theorem, guaranteeing to any k,m,r € N the existence of an
n € N such that for any sets A and C with n and r elements, respectively,
and every function {coloring) F : Py(A) — C there is an m~element subset
X C A such that X is F-homogeneous; ie., F(u} = F(v) for all u,v in
Pr{X), where Pp(A) denotes the set of all k-element subsets of A.

The smallest n guaranteed to k, m, » by Ramsey’s Theorem will be
denoted by R(k,m,r).

In what follows, every set X is regarded as the system of elements (2)ex,
0 that the notions of -separateness and é-independence apply in the obvi-
ous way.

THEOREM 2.1. Let (V,|| - ||} be a p-normed space for some 0 < p < 1,
and K, € be any positive real numbers. Then for each positive § < £/2'/¢
and each m € N there is an n € N such that every K-bounded e-geparoted
set X C 'V with at least n elements contains a 6-independent subset Y with
at least m elements.

Proof. First we establish the result for vector spaces over the fleld R,
then we will show how the proof can be modified to handle the complex
case. Also, to avoid trivialities, we will always assume m > 1.

Let < be a fixed linear order of V. Whenever we write Z = {zy,...,2k}
for a k-element subset Z of V', we will assume that Z is listed in an increaging
sequence with respect to the order <.
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For o € R™ we denote by Fy : Pn{V) — {0,1} the coloring given by

0 if || 307k, cas|| < e/2MP
FolZ) = il '
=(%) { 1 otherwise,

forany Z = {#1,...,2m} € Pm(V). We claim that whenever aset I' C R™ is
appropriately chosen and Z is a (2m — 1)-element subset of the K-bounded
g-separated set X & V, which is Fy-homogeneous for each o € I', then
Z already contains an m-element d-independent subset Y. By Ramsey’s
Theorem, Z, and hence Y as well, can be arbitrarily large provided X is
large enough.

To be more precise, let us denote by s a positive integer which will be
specified later on, put

k. y —_ (UL | =
JH:{E,kGZ&——aSkgs}, §S={aeJ, .lr%egn}m—l},

and take for I" any subset of S such that for any o € § either & € I' or
—a & I', but not both. Obviously, any such I" has exactly
e %((23 U™ — (28 - 1)™)

elements. Then the family {F, : « € I'} of t colorings can be regarded as a
coloring F' : Prn(V) — {0,1} by 2* colors, given by F(Z)(a) = Fu(Z) for
al Z € Pp(V), eI

It follows that whenever n > R(m,2m — 1,2%) and X is an n-element
subset of V, then X contains a (2m ~ 1)-element F-homogeneous sub-
set Z = {21,...,%am-1}. Then Z is Fy-homogeneous for each o & I.
Putting 4; = #gy for i = 1,...,m, we arrive at an m-element subset
Y = {y1,...,ym} of X. We will conclude the proof by showing that Y is
§-independent provided X is K-bounded e-separated and s has been chosen
in an appropriate way.

Assume the contrary; then without loss of generality we can assume

e

[ <

for some @ € K™ such that cy = 1 for some k < m and |og| < 1 for each
4 < m. Then there is a 3 € J7* such that 8y = o = L and |f; ~ | S 1/2s
for all 4. Then 0 € § and cither 8 € I"or —@ € I'. Let us restrict to the first
case; the second one can be handled in exactly the same way, passing from
a to —o. We compute
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UL n P P
” S 8w -y ol = H > (8- sz')ym"
P i=1 itk
KP(m — 1)
[Pl 1P < e T
< Z!ﬁa o [Pyl < (25)P
igtk
Then
i » i r KP(m-1) K?(m —1)
sl < i DML ey AT
H IZ; By < H ; oY + (28)]9 = e (25)17

Now, one can easily check what we need in order to derive the contra-
diction; namely

KP(m —1)
2
should hold. This is equivalent to

LK m-1 r
579 \epja—6r)

P<5p
R

57 +

P
< —
2

With such an s we have

Hyk -+ Z Biyi
ik

et 7 be any even index such that 1 < § < 2m — 1 and yx € {251,241}
As 8 € I', by the Fg-homogeneity of Z we also have

P
HZJ' + Z Byt
ik
Consequently, |yx — 2;||° < &P, contradicting the e-separateness of X.

If the field of scalars is €, the proof can follow exactly the same pattern.
However, we have to define

€

P
<3

Js={ktll:k,lez&kg-i—lzsﬁ},

and relate the definitions of § and I' to this new set J,. Without falling into

details, let us denote by ¢{s) the number of elements of J,. Then the sot I’
has exactly

1
t=5(a(s)™ —als —1)™)
elements. As one can easily check, for each o € C™ such that oy = 1 for
some k and {a;| <1 for each ¢ between 1 and m, there is a 8 € I" satisfying
Br = cp-and |8 — ;] < V/5/(2s) for all 4, or the same conditions with o
replaced by —a. Again, it suffices to deal with the first option.
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A similar computation to the real case gives

”gfﬂ:m ~ gaiyi P e (K\/ﬁ)?(m

-1).
2s )

L KVE( m~1 1/
R L

the needed contradiction can be derived.

Then for any

For any positive real numbers K, ¢, & < g/ 2/ p < 1, and any natu-
ral number m, let us denote by g*(m, K¢, 6,p), resp. o%(m, K., 8,p), the
amallest natural numbor n such that in every quasinormed vector space
(V,||-|) over R, resp. over C, where ||| is a p-norm on V, every K-bounded
e-geparated set with m elements contains an n-element f-independent sub-
set.

[n course of the above proof we have established the following huge
estimate, most probably not the best possible. Recall that R : ¥ — N
denotes the Ramsey function, and for a € IR, |a] is the biggest integer < a,
[a] is the smallest integer 2 o, and for s € N, g(s) denotes the number of
integer solutions (&, 1} of the inequality &* + 1% < s2.

COROLLARY 2.2, For both ¢ = @® and ¢ = oF, ond any admissible pa-
rametera K, g, 8, p, m, we have

olm, K,&,6,p) < R(m,2m —1,2°),

where y
1 ™ L .._____—--—-—-»2lmp(m — 1) ’
t:-ﬁ((Zs—{-—l) - (28 =1)"), 8= [K( YT +1

in the real cuse, and

b= gla™ = gls 1)), = [waﬁ' (

in the compler case.

9L-P (m, — 1))1/1’]

gp - 267

3. The quasinormed case~—inflnite version. Our next results deal
with the possibility of genervalizing Theorem 1.1 or at least of its wealker
version, mentioned in the Remark, to some nonlocally convex quasinormed
SPacEs.

DEFINITION. A bounded sequence (%) in a quasi-Banach space v ‘fvill
be called irreducible if [Zalnem = [Enlnen for every inﬁnit_e subset M of M.
We will say that (z.,) is completely (resp. null) irreducible if [0+ gnlnen =
[Znlnen for every infinite subset M of N and every sequence (gn) 0 [Znlnen
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with relatively compact range (resp. with lim||g,{| = 0). Finally, we will say
that (z,) is fundamental if [xn]pnen = V.

Note that the trivial sequence x, = 0 ig completely irreducible. A con-
stant sequence is null irreducible. Sequences which are fundamental and
irreducible are also called overfilling in the literature {([9]). It is relatively
easy to find fundamental irreducible sequences, as we note in the following
proposition, which is due to Klee [8]:

PROPOSITION 3.1. Ewery separable guasi-Banach space contains o fun-
damental irreducible sequence.

Proof. The following proof is due to Lyubich (cf. [9]). Let (y,) be any
sequence dense in the unit ball of V. Let z, = 3 5o, 27y, It is casy to
verify that (z,) is irreducible and fundamental.

Note that the sequence constructed in Proposition 3.1 is a null sequence
and therefore has no uniformly separated subsequence.

LEMMA 3.2. Let (z,) be a null irreducible sequence; then (z,) is com-
pletely irreducible if and only if [zn]|nen has trivial dual.

Proof. Suppose first that & = [z,],en has trivial dual. Let (gy,) be any
relatively compact sequence and M any infinite subset of N. Then there is
an infinite subset P of M so that lim,ep g, = ¢ exists. Now

[tn+gn — glnep =FE
and hence [, + gn]nep has codimension at most one in E, so by assumption
coincides with E.
Conversely, suppose ¢ is a nonzero hounded linear functional on E. Fix

4 € F with () = 1. Then [z, ~ ¢(zn )}ulnen is a proper closed subspace of
E; hence (z,,) is not completely irreducible.

Remark. In particular, the only completely irreducible sequence in a
Banach space is the trivial sequence!

In the next section, we will show that the space L, {0, 1] has a fundamental
null irreducible sequence. The following proposition is then immediate.

PROPOSITION 3.3. For each 0 < p < 1, Ly, has o fundamental completely
irreducible sequence.

LeMMA 3.4. Let (z,) be a null irreducible sequence in a quasi-Banach
space V. Then there exists a u € [Tn)nen and a bounded sequence of scalars
(an) 8o that (z,, + anu) is completely irreducible.

Proof Let B = [zp]nen. If B* = {0}, we apply Lemma 3.2 and set
w = 0.1f B 3 {0}, pick any nonzero vector ¢ € E* and let By = ©~1(0). We
will show that Ef = {0}. Indeed, if not then there exists an ¢ & B* which is
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linearly independent of . By elementary compactness considerations there
exist constants ¢1, ¢z not both zero and an infinite subset M of N so that
limy,ep 8(xa) = 0, where 8 = c1¢p - cgtp. But then we can choose (gn )near
30 that limneaz [lgn|| = 0 and 6(z,, + g,,) = 0 for all n € M. This contradicts
null irreducibility of (). Hence B} = {0}.

Pick v € E with ¢(u) =1 and set an, = ~p(z.)u. Then =, + a,u € Ep;
we show this sequence is null irreducible in Ey and hence is completely
irreducible. Suppose g, € £y and lim ||g,, || = 0; suppose also M is an infinite
subset of N, Then the set {u, (25 +anu+ gn)nem } 18 fundamental for F and
80 [y + Gl + gnlnens = Fo, completing the argument.

PROPOSITION 3.5, Lel V', W be quasi-Banach spaces and T : V — W
be a bounded linear operator. Suppose (z,) is o bounded sequence in V' and
M is an infinite subset of N such that limpear ||Tzn| = 0. Then either

(1) limyg s dist{zy,, T71(0)) =0, or
(2) there is an infinile subset P of M so that (zn)nep is uniformly
independent. :

Proof Let B = T10) and let 7 : V — V/E be the quotient map.
We may factor T = Tpw, where Ty : V/E — W. If (1) fails there is an
infinite subset Q of M so that inf,eq |rzn| > 0. Bowever, Ty is one-one
on V/E and so there is a weaker Hausdorff vector topology on V/E for
which limpeq 7@, = 0. (Simply take the inverse image under Tp of the
given topology on W.) By {7, Theorem 4.7} there is an infinite subset P of
@ so that (7z,)neq is strongly regular and M-basic. In particular, (7&n)ncq
is uniformly independent and the same is also true for (zn)neq-

PROPOSITION 3.6, Let V, W be quasi-Banach spaces and T : V ~— W be
a bounded linear operator. Suppose (xn) 16 @ completely irreducible sequence
inV and the set {Tx,, :n &€ M} is relatively compact in W for any infinite
subset M of N. Then Tz, =0 for alln e N.

Proof. It suffices to consider the case when V = [2,]nen. We may pass
to an infinite subset P of M so that imuep T'zyn = y exists. Let F be the
subspace of W generated by y and let o : W — W/F be the quotient map.
Then limpep 172y, = 0 and hence limy,ep dist(z,, T~1F)) = 0. (Note that
since (wy,) is completely irreducible, the second alternative in Proposition 3.5
cannot hold.) Thus we can find (gn)nep with limuep {lgn]| = 0 so that
Zn + gn € T™YF) for all n. By the complete irreducibility of () this
implies that V = T~ (F"} and hence T has at most rank one. By Lemma 3.1
we have V* = {0} and thus T' = 0.

PrRoPOSITION 3.7. Let (xn) be o completely irreducible sequence in
quasi-Banach space V. Suppose (gn) #5 any sequence in V with relatively
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compact range. Then [@nlnen C [Tn + Gnlnem for amy infinite subset M
of N.

Remark The definition of complete irreducibility allows compact per-
turbations of the sequence [Zn]nen-

Proof of Proposition 3.7. Let G = [y + gnlnem and let w1V —
V/G be the quotient map. Then {m(z,):n € M} is relatively compact and
hence 7(z,) = 0 for all n, so that z,, € G for all n.

PROPOSITION 3.8. Let V, W be quasi-Banach spaces and T : V — W
be o bounded linear operator. Then for every completely irreducible sequence
(z,,) in V the sequence (Ten)nen i completely irreducible in W,

Proof. Let Z = [Tzp]nen- Let (gn) be any relatively compact sequence
in Z and let M be any infinite subset of N. Let E = [1'%y, + gnlneam and
let 7 : W — W/E be the quotient map. Then {77z, : n € M} is relatively
compact and so Tz, € E for all n as required.

Remark. Thus any quasi-Banach space V' admitting a bounded linear
operator T' : L, — V with dense range for some 0 < p < 1 has a fundamental
completely irreducible sequence. This class includes all quotients of the Ly
spaces and any separable space on [0, 1] containing some Ly, for 0 < p < 1.

THEOREM 3.9. Let (z,,) be o bounded sequence in a quasi-Banach space V.
Then esther

(1) there is an infinite subset M of N so thal (Zn)nenr 48 uniformly
independent, or

(2) there is a sequence (gn) with relatively compoct range and an infinite
subset M of N s0 that (Zn + gn)nenm s completely irreducible.

Proof. We will assume the negation of (1) and prove (2), by transfinite
induction. Let wy be the first uncountable ordinal. For every o < w; we
will define an infinite subset M, C N and a sequence (g7) in V so that
lity o0 |9, = 0. For & < wy and n € N let M,,, = {m € M, : m 2 n}
and Eq,n = [Em+gmlmeMa - We also let By, = (), .y Eon. The construction
will be carried so that if @ < 3, then for some n we have both Mg, € Maxn
and Egr € Eqk, whenever k 2> n.

To start the induction let My = N and g} = 0 for all n. Suppose o+ 1
is a nonlimit ordinal and that M., (g3) have already been determined. In
this case, if possible, we pick an infinite subset M,.1 of M, and a se-
quence (hnlnew with by & By, and limg ||Aa] = 0, so that if we set
gotl = g2 ¢ hy,, then FE,1 is strictly contained in E,. If this is not pos-
sible, we simply set Maq1 = My and g&t = g% for all n. It is easy to
verify that if (Mg, (92))s<a satisfies the inductive hypotheses then so does
(Mg, (95)) p<at1-
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Now suppose ¢ is a limit ordinal, so that o = sup,, ¢y O, where (B )pen is
a strictly increasing sequence. We will define a sequence (m,, )32, of positive
integers inductively. Pick mi € Mp, so that ||g% || < 1. For each n, we
may choose m, € My, so large that m, > mup_1, |gm. || < 27", and
Mg, G Mg, s and Eg, ., C Ep, ; whenever 1 <k <n-1andj > mp.
Now set My = {my :n €N}, g8 =g and gn =0ifn & M.

It is easy to sec that for each n and k& > n we have my, € M, and
hence that if v <« then there exists n so that My, C M, ... Furthermore,
it k 2 n then zwm, + gf € Bamy € Egom, € Ea, m, Hence if k > m,,
we have Fny © Eg, k. It follows that if v < ¢ then for some n, we have
Eax € Ey i whenever & 2 n. This completes the inductive construction.

To cend the proof, we observe that (Ey)acw, 18 a decreasing family of
closed subspaces of a separable quasi-Banach space. Hence, by Lindeldf’s
Theorem, there is a countable ordinal € so that Fg = E,, for all o > 8. Let
M = Mp and g, = g%, Let F, = Eno and F = Ej,

We consider the quotient maps m, : V — V/F, and construct a linear
map T : V' — &(V/F,) by setting Te = (27"%,2)5%;. Then we have
limy, g aq T (24 gn) = 0, 80 that lim T, = 0. By Proposition 3.5 we conclude
that limpens dist(ey, F) = 0. It follows that we can pick a null sequence
(hn )2, 80 that @y, - by € F for all n € M. We argue that (z,, -+ An)nen 18
null irreducible. In fact, if f,, € F and lim || f,|| = 0, then hp + fr, — gn € Fy
for all n and so the inductive construction and properties of & guarantee
that for every infinite subset P of M we bave (€ + hn + fulnep 2 F.

Finally, by Lemma 3.4 we can find a v € F and a bounded sequence of
scalars (ay,) g0 that (z, + An + GpU)ness is completely irreducible.

THROREM 3.10, Let V be a separeble infinite-dimensional quasi-Banach
space. Then the following conditions on V are equivalent:

(1) V contains a bounded uniformly separated sequence with no uniformly
independent subsequence.

(2) V contains a uniformly separoted irreducible sequence.

(3) V containa o nontrivial completely irreducible sequence.

(4) V contains a fundamental uniformly separated irreducible sequence.

Proof. First we prove (1)=>(3). If () is uniformly separated and has no
uniformly independent subsequence, by 3.9 we may find a relatively compact
sequence {g,) and an infinite subset M so that (Zy + gn)nen is completely
irrecucible, We claim that [, -+ gnnear has noncompact range; indeed, if
not, the compactness of the range of (g,) would imply that (z,) has compact
range, contradicting uniform separation.

We note that (4)=>(2) and (2)=>(1) are trivial. It remains to prove
(3)=>(4). Suppose (2,,) is a nontrivial completely irreducible sequence. Let



94 C.W. Henson et al.

E = [zp]nen. Consider the quotient space V/E. It contains a fundamen-
tal irreducible sequence and so we may pick (y,) € V so that (ry,) is
fundamental and irreducible in V/E (if E = V, then y, = 0 for all n).
Now we show that (z, + 27"y, ) is irreducible and fundamental for V. In
fact, [£n + 27 ™"Yn]near contains E for any infinite subset M of N by Propo-
sition 3.7 and [7{zn + 27 "Ynlnemw = V/E by the choice of (y,). Hence
[y, + 27" Ynlner = V. ‘

It remains to argue that (x, + 2™ "y,,) has a uniformly separated subse-
quence. If this is not the case then its range is compact, and so is the range
of (z,); but this makes (2,) the trivial completely irreducible sequence, i.e.
&n =0 for all n.

4. The quasinormed case—the counterexample. In this section we
construct a uniformly separated sequence with no uniformly independent
subsequence. For this sequence, the second alternative in Theorem 3.9 must
hold; in fact, more is true {see the statement of Theorem 4.2),

Let (Ny,)72 be the sequence of natural numbers defined by

log, logs loge Ny, = 0,
Let x be the constantly one function on the interval [0, 1].

LEMMA 4.1, Suppose 0 < p < 1. Let A be an infinite subset of the
naturol numbers. Then there is o sequence (6,)52., of independent identically
distributed (4.i.d.) positive random variables in L, = L,[0,1] and o constant
K = K(A) such thot the following conditions hold:

(1) for any m > 2 we hove
IS8 < &mtam,
k=1 T
(2) ifn & A and m < N, then
T
H kglékﬂp < KN, In Ny,
(8) if n € A, then

| %&n = (Nl )| < KNy N
k=1

Proof. Let ({,) be a sequence of independent random variables on 0, 1]
with common distribution given by the density function o2 X{z»1}- For any
ke, let

£4(t) = {Ck (t) if Npoy < Ce(t) < N, for some n e A,
1 otherwise.
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Obviously, (€) i8 1.i.d. Let £ = £(¢) be any function on [0,1] which has the
distribution of ;.

The estimate (1) is immediate. The sequence (£) is uniforraly bounded

in weak Ly, which is logconvex ([6], [13]): since for a suitable constant D we

have |||, < DI f|l1,00 the conclusion follows.
We now use Theorem 1 of [5]. For z > 0, let

(@) = Smin(wzﬁz, zPEP) dt
and, for all real x,

th(z) = s x€ dt.

l=£]<1

Thus 9 is an odd function (note: in [5] the definition of ¥ is inadvertently
restricted to positive z). Then there is a constant Cg so that for any finitely
nonzero sequence (ay)7e, and any real b we have

Jox = S auti] < Colle+ £l + ).
LESH

where [|aj|, is the (quasi)norm in the Orlicz space £, and

Fla) =, 3w -2 ).
(@)= lalle ) (7o)

It is easy to estimate that if 0 < & < 1 then 2?2 < ¢(z) < cz for a suitable
constant ¢. Therefore [[a|s < [all, < Cilla|ly for all a € cgo.

Suppose n & A. Then if C7 N7 < ¢ < N /2, we have
W(8) < 400 Ny +1In Cy).

Hence if m < N, then
"
13- ¢ < Colta Ny +10.01+ Ci)N,
k=] ¥

vielding our second estimate.
If n € 4 note that o(N;*) = N3Ny — Np-t) = (2N,)"'. Since
p{tz) 2 tPx for t > 1, we obtain, for the basis vectors (ey) in £,

Ny,
ol e
k=1 ¥

Now if C7iIN <t < 2zl/f’N;1, we get the estimate
In{Ny /24F) ~ In Ny € ¢0(8)/t < InC1N,,
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and hence
Nn

‘F(; ek) ~ Nyl NV,

and this yields our third estimate.

THEOREM 4.2. For each 0 < p < 1 there 48 a uniformly seporated
sequence of positive functions (fn)ney 1 Ly such that for any infinile subset
M of N and any sequence (g,)%%; with lim |[gn|lp = 0 we have [fo -+ gnlnem
=L,.

Proof. Let (A;}52, be a partition of the natural munbers into couutably
many infinite sets. For each 7 there exists a sequence of Lid, pusitive random,
variables (£;)52,, with the properties of Lemma 4.1, i.c. such that for some
constant C; we have:

(L) 1€kl < Cy;
(2) if n > 2 and m < n, then

m
HZgij < Cinlun,
k=1 P

(8)if n g A; and m < N, then

< CZNn In an 1

H kiéjk“p < CiNyIn N,y
w=l

(4} if n € A;, then
Ny

H Z‘Eﬂc - Nn. lnNn.XHp < OjNﬂ n N‘n-ml-
k=1

Pick any &, > 0 so that Cfe} < §. Let § = &]|é ~ &uzllp > 0. We
now pick e; > 0 for 7 > 2 so that we have both Doim1 ChE] < 3 and
g O} < 367,

Now pick any p < r < 1. We define functions ()%, as follows. Let
hy = 2"3/3’5)(; then if 2" < k < 2% o | for n > 1, let

B = 2"/""“3/’°5X[k/zn-q.,(k-f-l)/zm1]-
Thus |||, = 273/, and in general ||y, = 2-3/pg9(1/7~1/P) ywhen 2 <
ko< antl

We now define positive isometric embeddings T} : L, - L, and positive
functionf_; (fi)32 by induction. We set Ty = [ and f = g6, +hy. I (Ta')‘;;:i
and ( fi)j';ll have been defined, we let Tj be a positive isometric embedding
with T3 ([ fi-1llpx) = fi-1. Let f3 = 520 eiTiéyy + hy.
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Notice first that | fjllp, < (||k;]'8 —f—Zle CPeP) /P < 1 for all j. Secondly,

g Up 1
1y —extuglly < (sl + 3o 0Fed) " <amvies
i=2
Hence if § # &,
. 1
If5 = felip 2 55-

Thus the sequence (f;) is uniformly separated.
Now let £ be any finite subset of N, Let v = min E, v = max F and set
w = |B|; suppose w > 1. We firgt note that:

k v
(5) Z Jr = Z ZEiTiEik + Z hie = ZEiTi( z fik) + Z R

kel WEE iml kEE i=1 i<he B kEE
We first use (5) to prove that [fnlnen = Lp. Using estimate (2) we have

H Z Eir|| < Ciwlnw.
igkelm T
Hence
” ka - Z hk” < wlnw.
kCE kep ¥

Let D be any dyadic interval of length 2~™. If m > n there is a subset E,,
of {2m,2M 4 1,...,2™F! — 1} such that |Ey,| = 2™" and also such that

Xp = 2%/P67127 T N " g
k€ B,
Hence
HXD — 28/pg=1g—m/r 2 fk” < 282671 (In2)2™" ™" (m —n).
K€Bm T

If we let m — oo, since r < 1, we obtain xp € [fnlnen, and 80 [fu]nen == Lyp.

To complete the proof we show that for any j, any null sequence {g-)
and any infinite subset M of N we have f; € [fn + gnlnen = Y, say. First
let oy = max{||gn|lp : n = u}, for u € N, s0 that limy—co 0w = 0. We return
to (5) and now suppose that B is any subset of M N {j + 1,7 +2,...} with
w = |E| = N,, where n € Ay;1. We suppose that | = |logyu]. Then if
k € E we can estimate ||hyl, < 273/7621/7"1/P and hence

| S m| coermsmaintene,
keg ¥
Now for each 1 < ¢ < v, with 4 # 7 + 1 we can estimate

| 3 | <CNamN.
i<keE »
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However,

H Z §j+1,k: —_ (Nn lIan)XH < Oj-pan In Nn,ml.
keE F
Combining these estimates gives

| S 5 sl Bl @ M) || S (Naln o )P 4270622000y,
ke E
We also have
|55, 5 e
ke "
We can choose E to be a subset of M with » and hence [ arbitrarily large.

Then

p o In Nn-wl
dist(/;,¥) < 5yl sl YA

However, In V,, = 22" In 2 and this estiaate holds for auy n € Ay, 80 that
fi €Y, as required.

5. Nonstandard consequences. Theorem 2.1 also has some conse-
quences for the theory of nonstandard topological vector spaces, solving a
problem posed in an earlier paper by J. Néter, P. Pulinanu and the last au-
thor [10], formulated, however, in the language of the alternative set theory
(AST). A more direct proof, using the model-theoretical method of indis-
cernibles in AST, was given in [4].

In the sequel it is assuwmed that we are working inside an Ny-saturated
nonstandard universe and V is an internal vectar space over an internal fleld
Fe {*Q, *R, *C}, with IF denoting the monad of infinitesimals and BF the
galaxy of bounded (finitely large) elements in I, determining its topology.
Similarly, the topology on V' is also given by a pair of (in general external)
setg—M, called the monad of 0, and @, called the galaxy of 0, subject to
the following conditions:

leMCGEQV,
MAMGQM, G+ G e da,
B M C M, e & e M, BF-GCJ
~=cf. [3], [12]. Following the latter reforence, the triple (V) M,G) will be
called a biequivalence vector space if in addition M is I{-set (ie. the inter-
section of countably many internal sets) and ¢ is a £P-sct (i.e. the union of
countably many internal sets).
Asget A CVin (V,M,G) will be called separated if @ -y ¢ M for

any distinct z,y € A. A will be called pseudocompact if every hyperfinite

separated set H C A is finite.

e
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Aset ACVin (V, M,G) will be called independent if ANM = @ and for
every internal linear combination ) .. ¥(z)x, where H is any hyperfinite
(possibly infinite) subset of A and v : H — F is any internal function, from
Secx Y@z € M it follows that y(x)z € M for each z € H. The set A will
be called dimensionally compact if every hyperfinite independent set H C A
is finite.

As every independent set A C V is obviously separated, every pseu-
docompact set in (V, M, ) is dimensionally compact. The trivial example
{iz:1 <4<k}, where k € *N\ Nand = € V' \ M, shows that the reversed
implication does not hold {except in the degenerate case V = M). The ques-
tion is whether such a countercxample can entirely lie within the galaxy G.
For biequivalence vector spaces this is excluded by our last result.

TuEorEM 5.1. Let (V,M,G) be a biequivalence vector space. Then any
infinite hyperfinite separated set H C G contains an infinite hyperfinite
independent subset. Consequently, o set A C G is dimensionally compact if
and only if it s pseudocompact.

Proof In [12] an argument similar to the proof of the already quoted
Acki-Rolewicz Theorem ([1], [7], [11]) is given to prove that there are a
noninfinitesimal p € *R, 0 < p £ 1, and an internal p-norm || - | : W — *R,
where W is an internal linear subspace of V', such that G € W and

M={zeW: |2 "R}, G={ccW:|z|eBR}

(Strictly speaking, the internal p-norm will only be a pseudo p-norm, in the
sense that the internal subspace Wy = {z € W : ||z|| = 0} of V need not be
{0}. However, since Wy € M, this causes no problems.)

Due to the Ry-saturation of the nonstandard model, there are standard
positive numbers K € N and ¢ € Q@ such that H is both K-bounded and
e-separated. Choose any standard § € , 0 < § < g/2'/7. As the num-
ber of elements (internal cardinality) of H is bigger than each n € N, by
Theorem 2.1 there is an m-element 6-independent subset Yy, C H, for each
m € N. Using the Ny-saturation again, we obtain an infinite hyperfinite
-independent subset ¥ C H. The rest is trivial,
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