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Order functions of plurisubharmonic functions
by

HALIL IBRAHIM CELIK and
EVGENY A. POLETSKY (Syracuse, N.Y.)

Abstract. We consider the following problem: find on 2a plurisubkarmonic function
with a given order function. In particular, we prove that any positive ambiguous function
on CP! which is constant outside a polar set is the order function of a plurisubharmonic
function.

1. The order function for plurisubharmonic functions. In this pa-
per we study pointwise singularities of plurisubharmonic functions, i.e., the
behavior of a plurisubharmonic function near isclated points where the func-
tion’s value is ~oo. Singularities of plurisubharmonic functions on subsets
of C* have been studied by many authors (see [7] for references), in general
using the notion of the Lelong number. Unfortunately, this number does
not provide a detailed description of the singularity, For example, another
important characteristic of singularities—the mass of the Monge—Ampére
operator at these points—has little to do with their Lelong numbers (see
Ex. 5.7in [4]).

We concentrate on the notion of the order function which reflects more
features of the function’s behavior. Given a plurisubharmonic function u on
the unit ball B < C", centered at the origin, the order function o, of v at
0 is defined as

e u(vE)
. = f ——V—=
oule) = iy M Tog el
where z is in €7 \ {0} and 4 € C. Since 04(2) = ou(y2), 7 # 0, we may
assume that the order function is defined on the unit sphere § in C" or on
the complex projective space CP"~*, which for n = 2 coincides with the

Riemann gphere C.
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Key words and phrases: plurisubharmonic function, gingularity, order function, G-
function.



icm

162 H. 1. Celik and E. A. Poletsky

This function is similar to the order function at infinity studied in [5],
where the complete description of regularized order functions was given.
(The function ¢, (z) = iminfy .z, ysa ©{z) is the regularization of a function
o(z).) In the case of a pointwise singularity the regularization significantly
simplifies the situation. It was proved in [1] that the order function is equal
to a constant { on CP*~! minus a pluripolar set and is greater than [ on this
set, so its regularization is a constant function. It can be proved (see [2[)
that [ is the Lelong number of u at 0. Therefore, regularized order functions
only distinguish singularities with distinct Lelong numbers,

To understand deeper the nature of singularities we consider the inverse
problem: Find a (continuous) plurisubbarmonic function with a given order
function, We solve this problem for almost all possible cases and show that
the space of possible order functions has a quite complicated structure. In
[3] we solve a similar problem for maximal plurisubharmonic functions. All
results in this paper are obtained for plurisubharmonic functions on C?. The
case of greater dimensions is more complicated due to the absence of a good
description of complete pluripolar sets.

Let us find the order of a subharmonic function u defined on a neighbor-
hood of the unit disk D in C. We comsider the Laplacian Au as a positive
Borel measure on the domain of % and dencte by Au({0}) its mass at the
origin.

THEOREM 1.1. If u s a subharmonic function on B C C, then the order
function o, ot the origin is equal to 5=Au({0}).

Proof. It follows from [6] and [7] that
Sup|¢=r (¢} 1
m ——=

i — g™ - Au({0}).
Since
SUP | ¢l
0, = lim Plg|=r u(g):
) logr

we get the theorem. w
As a consequence we get

COROLLARY 1.2, Let u be a plurisubharmonic function on B and z € 0B.
Then o0y4(z) = 3= Au*({0}), where u*(¢) = u((z).

We need the following observation,

LEMMA 1.3. Let u; <0 be plurisubharmonic functions on the unit ball.
Suppose that u = Zf__l u; # —oc on each complex line passing through the
origin. Then o,{v) = z;‘;l 0, ().
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Proof. Let u?(¢) = u((z). Since u* & —c0,

Au({0}) = Y AuZ({0}).

FED
Since 0y (z) = 0y=((), the lemma follows from Corollary 1.2. m
The following theorem ig the starting point of our studies.

TuroREM 1.4. The order function of a plurisubharmonic function u on
B is the limit of u decreasing sequence of lower semicontinuous functions.

Proof. It was proved in Lemma 2 of [1] that 0.(z) = lim,_o @(2),
where the functions

T |¢)=r logr

#(z) = inf L8

are plurisuperharmonic and incrcaging in . Hence these functions are lower
semicontinuous and o, i8 the limit of a decreasing sequence of lower semi-
continuous functions. w

A plurisubharmonic function u ig said to be continuous if the function
e is continuous (we assume that =™ = 0). In this case, by the following
theorem, the order function is upper semicontinuous.

THEOREM 1.5. If u 18 a continuous plurisubharmonic function, then the
order funciion o, 18 upper semicondinuous.

Proof. The function ¥,, introduced in the previcus theorem, is the lower
envelope of the family of continuous functions

Wr(”:')’) = Ml

¥
log ||
where |y = r, Thus, the functions ¥.(z) are upper semicontinuous in z and
increasing in r. Therefore, the order function

0y{2) = 5{% U (2)

is also upper semicontinuous. w

2, Gg~ and ambiguous functions, To describe the order functions
of plurisubharmonic functions we need the classes of Gs and ambiguous
functions. A real-valued function ¢ on a topological space X is G if for all
o € R the superlevel sets E, = {x € X : @(z) > a} are Gy-sets. A function
pon X is ambiguous if for each ¢ € R the superlevel set E, is ambiguous, i.e.,
it is both an F,- and a Gg-set. The following theorem describes decreasing
limits of sequences of lower semicontinuous functions as Gs-functions.
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THEOREM 2.1. A nonnegative function ¢ on a topological space X is
G if and only if it is the pointwise limit of a decreasing sequence of lower
semicontinuous functions.

Proof. Note that every lower semicontinuous function v is (s, because
for every a € R the set {3 > a} is the intersection of open sets E; = {¢ >
a —1/}. If ¢ is the limit of a decreasing sequence of lower semicontinuous
functions ¢, then

{o(z) 2 a} = [ |{es(z) 2 a}
F=1

for any @ € R. Therefore, the set {¢ > a} is a Gs-set as the intersection of
the Gs-sets {p;(2) > a}. So ¢ is a Gg-function.

If ¢ is a Gs-function on X, then for k = 0 and for every nonnegative
integer ¢ we consider the Gs-sets A = {p(z) 2 i}. Let E}, be open sets

such that Eﬁjﬂ c Egj and A7 = (172, Eﬁ ;- Define open sets B as

1
0 =0
B, =By
1=0

Then, clearly, B, ; € EY; and B, C E;. Moreover, A} = (2, EY;. In
fact, AY Eﬁj for all 0 <! < 4. This implies that A} C E]; and, therefore,
A} C 72, EY;. But E) c E?,j, hence A? = ﬂ;’;o B

Define ¢o(z) =i+ 1 on EY)\ B, ; and po(z) = o0 on ;2 By Then
the function g is lower semicontinuous. Indeed, for any a € R, the set

o0
{wo(z) > a} = U (Bho \Eg+1,o) = Efy 0
ksmig
where 4g is the minimal integer such that iy + 1 > q, is open. Moreover,
wo(z) > p(z) since p(z) < i+1on X\ B, 0.
Using induction and the argument above, for every k > 1 we may choose
open sets Eg‘fj such that:

(1) AF = {p() 2 i/2%} = 32, BE;
(2) Bl C By aod By, C Bl
(3) if ¢ = 2m is even, then EF, ¢ Efnjjl'
To satisfy condition (3) we note that 12~ = m2!~*, So A¥ = A%-! and we
choose E¥; c EfY,
We define the function @i(z) = (i + 1)27% if and only if & € EF} \

Eﬁ;,k and ¢i(z) = oo on (i2g Efy. As before, one can see that oy, is lower
semicontinuous and ¢y > ¢.
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Let us show that @ < we-1. If & € Bfy \ BE, , and i = 2m is even,
then
w€ B, C B CEEL
This implies that
m-+1 i-+2
P (2) 2 S = g 2 en(2).
If § = 2m + 1 then B, C Eé‘m,k - E,’r‘,’;:,’cl_l and

2m+2 m+l
prlz) = T Y | < pp-1(z).

Let &(z) = litmg-roo r{x). Then & > . Suppose p(z) < &(z) for some
g € X. We can find integers ¢ and k such that ¢(z) < i27% < 3(z). If
plz) < i27*, then o ¢ A¥. By (1}, z ¢ E:a for all j greater than or equal
to some jo. Hence ¢ ¢ EFIT when j 2 jo. Therefore, if k +m 2 jo then
z & Eyil . and this means that
Mhy | g
phim(e) S Tt = ok

So @(z) < /2" and this contradiction proves that @ = . m
Thig theorvern and Theorem 1.4 immediately imply

CoOROLLARY 2.2. If u is o plurisubharmonic function on the unit ball B
in C", then the order function o, is a Gs-funciion.

1t follows from the theorem above that if f and g are nonnegative G-
functions, then their sum and product are also Gs-functions.
We need the following theorem.

THEOREM 2.3. The class of bounded Gg-functions is closed under uni-
form limita. In particular, the sum 2?;1 CyxEy 18 6 Gs-function, where X g,
are the characteristic functions of Cs-sets By and ¢; > 0, 3 ¢; < 00

Proof. Let (fo)ns1 be a sequence of bounded Ge-functions converging
uniformly to a function f. Let

£, == BUp [ =~ ful

for n=1,2,... Then &, ~ G a8 n — oo. Thus fn —g, < floralln 2 1.
For o € R,

{f2a}= ﬁ{fﬂ?a”&'n}-

ngl
The right hand side is a Gg-set, being a countable intersection of Gig-sets.
Therefore f is a Gs-function. w
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For applications to plurisubharmonic functions we need representations
of Gg- or upper semicontinuous functions as weighted sums of characteristic
functions of Gi¢- or closed sets. Moreover, we need series of weights of these
representations to converge. We could neither prove nor disprove the exis-
tence of such representations in the general case. The following two theorems
describe cases when such representations are possible.

THEOREM 2.4. Let ¢ be a bounded ambiguous function on a metric space
X which is equal fo a constant ¢ 2 0 oulside some set E C X. Let w(z) > ¢
for all z € E. Then @ can be represented as an infinite sum of functions
a;j +bjXm,, where the sets E; are ambiguous, a; > 0, b; > 0, T.b; and Yo,
converge.

Proof. Let ¢ = 0. Since ¢ is bounded there exists a positive number M
such that ¢ < M. Let By = {z € X : ¢(z) > M/2} and @), = (M/2)xz,.

For n > 2 set 1
i
E,=lcex: M
n=1T€ -‘P(@“Z%Bﬁ ,
J=1

and FIeﬁne ¢on = (M/2™)x, . Since the difference of ambiguous functions is
ambiguous, it follows by induction that the functions ¢, are ambiguous and
0 <~ 8, < M2™", where s, = ELl ;. Thus

oc
M
= Z o X
n=1

If ¢ > 0 then we replace ¢ by ¢ — ¢ and represent o as

(= o]
SO
on om B, |- N
n==1

' THEOREM 2.5. Let E be o closed 0-dimensional subset of a compact met-
ric space X and @ be o bounded function on X which is continuous on E
and equal to o constant ¢ > 0 on X \ B. Let p(z) > ¢ for all z € E. Then
 can be represented as an infinite sum of functions @ + bixm,, where the
sets Iy are closed, a; > 0, b; > 0, ¥ b, and T a; converge.

Proof. We start with the case c= 0. Let B = {z € E: p(z) > 2M/3}.
The sei? B is closed and, hence, compact. For every point z € E{ we choose
a relatwely' open-closed neighborhood U, C FEj such that ¢ > M/2 on
.. The neighborhoods U, cover E and we choose a finite subcover {Us, },
1 <js k, and let By = U;-;l Up;. Then the set F; is open and closed in
E. Since E is closed, so is .

Let ¢ = (M /3)‘XE1- The function ¢y = ¢ — 4 is continuous on &
because the set E; is open and closed. It is equal to 0 on X \ F and is
greater than 0 on E. Moreover, 1 < 2M/3 on X.
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Repeating this procedure inductively for the function y; and so on, we
get sequences of closed sets By C E and functions

172V
%*5(5) Mxp,

guch that the functions

k
.
P == )
Jusl
satisfy all conditions of the theorem and gy < (2/3)% M. Therefore, ¢ =

L

If ¢ > 0 then we represent o - ¢ as a surn of byxp,, where the sets &

are closed. Then 0
=, G
p = (5;; + ba'XEg)- "

=l

3. Construction of plurisubharmonic functions in C=2. In this sec-
tion we show that functions on C which admit representations as weighted
surns of characteristic functions with convergent series of coefficients can be
realized as order functions of plurisubharmonic functions. We start with the
cage of characteristic functions.

A plurisubharmonic function u on C* is called logarithmically homoge-
neous with the coefficient ¢ > 0 if u(Az) = elog|A| + u(z) whenever A € C
and z € C",

LEMMA 3.1, Let v be a subharmonic function on the complex plane C
satisfying the growth condition v(¢) < log™ |¢| = max(log|¢|,0) and 0 <
a < b. Then the function v defined on C* as

u(z) = au(zy/z2) + blog |22,
if z2 # 0 and as —oo if zg = 0 is plurisubharmonic on C?. Moreover, u is
logarithmically homogenecous with coefficient b and, if v s continuous, then
$0 13 u.

Proof. Clearly, u is phurisubharmonic when zp # 0. Hence, to prove that
w is plurisubharmonic on €2, it suffices to check its upper semicontinuity at
points of the plane {(z3,z2) ¢ 29 = 0}. Fix wy and let 2 % 0 tend to 0 and
2 to wy. Then '

limsup u(zy,29)
1~y , 2g0

< limsup (max{alog |z — alog|z|,0) + blog |2a|)

Ty iy, g+

= limsup max(alog|zi|+ (b a)loglzal,blog|za))
2y ==y, sy =) _

= 00 = u(wy, 0).
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Therefore, u is usc on €2 and hence plurisubharmonic on C2.
Since u((z) = blog|¢|+u(z) for all z € C* and ¢ € C, u is logarithmically
homogeneous with coefficient b. w

LEMMA 3.2. Let F be a polar Gs-subset of C and o = a+bxg, a,b> 0,
be a function on C. Then there exists a plurisubharmonic function u on C?,
negative on the unit ball, such that 0,(2) = @(z) for all z # 0.

Proof. We introduce on C the homogeneous coordinates of CP. We
may assume E is non-empty and (1 : 0) is in B, We introduce the coordinate
¢ =2/2 on C=T\{(1:0)}, where z and 2y are coordinates on C?, Let
E' = ((F) be a set in C. Clearly, for every integer j > 2 the sets E; =
{¢ € E': j <|{| £j+ 1} are polar and (f5. Thus there are subharmonic
functions v; on C such that v;({) = —co if and only if ¢ € E;. We may
assume that for every j the measure p; = Awv; is supported by the ring
{5 —1<¢| € 7+2} and py;(C) = 279, The function

v3(¢) = log |¢ — & uy(df)
C
differs from v; by a harmonic function and, therefore, is equal to —oo at the
same points as ;.
Let

o0
__E : Ui
U= 'Uj.
=2

Since [v}(¢)] < 277 log(|¢| + j + 2), the series converges uniformly on com-
pacta and v is subharmonic. Clearly, v = —oc on E. If ( ¢ E, then
v;({) # —oo for all § and ¥}({) > 0 when § > ]+ 2. Thus v({) # —co.
If i¢] > 1, then
o5

v(() <Y 27 log(¢] + 5 +2)

=2

'_.L;_

wlogICH-Zil 5‘10g3+3)_ log|§|~l-c.
f=2

=]

Let ut = v — ¢ and

ur(z1, 2) = {ul(zl/zg) tloglz| if 2 #0,
~00 if 25 = 0.
Then by Lemma 3.1, uy is a logarithmically homogeneous plurisubharmonic
function on C? and is negative on B because u!(¢) < 0 if |¢| < 1. Define
u(z) = max(auy(z), (a + b)log ||z|}). The function u(2) is plurisubharmonic
on C?. Furthermore, if v € B, then u(\v) = (a + b) log {| \v||. Hence o, (v) =
a+b. If v € C\ B, then 0,(v) = a. Therefore, o, = . m
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If the set F g closed, then we have the following result.

LrvMa 3.3. Let ¢ be a function of the form ¢ = o+ bxg on T, where
B is a closed polur subsetl of C and a,b > 0. Then there exists a continuous
plurisubharmonic function u such that o, = .

Proof. The proof repeats that of the previous lenma. One only takes
into account that the sets E; are compact. Therefore, by a result on page
181 of [8], the functious v; and v} can be chosen to be continuous on C. Now
it is easy to check the continuity of u. m

The following two theorems show that realization of a function as an
order function is possible for functions admitting representations as sums of
characteristic functions.

THEOREM 3.4. Let ¢ = 2o jm1 s Where the w; > 0 are simple G-
functions on C of the form ¢; = ay + b_.,- XE; with the following properties:

(1 )aJ,b,:>0forol 4=1,2,.

(2) E; are polar Gs-sels fcarg 1 2,

(3) Tga1 05 + gy by = a+b< o0
Then there exists a plurisubharmonic function 0 2 u € PSH(B) such that
0,(v) = (v) for allv € C.

Proof. By Lemimna 3.2, for each j, there is a plurisubharmonic function
u; on C* which is negative on B and satisfies o,, = ;. This function can
be represented in the form

u;(z)
= max (aju; (z ) + ay log |z, ayu’ ( ) + a;log |21, (a; —}-bj.)log[z!)
2y
We let

m,
U E Uj.

gl
Then

4] [ o]
u{z) = Zuh.,-(z) =z }:(aj - b;)log |z| = (a -~ b)log |2|.
Jel Fral
Hence u is locally bounded on B* = B\ {0} and, consequently, plurisubhax-
monic on B. Clearly, % < 0 on B. By Lemma 1.3,

0u(2) = iou, (2) =Y pi(z) =

jml 3%1
foxallze B\ {0}.
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THEOREM 3.5. Let o = E;‘;l i, where the @; = a;-+byx g, are functions
on C with the following properties:

(1) aj, by > 0 forall j =1,2,..;5

(2) B; are closed polar sets for j = 1,2,...;

(3) Yoja1 @5 + 2jer by =a+b < oo
Then there ewists @ continuous plurisubharmonic function 0 2 uw & PSH(B)
such that oy (2) = @(2) for all z € C.

Proof. Wenote that condition (3) implies that the series for ¢ converges
uniformly, which means that ¢ is an upper semicontinuous function.

To prove this theorem one simply repeats the argument for Theorern 3.4
and takes into account that by Lemma 3.3 for each j the functions u; can
be chosen to be continuous. Moreover, |u;{z}| < (a; -+ b;)|log 2| |. Therefore,
the series 3722, u; converges uniformly on B\ {0}. =

Theorems 2.4 and 2.5 allow us to describe gome golutions of our problem
more geometrically.

COROLLARY 3.6. Let ¢ be o nonnegative bounded ambiguous function on
T which is equal to a constant ¢ > 0 outside a polar set B ¢ C and greater
then ¢ on E. Then there exists a plurisubharmonic function u, negative on
the unit ball B of C* and such that o, = .

Proof. By Theorem 2.4 we have

o0
© = (a; +bx),
i=1
where the sets B; are ambiguous and the series of coefficients converge. Now
the theorem follows from Lemma 1.3 and Theorem. 3.4. m

CorROLLARY 3.7. Let B be a closed polor subset of € and ¢ be a non-
negative bounded function on C which is equal to o constant ¢ > 0 outside E,
continuous on E and greater than ¢ on E. Then there extsts o continuous

plurisubharmonic function u, negative on the wunit ball B of C* and such
that o, = .

Proof. By Theorem 2.5 we can represent ¢ as the sum of functions
a;+b; X g;, where the sets B; are closed and the series of coefficients converge.

By Theorem 3.5 there is a continuous plurisubharmonic function u on B such
that o, = . m
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