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Convergence of conditional expectations
for unbounded closed convex random sets

by

CHARLES CASTAING (Montpellier), FATIMA EZZAKI (Rabat)
and CHRISTIAN HESS (Paris)

Abstract. We discuss here several types of convergence of conditional expectations
for unbounded closed convex random sets of the form B~ X, where (Bnr) is a decreasing
sequence of sub-o-algebras and (Xy) is a sequence of closed convex random sets in a
separable Banach space.

1. Introduction. The Mosco convergence of sequences of sets or func-
tions is known to be a useful tool in the approximation of optimization
problems and variational inequalities (see e.g. [A, Mo, We]). Often these
problems are considered in the presence of a parameter w whose value de-
pends on the outcome of a random experiment.

The present paper precisely concerns Mosco convergence in such a sto-
chastic context. Indeed, our main contribution consists in the study of almost
sure Mosco convergence for sequences of random sets of the form EB~X,,
where (By,)n>1 is a decreasing sequence of sub-o-algebras and (X,,) a se-
quence of Banach-valued closed convex random sets (recall that a random
set is a random variable whose values are subsets of some given space).

It is worthwhile to observe that, even for real-valued random variables,
results of such kind are not completely standard. That is why we provide
a short and self-contained treatment of the problem in this special case (in
Section 4.A). This is done in the same spirit as in the papers by Szynal and
Zigba [SZ] and by Zigba [Zi].

On the other hand, we stress the fact that the values of the random sets
we deal with are not assumed to be bounded. So, specific results borrowed
from [Hel, 2] are needed; they are recalled in Section: 3 for convenience. Qur
main results and their proofs are presented in Sections 4.B and 4.C.

1991 Mathematics Subject Classification: 28820, 564D35, 62F12, 62H12.
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We have mentioned above that our results are valid for random sets
with unbounded values. This allows us to deduce, in Section 5, a property
concerning Mosco epi-convergence of sequences of integrands.

Our results can be seen as extensions of previous results of Hiai [Hi2]
and Hess [He2], where the sequence (B,) was constant (i.e. B, = B). They
also provide variants of the results of Couvreux {Co| where the random sets
X, are equal to a fixed random set X.

2. Notations and definitions. Throughout this paper, (2, F, P) de-
notes an abstract probability space, (Bn)n>1 is a decreasing sequence of
sub-c-algebras of F and By = (),>1 Bn-

Let E be a separable Banach space with dual space E*. For each C C E,
c C, w-c1C and T6C denote the norm closure, the weak closure, and the
closed convez hull of C, respectively; the distance function d(-,C) and the
support function 6%(-, C) of C' are defined by

d(z,C) =inflllz —yl| :y € C], =z€E,

and
§*(z*,C) = sup{(z™,z) 1z € C], z"eE".

Let ¢(E) (resp. cc(E), cwk(E)) be the family of all nonempty closed
(resp. closed convex, convex weakly compact) subsets of E. Let Lwc(E) be
the family of nonempty closed convex weakly locally compact subsets of &
which contain no line. Let C € cc(¥) and zo € C. Recall that the asympiotic
cone of C is the greatest convex cone I" such that zg +I" C C. This cone,
which does not depend on zg, is denoted by As(C'). We also have

As(C) = [ #(C = z0),
. >0
and As(C) is the polar cone of dom 6*(-, C) = {z* € B* : §*(z*,C) < oo}.
In the present paper, we shall use a notion of convergence for sequences

of subsets which has been introduced by Mosco [Mo] and which is related
to that of Kuratowski. Let ¢ be a topology on B and (Cy,)n>1 & sequence in
c(E). We put

t-iCp, ={z € F:z=tlimz,, 2, € Cp, ¥n > 1},

t-1sCp = {z € E: z=tlimzy, oy € Crpy, Yk > 1},
where {Cp(ry Jk>1 I8 a subsequence of (Cy). The subsets t-1i C, and t-IsCy,
are the lower limit and the upper limit of (C,), relative to the topology t.

We obviously have t-liC, C t-ls Cp. A sequence (C,,) is said to converge to
Co in the sense of Kuratowski relative to the topology t if

t-ls Oy = -l Cp, = Cwp.
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In this case, we shall write Coc = M-lim,, C,,; this is true if and only if
t18Ch C Cow C 1T,

Let us denote by s (resp. w) the strong (resp. weak) topology of E. A
subset C is said to be the Mosco limit of the sequence (Cr)nz>1 (denoted
by M-lim,, C},) if -

Coo =8-1Ch = w-ls C),,
which is true if and only if

w-ls Cly, C Cop C 8-li Gy,

The corresponding definitions of pointwise convergence and almost sure con-
vergence for a sequence (X,,) of multifunctions defined on 2 are clear. In
fact, in the above definitions, it suffices to replace C, by X, (w) and Cu by
Xoo(w) for all w € £2 (or for almost every w).

Concerning the Mosco convergence, we refer to Mosco [Mo], Wets [We],
and Attouch [A]. In the present paper, N* denotes the set of strictly posi-
tive integers, and R (resp. R") the set of real numbers (resp. positive real
numbers).

A closed-valued multifunction X, i.e., a map from 2 to c(E), is said to
be measurable if, for every open subset U of E, the subset

X U={we2:X(w)nU # 0}

belongs to F. A measurable multifunction is also called a random set. A
function f from {2 to E is said to be a selection of X if, for any w in 2,
flw) € X(w). A Castaing representation of X is a sequence (f,)n»1 of
measurable selections of X such that for all w, X(w) = cl{fa(w) : n > 1}.
It is known ([CV], Theorem II1.9) that a closed-valued multifunction X is
meagurable if and only if it has a Castaing representation, or if and only if
the real function d(z, X ()) is measurable for all = in E. Further, the Effros
o-field € on c(E) is generated by the subsets

U™ = {FecB): FNU # 0}

where 7 is an open subset in E. Then a multifunction I' : 2 — ¢(F)
is measurable if and only if, for any B € £, one has I'"Y(B) ¢ F. Let
LMR,F,P,E) = L'({2, E) denote the Banach space of (equivalence classes
of) measurable functions f from 2 to & such that
I17]ls = BIfF = §ilf ()] P(dw)
o]
is finite. For any F-measurable random set X, we put

SL(F) = {f € IND, B) : f(w) € X(w)as),
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which is a closed subset of L1(f2, E) and is nonempty if and only if the real
function d(0, X(-}) is in L*(12,R). In this case, we shall say that the random
set X is integrable. On the other hand, a random set X is said to be strongly
integrable or integrably bounded if the function | X (-)| is in L' where | X ()| is
defined for all w in £2 by | X (w)| = sup{||z| : z € X(w)}. Given a sub-o-field
B of F, and an F-measurable integrable random set X, Hiai and Urnegaki
([HU]) showed the existence of a B-measurable random set G such that

S&(B) = {EPf : f e S (F)},

the closure being taken in L'(£2, E). Such a random set G is the multivalued
conditional ezpectation of X relative to B and is denoted by EBX.

3. Preliminaries. Throughout this section, E* is assumed to be en-
dowed with the Mackey topology and D* denotes a countable dense subset of
E*. We begin with the following proposition concerning the basic algebraic
properties of the multivalued conditional expectation which are borrowed
from [Hil] (see also [HU] for the integrably bounded case).

ProrosiTiON 3.1. If F and G are two integrable random sets with closed
values in B, and B is a sub-c-algebra of F, then

(a) EB(F + G) = cl|[EBF + E8G] a.s.

(b) If ris a real B-measurable function such that rF is integrable, then

EP(rFY=rEPF a.s.
(c) If g is o bounded scalarly B-measurable function from 2 to E*, then
6 (g, EBF) = EB§* (g, F) a.s.

In perticular, §*(z*, EPF) = EB§*(z*, F) a.s. for every z* € E*.

(d) E¥c6F = @ EBF a.s.

(e) Let F' be B-measurable, with values in cc(E), and r an F-measurable
positive function such that rF is integrable; then

EP(rFy=EB(r)F a.s.
In particular, BBF = F a.s.

As mentioned in the introduction we also need some specific results al-
lowing us to deal with random sets whose values are closed convex, but not
necessarily bounded. They are due to Hess [Hel, 2] and are briefly recalled
for convenience. The next result will enable us to state our multivalued
version of the dominated convergence theorem in a more general situation:
only the majorization by Be-measurable multifunctions will be required,
instead of the majorization by constant ones. It can be seen as a measurable

parametrization of Lemma 3.3 below and it provides a tool which may be
useful in other circumstances,
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PROPOSITION 3.2. Let F be an F-measurable and integrable random set
with values in Lwe(E). Then there exists a sequence (g7)k>1 of measurable
functions from £2 into D* satisfying:

(1) For every w € {2, the sequence (gi(w))i>1 is a dense subset of
int dom &* (-, F(w)).

(ii) For every k > 1, the real-valued measurable function 6*(g3(-), F(-))
is integrable and sup{||gi(w)| : w € 2} is finite.

Proof. [He2], Proposition 3.4.

LEMMA 3.3, Let C € ¢(E), L € Lwe{E), and M* = domé*(-,L). Then
the following two statements are equivalent:

(a) C is contained in L.
(b) 8*(z*,C) < 8*(z*, L) for every «* € D* Nint M*.
Proof. [He2], Lemma 3.1.
LEMMA 3.4. (a) If (Cn) is a sequence in c(E), then
ve* e B,  §"(z*, w-1s Cp) < limsup §*(z*, Cn).

{b) Moreover, if L is an element of Lwe(E) which contains all the Cp,
then

vz* € intdom &* (-, L), limsup§*(z*,Cn) < 8*(z",%0(w-1s C)).

N—+OO

Proof. [He2], Lemma 3.2.

We close this section with a useful lemma concerning the asymptotic
cones of closed convex sets, which will help us to take into account the
unboundedness of the random set in the proof of our main result on conver-
gence of conditional expectations.

PrOPOSITION 3.5. Let (Cy) be a sequence in cc(E) such that w-1iCy, is
nonempty. Then
w-1s As{C,) C As(To(w-1s Cp}).
Proof. [He2), Lemma 3.6.

4.A. Convergence of conditional expectations for sequences of
real-valued random variables. We present convergence results for special
sequences of real-valued random variables (r.v. for short). These sequences
are of the type E5" X,,, where (B,.) is a decreasing sequence of sub-o-algebras
of F and {X,) a sequence of r.v. We shall provide extensions of Fatou’s
lemma and Lebesgue’s dominated convergence theorem for such sequences.
For this purpose, three preparatory results will be needed. We begin by a
known simple lemma whose proof is recalled for convenience (see e.g. Lemma
ITI-4 in [Co]). '
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LEMMA 4.1. Let ¥ be a positive r.v., that is, with values in [0, 0], and
B o sub-o-algebra of 7. Then
(4.1.1) {we 2: (BBY)(w) <o} C{we2:Y(w) < x} as
More generally, if C and D are two sub-o-algebras of F such thatC C D,
then
(41.2) {weR:(EY)(w) <o} C{we f2: (EPY)(w) < oo}  as.
Proof. Denote by A the lefi-hand side of (4.1.1) and define, for each
integer k > 1, the B-measurable subset Ay by setting
Ay = {w e 2: (BPY)(v) < k}.
Clearly A is the union of the sequence (A) and we have
| vap= | BPY dP < kP(4y).
Ay A
Consequently, for every k > 1, there exists a P-negligible subset Ny, con-
tained in Ay, and such that ¥ {w) < oo for each w € Ag\ Vi. Clearly, we have
Y(w) < co a.s. on g (Ae \ Ni). Set N = Ukz1 Nie- So. N is a negligible
set and
AN = A\ N) € 4\ ).
k1 k21
The proof of (4.1.2) follows easily. m

The following lemma is a slight extension of Lebesgue’s monotone con-
vergence theorem for the conditional expectation.

LEMMA 4.2, Let B be a fived sub-o-field of F and (Xn)n>1 o decreas-
ing sequence of extended real-valued random variables. Also define X :=
infn>1 X, and assume that

(4.2.1) EBX[ is as. finite (*).

Then

(4.2.2) EfX = inf EBX, = lim E®X,.
n>1 n—oa

Proof. The inequality
(4.2.3) E®X < inf ERX,
n>1
is clear. In order to show the opposite inequality consider, for any fixed
integer k > 1, the following member of B:

By :i={we 2: (EBX1)(w) <k},

(*) In the classical version of this result BZ X is assumed to be integrable.
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and note that integration of X3 over By leads to
| B5X, dP < kP(By).
By,

This shows that, provided the integration is restricted to By, the classi-

cal monotone convergence theorem for conditional expectations applies and
yields the equality

inf (B7Xn)(w) = (B® inf Xx)(w)

almost surely for w € By. Thus, by (4.2.3) we have,
B s B
(B°X)(w) = lnf (B°Xn)(w)

almost surely for w € Bg. The proof is completed by noting that, due to
(4.2.1), 12 is a.s. equal to the union over k of the By. =

The following lemma extends Lemma 4.2 to the case where the sub-o-
field B depends on n. It can be observed that the claim at the beginaning of
the proof is an easy improvement of Corcllary V.3.12 of [Ne].

LemMA 4.3. Let (Bn)n>1 be a nonincreusing sequence of sub-o-fields
of F and (X,)} a nonincreasing sequence of extended real-valued random
variables. Also define the sub-o-field Bo, and the random variable X, by

B = ﬂ B, and Xeo(w):= ;I)lg Xn(w)
n>1 -

and assume that

(4.3.1) EB= X is almost surely finite.
Then
(4.3.2) BB X, = nllm EBX,  almost surely.

Proof. First, we claim that (4.3.2) holds in the special case where the
sequence (X,,) is constant, that is, X, = X for every n > 1. Applying
Corollary V.3.12 of [Ne] to X~ and X+ we obtain
(4.3.3) EB= X~ = lim EfX~, EP=X*= lim E®»Xt as.

==+ 0O =0

Further, we observe that, due to (4.3.1), the r.v.
EBe X = EBe Xt - FBe X~

is well defined (but it can take the value —oc) and that Lemma 4.1 implies,
for every n > 1, the a.s. finiteness of EP»XT. In turn this implies that
EBnX = EBr Xt — EBrX~ is well defined and allows us to deduce the
claim from (4.3.3).
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Now, let us prove (4.3.2) in full generality. First, using the claim and the
monotonicity hypothesis on (X,) we get
liminf BB+ X,, > lim inf B®* Xo = EP* Xe.

Tl 0O =00
Similarly, for every fixed integer k > 1, we have
{(4.3.4) lim sup B% X, < limsup BB X, = EB= X,
n—00 n—0Q
The proof is easily finished by letting & go to infinity on the right-hand side
of (4.3.4) and applying Lemma 4.2, which is possible by condition (4.3.1). m

As already mentioned, the following result and its corollary are the main
results of this section. They are extensions of the classical Fatou lemma and
the Lebesgue dominated convergence theorem for conditional expectations
to the case where both the r.v. X, and the g-algebras B,, depend on n.

THEOREM 4.4. If Y is a positive r.v. such that

(4.4.1) EP=Y <o as
and (X,) is o sequence of r.v. satisfying

(4.4.2) X, <Y as ¥n>1,
then

lim sup EB X, < FPlim sup X, a.s.

ki Sande ] L R e o]
Proof. Apply Lemma 4.3 to the r.v.
Zn=sup Xy and Z:=limsup Z, = inf Z,.
k>xn T—+00 n>l
This yields
EBe7 = inf EPZ, > limsup E®~ X,,. u
nzl n—tec

COROLLARY 4.5. If Y is a positive r.v. satisfying (4.4.1) and (X5) a
sequence of r.v. salisfying

(*) Vne N, |X, <Y as,

(%) lim X, =X  a.s,
00

then

lim EB~X, = EP~X, a.s.

TL—r 00
Remark. (1) Corollary 4.5 holds true if (X,) is a sequence of r.v. in
LM, E) satisfying
(1) Vn € N, || X, (w)f] € Y(w) as.,
(ii) X, converges almost surely to an integrable function Xeo.
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This follows easily from Corollary 4.5 and a result due to Choukairi ({Ch],
Lemme 3.1, p. 52).

(2) Similar results were obtained by the second author ([Ezl], [Ez2]) in
the case when the sequence of sub-o-algebras B, is increasing and where
B, is defined by By := (| J,;51 Bn)- In this situation (4.4.1) is replaced by
EB1Y < oo and the proofs are based on martingale techniques in [Ne].

4.B. Fatou’s lemma for random sets. We present a Fatou lemma
for the conditional expectation of the strong lower limit of a sequence of
unbounded random sets which is a generalization of a result due to Hiai
([Hi2], Theorem 2.3).

THEOREM 4.6. Let Z be a positive random varicble such that EB~Z
is finite almost surely. Let E be o separable Banach space and (Xn)nen
a sequence of integrable closed convex random sets such that, for all n €
N*,d(0,X,) € Z a.s. Set Xoo = 8-1i Xy, and assume that X is integruble.
Then

EB=X, CslEPX, as.
Proof. Set Y = max{Z,d(0, Xos)}. We still have E%=Y < co a.s. Let
f € 8&_(F). For each n € N* and each w € £2, set
Gn(w) = {z € Xn(w) : |f(w) ~ 2] £ d(f(w), Xn(w)) +1/n}.
Tt is clear that G, is a multifunction from (2 to cc(E) such that Gr(G.) €
F ® B(E). We have
d(0, Gn(w)) < d(0, f(w)) + d(f{w), Gn(w))
< W) + d(f (@), Xn(w)) +1/n
< 2l f(w)l| +d(0, Xn(w)) +1/n.
Since X, is an integrable multifunction, d{0, X,,(-}) is an integrable positive
function. Hence the above inequalities show that d(0, Gu(-)) is integrable,
which implies S% (F) # 0. Let f» be an integrable selection of Gy Then
[ £(w) = falw)l] € d(F (W), Xn(w)) + 1/n £ [|f (@)} +d(0, Xn(w)) +1/n
< |f@)l +Y + 1.
Hence we have
(4.6.1) [fal)l S 20f @ +Y +1  as.
Since Xoo(-) = s-li X,,(-) a.8. and || f(w) — fulw)il £ d{ f(w), Xn{w)) +1/n,

we get
(462)  lim [[f(w)— fa@) < Jim (), Xa(w)) +1/m) = 0.
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From (4.6.1), (4.6.2) and Corollary 4.5, it follows that
lim E% f,(w) = BP=flw) as.

Since BB f,(w) € (BB X, )(w) a.s., we obtain
BB f(w) € s-li (B2 X, )(w)  as.

Let g € Shp..x, (Boo). There exists a sequence (9i)iz1 in 8k _ (Boo) such
that EB=g; — g as. Set F(w) = s-li (B®» Xy )(w). From what has already
been proved, we deduce that for each 7 = 1, BB gi(w) € F(w) as. Since
F(w) is closed in E, we get g(w) € F(w) as. Let {An)nz1 be a Castaing
vepresentation of Ef= X, in Shs,, %, (Boo). Then hnw) € F(w) a.s. for all
n > 1. Therefore we have

(B X,0)(w) C s-li (B Xo)(w) as. w

4.C. Dominated convergence theorem for unbounded random
sets. We are now in a position to state a version of Lebesgue’s dominated
convergence theorem for a sequence of random sets whose values are not
assumed to be bounded. Here, the domination condition is expressed by the
inclusion of the random sets X, in a suitable fixed random set.

THEOREM 4.7. Let E be o separable Banach space. Let H be a Byo-
measurable and integrable random set with values in Lwc(E). Let Y1 and Yy
be positive random variables satisfying (4.4.1). Let Xoo be a random varieble
in cc(E) and (Xn)new be a sequence of integrable random sets in cc(E).
Assume the following conditions are satisfied:

(i} ¥n € N*, d(0, X,) £ 11 a5,

(i) Vn € N*, X, C G+ Yy H a.5. where G is an integrably bounded
random set with values in cwk(E).

Also assume the following hypotheses:

(i) M-limp— oo Xn = Xoo 6.9,

©(iv) As(H) C w-ls As(X) as.,

{(v) the random set Yy - H is indegrable,

(vi) the random set X is integrable.
Under the foregoing conditions we have:

(a) d(0, X) <Y1 a8,

(b} Xeo CG+Y2 - H as,

(c) EP* Xy, = M-limy oo EP* X, a5,

Proof. According to Proposition 6.4.8 of [He3], condition (jii) implies
that for every z € E,

(4.7.1) d(r, Xoo) = lm d(z, X,) as.
fi—0o
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Thus, by (i) we get (a). Inclusion (b) is an easy consequence of (ii) and
(4.7.1). Now let us prove equality (c). This will be done in four steps.

Step 1. Let E* be the dual space of E endowed with the Mackey topology,
and D* a countable dense subset of E*. By Proposition 3.2 there exists a
sequence (gx) of Boo-measurable functions from (2 into D* satisfying:

(%) for every w € £2, {g}(w) : k > 1} is dense in int dom 6*(:, H (w)),
(x%) for every k = 1, the real-valued B.,-meagurable function §*(g}, H)
is integrable and sup{g;(w) :w € 2} < oco.
By (ii) for every k > 1 and n € N*, we have
@12) Sl X)) SCELO) T 8L H) as

Set Zx == |6* (g5, G)| + Y2|6* (g, H)|. Then by (4.7.2), we have §*(gf, X») <
7y as. It is clear that the Zj so defined is a positive random variable.
Moreover, since the random set H and the functions gi are Boo-measurable,
it is not difficult to check that

(4.7.3) EB=7, < oo as Yk=>1
Step 2. Now we are going to prove that for every k € N*, we have
(4.7.4) §*(gf, w-ls P~ X)) < 6*(g}, BP>Xo)  as.
Let k be fixed in N*. By Lemma 3.4(b) and Proposition 3.1(c), we can write
&* (g}, w-1s BB~ X,) < limsup 6*(gx, EB X))

N—r 02
= limsup B2 6*(gt, Xn) as.
=0
By inequality (4.7.4) it is possible to apply Theorem 4.4 to the sequence
(6* (g%, Xn))n>1, which gives

(4.7.5) lim sup EB~6* (g5, Xn) < EP> imsup 6*(g5, Xn) as.
M0 —+0Q :
So we have
(4.7.6) & (g, w-ls B X,) < EP= lim sup §*(gl, Xn)  as.
n—

Also observe that inclusion (if) allows us to apply Lemma 3.4(b), for almost
all w € 2, which by (iii) entails

(4.7.7) lim sup 6* (g}, Xn) < 6* (g5, w-ls Xn) = 87 (5, X0)-
=+ 00
Then taking the conditional expectation in (4.7.7) with respect to Beo, and
invoking Proposition 3.1(c) we get
BB Timsup 5 (g}, Xn) < B=6" (g5 Xoo) = 8" (g1, EP=Xo0) a5

TE—+ 00

Returning to (4.7.5) yields the desired conclusion.
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Step 3. In this step we shall show that (4.7.4) implies w-Is EP» X, C
EB= X, a.s. By hypothesis (v) the random set Y3-H is integrable. Moreover,
from (b) we know that

X CG+Y;-H as.
Hence, by Proposition 3.1{{a), (e}),
BB X, CEP=~(G+Y;-H)=EP=GQ+ FP~Y, H as.

Since G is integrably bounded and convex weakly compact valued, so is
EB= X_,. Consequently, it is not difficult o see that the values of EB= X,
are members of Lwe(E). Further, by property () of Step 1 we know that
almost surely {g5 : k > 1} is a dense subset of int dom §*(-, H(w)). More-
over, it is not difficult to see that int dom 6*(-, H(w)) = int dom 6*(-, G(w)+
Yo{w)H(w)). So, in order to show that (4.7.4) implies

w-ls EP X, C BP~X, as.
it suffices, in view of Lernma 3.3 applied with I = EB~X_, and C =
w-ls BB~ X,.. to show the following inclusion:
intdom §*(, B> X} C intdom *(-, H) as.,
which, by polarity, is equivalent to
(4.7.8) As(H) C As(EP~X,) as.
But, by hypothesis (iv) and Lemma 3.5 applied for almost every w € 2 to
the sequence (X, (w))n>1 we have
As(H(w)) C w-ls As( X, (w)) C As(w-1s X, (w)),
which implies
(4.7.9) As(H(w)) C As(Xoo(w)) as.
Now, consider the multifunction As(H). Like H, it is Bo,-measurable. This
can be proved by using the equality
As(H(w)) = [ (H(w) — h(w))/i
)
where j € N* and h is a fixed but arbitrary element of 84 (Bs), and by
invoking Theorem 4.2 of [Hed]. Therefore, taking conditional expectation

relative to B, of both sides of (4.7.9) and noticing that this operation is
monotonic, we get

EP= As(H)(w) = As(H(w)) € BP~As(Xoo(w)) C AS(BB* Xoo(w)) a.5.,

which gives the desired inclusion.

Step 4. By (i) and Theorem 4.6 we have EB~X_ ¢ sli E®¥~X, as.,
which ends the proof of (c). »
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Remark. (vi) is satisfied if (d(0,X,))u>1 is bounded in L or, more
generally, if liminf, o d(0, X,,) € L. This is an easy consequence of Fa-
tou’s lemma and of (4.7.1).

COUNTEREXAMPLE. The following counterexample taken from [Hel, 2]
(see e.g. Remark 4.4 in [He2]) is useful to show that hypothesis (iv) of
Theorem 4.7, although restrictive, cannot be removed. Let 2 := 0,1, F =
the Borel o-fleld of £2, P := Lebesgue measure, £ = R, By, = Be =
{2,0},G = {0} and H := Ry (so G and H are constant multifunctions).
Moreover, for every n > 1, define the interval 4, := [0,1/n] and for every
w € §2, the random set X, by

Ry fwe A,
Hn(w) = { {0} fwé¢ A,
For each n > 1, we have As(X,) = X,, and we can see that £X, = H =
As(H) = Ry, whence lim,,_,o, EX,, = H. All the hypotheses of Theorem
4.7 are satisfied except (iv); in particular, we have

Xoo = As(Xo) = nlLI%OXﬂ(w) ={0} as. and EX, = {0}.

This shows that (iv} is not satisfied and contradicts conclusion (c) of Theo-
rem 4.7. Also observe that, due to hypothesis (ii), the converse inclusion of
{iv) always holds. :

5. Application: Convergence of conditional expectations of a
random lower semicontinuous integrand. Our main aim in this section
is to reformulate Theorem 4.7 in terms of integrands. We shall present a
result concerning the Mosco convergence of a sequence (E%» X,,} where, for
every n > 1, X, is the epigraphic multifunction assoclated with a random
lower semicontinuous convex integrand Fy, defined on 2 x E. Let us recall
some definitions and known facts.

If f is a numerical function, defined on E (i.e. with values in the extended
reals), its epigraph, denoted by epif, is the subset of F x R defined as

eplf = {(z,A} e ExR: f(z) £ A}.

If f is convex, lower semicontinuous, and proper, the asymptotic function
of f, denoted by As(f), is defined by the equality

epi As(f) = As{epif).
The function f is said to be inf-weakly compact for o certain slope if
there exists z* € E* such that the function z — f(z) — (z*,2) is inf-weakly

compact {[CV], Theorem 1.14). If f is convex lower semicontinucus, and
broper, this is equivalent to

epi f € Lwe(E x R).
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A sequence {f) of numerical functions defined on E is Mosco-convergent
to a numerical function f if epi f is the Mosco-limit of the sequence (epi f,)
in E x R. This convergence will be denoted by

F = M-lm fn.

—r oG

A map R defined on {2 x E with values in R will be called a normal convez
integrand if it has the following two properties: (i) The function R(w,-) is
convex and lower semicontinuous a.s. (i) The epigraphical multifunction
w — epi R(w, -), with closed convex values in E x R, is measurable.

The normal convex integrand R is said to be infegrable if its epigraph-
ical multifunction is integrable. This is equivalent to the existence of u in
L2, E) such that R(-,u(-))* is integrable.

The following theorem is a reformulation of Theorem 4.7 in terms of
integrands.

THEOREM 5.1. Let Y be a positive random variable such that EP=Y <
oo almost surely. Let Foo and (Fy), be convez normal integrands defined on
2 x E and satisfying the following conditions:

(i) M-litny, Fp(w, ) = Folw,') a.s.,
(ii) there is a sequence (fn)n>1 in L (F) such that || fo () |+ Fn(, fa( )t
and Hminf, (|| fu (Ol + Fn (-, f2())1) are integrable,
(i) Vo = 1, (L)l 4 Ful Fa()F) £ Y0) a5,
(iv) there emists an integrand Z defined on 2 x E such that for every
w € 2, Z(w,-) is conver lower semicontinuous, proper and for every z €
E, Z(-, ) is Boo-measurable and integrable and such that a.s. for w € {2,

(a) Z(w,-) is inf-weokly compact for a certain slope,

by ¥n > 1, Fplw,") 2 Z(w,-) a.s.,

(¢) As(Z(w,-)) = w-li As(Fp(w, ).
Then

(a") Fio 3 an integrable convex lower semicontinuous integrand and

(b)) M-lim,, EP»F (w, ) = EP=F(w, ) a.s.

Proof. We define the random sets X and X, for n > 1, as follows:

Ywe 2, Xo{w)=-epiFeo(w,") and Xp(w)=epiFn(w,).

Since F,, is a convex lower semicontinuous integrand, by assumption (ii)
we deduce that X, is an F-measurable and integrable multifunction with
closed convex values in B x R and by (i) for all n > 1, d(0, X (")) < Y ()
a.s. Analogously, X, is an F-measurable multifunction with cloged convex

values, and by assumption (i), (a), (b) and ([Hed], Proposition 6.4.8), we
have

d(0,epi Foo(w, ) = lirrbnd(O, epi Fp(w,-)) as.
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Since the function %im_infn_,m(” Falll + Fuly fa( 1)) is integrable and
d(0,epi Foo (w, -)) S liminf,, oo (|| fr ()| +Fn(w, fr(w))T) almost surely, Xo,
is integrable. For all w € (2, set

Y(w)=T(v), HWw)=epi(Z(w,),
G(w) = singleton {(0,0)} of X x B,  Ya(w) =1.
By the previous results and assumption (iv), we conclude that H takes

its values in Lwc(E x R), and for all n > 1 and w € 2, X, {w) C H(w) and
As(H(w)) C w-ls As( X, (w)). Then by Theorem 4.7 we have

M-im E® X, = EP=X_ as.

N—0Q
Therefore
M-lim EPe B (w, ) = BP= Fo(w,") as.,

Ti—t OO
which proves the theorem. m
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Minimality in asymmetry classes
by

MICHAEL WIERNOWOLSKI (Poznad)

Abstract. We examine minimality in asymmetry classes of convex compact sets with
respect to inclusion. We prove that each class has a minimal element. Moreover, we show
there is a connection between asymmetry classes and the Radstrém-Hérmander lattice.
This is used to present an alternative solution to the problem of minimality posed by
G. Ewald and G. C. Shephard in (4],

1. Introduction. We will denote by (X)) the space of non-empty con-
vex compact subsets of a topological vector space X. The space K{X) has
been widely investigated, especially in connection with the Minkowski sum
defined by A+ B := {a+b:a € A, b € B}. Although KC(X) with the
Minkowski sum forms a commutative semigroup with the cancellation law
(see R. Urbanski [5]), it is not a vector space. In [4] G. Ewald and G. C. Shep-
hard introduced some normed vector spaces consisting of classes of convex
compact sets. Let us recall one of those concepts, the so called asymmetry
classes. As in [4] we will restrict our examination to the finite-dimensional
case (X = R", n € N). We define the relation of asymmetry: A ~ B iff
there exist centrally syrnmetric (1) sets S, T such that A+ S is a translation
of B+ T (we can require S and T to be symmetric instead of centrally
symmetric). It has been proved in [4] that ~ is an equivalence relation and
K(R™)/~ is a normed vector space.

In [4] the authors posed the question whether each class of asymmetry
can be expressed in the form {M + S : 9 centrally symmetric}, where
M e K(X) is a certain “minimal” clement. This problem has been solved
by R. Schneider [3]. It is proved there that for n = 2 every asymmetry
class contains a minimal member (Theorem I). In the proof, measure theory
as well as surface area functions are employed. We will present a different
approach.

1991 Mathematics Subject Classification: Primary 52A20. _
Key words and phrases: convex sets, symmetry, minimality, Hansdorf{f metric.
(1) Centrally symmetric sets are translations of certain symmetric gets.



