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On extremal and perfect s-algebras for Z¢-actions
on a Lebesgue space

by

B. KAMINSKI (Torud), Z. 5. KOWALSKI (Wroclaw) and
P. LIARDET {Marseille)

Absiract. We show that for every positive integer d there exists a Z%-action and an
extremal o-algebra of it which is not perfect.

1. Introduction. Invariant o-algebras form an important tool for solv-
ing a series of problems in ergodic theory. They have been used, among
other things, in the spectral theory of dynamical systems ([6], [12]), in non-
equilibrium mechanics ([1], [3]) and to investigate helices ([13]-[15]).

The theory of these o-algebras has been developed by Rokhlin and Sinai
for Z-actions (cf. [12]) on a Lebesgue space and by the first author in the
case of arbitrary Z%-actions, d > 2 (see {6]). A special role in this theory is
played by extremal o-algebras and perfect o-algebras.

Recently, Jan Kwiatkowski has posed the following question. Do there
exist, for any d > 1, a Z*-action and an extremal o-algebra of it which is
not perfect?

The purpose of this paper is to give an affirmative answer to this ques-
tion. First we construct a non-invertible measure preserving transformation
with finite entropy which is exact and has no generator with finite entropy.
Tts natural extension and the corresponding exhaustive o-algebra give a so-
lution. of the Kwiatkowski question in the case d = 1.

Next, -using actions defined by Conze ([2]), we define the desired Z8-
action and an extremal o-algebra of it for arbitrary d > 1.

The non-invertible transformation constructed in the paper has the fal-
lowing property which does not hold for invertible transformations. Namely,
it is well known (cf. [10]) that every ergodic invertible measure-preserving

1091 Mathematics Subject Classification: Primary 28D16.
The first author is supported by KBN grant 2P 30108107, the second by KBN grant
2 POSA 07608 and the third by URA-CNRS No 225.



icm

174 B. Kaminski et al

transformation with finite entropy has a finite generator. As we have an-
nounced above, our transformation does not have this property.

2. Preliminaries. Let (X, B, ) be a Lebesgue probability space and let
N be the trivial subalgebra of B. Let Z¢ denote the group of d-dimensional
integers.

In order to avoid notational difficulties, we restrict our considerations
to the case d = 2. Our arguments may be easily extended to arbitrary
Z2-actions.

Let < denote the lexicographical order in Z2. An ordered pair (A, B) of
subsets of Z2 is said to be a cut if A# 0, B#0, AUB = 7? and g < h for
every g € A and h € B. A cut (A4, B) is called a gap if A does not contain
a greatest element and B does not contain a lowest element.

Let & be a Z*-action on (X, B, u). The automorphism of (X, B, u) cor-
responding to ¢ € Z? is denoted by $9. We denote by h(®) and n(P) the
entropy and the Pinsker o-algebra of &, respectively.

DEFINITION 1. A o-algebra A C B is said to be extremal if

(i) it is invariant, i.e. $9.4 C A for g < (0,0),
(ii) the family ($9.4),ez2 is conhtinuous, i.e. for every gap (4, B) in Z2,
\ #°A= ] ¥4,
gEA geB
(i) V, ep2 994 =B,
(iv) Nyepe P9A = 7(8).
DerFINITION 2. A is called perfect if it is extremal and
(v) h(®) = H(A| Az)
where Az =V _ o) P74
We may express Definitions 1 and 2 in a simpler form using the auto-
morphisms T = $(19 and § = $OV), Namely, A is extremal iff
(i") S~*AC A T ' Ag C A where Ag =\/7" __ S"A and
(i Moy S A= T"14g,
(iit") Voo _ o IT™As = B,
(V) Mmoo T A = ().
A is perfect iff it i3 extremal and
(v') B{®) = H(A | S~ A).
It is known (cf. [7], p. 122) that in the case h(P) < oo the properties
(i)-(iil) and (v) imply (iv). Therefore, it was natural to ask whether the

properties (1)-(iv) imply (v). Now, we show that this question has a negative
answer.
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THEOREM. There exists a Z2 -action on o Lebesgue space with an eztremal
o-algebra which s not perfect.

Proof Let Z and Z denote the spaces of one-sided and two-sided se-
quences, respectively, with values in {~1,1}. Let P and P be the zero-time
partitions in Z and Z, respectively. We denote by o Z — Z the one-sided
shift and by & : Z ~ Z the two-sided shift. We assume that Z and 2
are equipped with the product o-algebras and Bernoulli measures p and 7,
respectively, determined by the vector (1/2,1/2).

Let the space 2 = Z X 7 be equipped with the product o-algebra F
and let v = p x P. We denote by T' the endomorphism of 2 defined by the
formula

T(m,y) = (Jfﬂﬁm(o)y), TEZ, YE 7.

First, note that the partition P x P is a generator for T'. This follows
from the fact that P and P are generators for o and 7, respectively, and the
sequence {x») of random variables defined by xn(z) = Tpls x(k),z € Z, is
a random walk (cf. [4]). S

Now, observe that T is exact. The automorphism T:ZxZ—ZxZ
which is the natural extension of T’ takes the form

Tz, y) = (7®),5Vy), E.yeZ

It follows from [11] that T is a K-automorphism. Hence and from the fact
that P x P is a generator for T' it follows that T’ is exact.

Let = : {2 — £ be the endomorphism defined by 7= Ty 0T (=T 0T}
where Ty (z,y) = (=, (), Le.

(a,y) = (0(2),5*OFy), ze€Z yel

Since T' is exact, the transformation 7 is also exact.
Now we shall check that

(1) H(F |7 1F) < A7),
i.e. 7 has no generator with finite entropy. Let S = {S,} where
Sy ="ty zeZ yeZ

Let hy(S) denote the mixed entropy of fibers of 7, i.6. he(S) =suphs(5,Q)
where the supremum is taken over all finite partitions @ of Z and

he(5,Q) = Im = | H(QR)B(dm).
Z

QE=QVS;tQV... VS8 - S7L..Q.
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Applying the ergodicity of & we obtain, for a.e. z € Z,

he(S, PV & 1P)

(e de ol )

1 tn{z)
lirn —H( V E‘Qk(ﬁva“lﬁ))
k=0

— tim 2 0 ang
T XD T

where I, () denotes the number of ones in the sequence (z(0),...,z(n~1)).
Therefore, by the well known Abramov—Rokhlin formula we get

h(T) = h(o} + ho{S) > In4.

Let J;, J, and Jz denote the Jacobians of 7,0 and &, respectively. By
Lemma 3 of [9] we have J, (z,y) = J»(2)-J2 " () and s0 J. (2, y) = J(z).
Therefore, applying the entropy formula from [16], we have

HF | m'F) = Sln Jr(z,y) v(dzdy) = Sln Jo(z) p(dz) =1n2.
n Z

Thus, we obtain the desired inequality.

Let (Y, G, ), ¢) be the natural extension of (12,F,v,7), i.e. there exists
a o-algebra D C § such that ™D € D, V2 ___ "D = ¢ and the factor
endomorphism p is conjugate to 7. Since 7 is exact, we have

@) (e~ P =,
n=0

ie. D is a Kolmogorov o-algebra for . Moreover, we have H(F | 771F) =
H(D | ¢~D) and so, using (1), we get

(3) H(D | 97'D) < h(yp).

Let now & = &, be the Z*-action defined as follows (cf. (2], Example
(3)). We consider the product probability space

(-X:B”u'): H (Yn;gna/\n)

T 00

where Y, =Y, Gn = G, An = A, n € Z. We equip the space (X, B, u) with
the transformations T and § defined by

(Tz)(n) =2(n+1), (Sz)(n)= pe(n), ned

It is clear that 7" and § are commuting automorphisms of (X,B, pu). Let &
be the Z-action generated by T and §, i.e.

' =T"0 S g=(m,n)ecZ’
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We denote by mp the projection of X on the zero coordinate and we put
C=m'(D), A=Cv \/ #C=CvCsV(Cs)7.

g-(0,0)
It is clear that A satisfies the condition (i). The equality (ii’) is equivalent
to
00
(4) (875 v (€s)7) = (Cs)r-
=)

Since u is the product measure, the o-algebras C3 and (Cg)y are indepen-
dent. Therefore, it follows from Theorem 1 of [8] that (4) is equivalent to

oo
() () $™C5 v (Cs)7 = (Cs)7-
=0
This equality is valid because, in view of (2), (,—, 5™ "C5 = N.
The equality (iii’) is an easy consequence of the equality \/oo_ "D
=@,

Since the o-algebras T"Cg, n € Z, are independent the Kolmogorov zero-
one law implies

o =]
m T Ag = ﬂ T"Cy = N.
Fh = - 00 =00
On the other hand, the fact that ¢ is a K-automorphism and Theorem 3 of
5] imply that & is a K-action of Z?, i.e. m(#) = N. This means that (iv’) is
satisfied and so A is extremal.
It remaing to show that H({A | S~1A) < h($). We know from [2] that

(6) () = h(g).

On the other hand, the independence of the o-algebras C V Cy and (Cs)r
implies

(7 H(A| 87" A) = H(C|C5 v (Cs)p) = H(C| C3)-
It iz easy to check that
(8) H(C{C5)=H(D|¢™'D).

Cornbining (3) and (6)~(8), we obtain H({A | S~*A) < h(#), i.e. Ais not
perfect. m
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Approximation on the sphere by Besov analytic functions

by

EVGUENI DOUBTSO0V (Barcelona)

Abstract. Boundary values of zero-smooth Besov analytic functions in the unit ball
of T are investigated. Bounded Besov functions with prescribed lower semicontinuous
modulus are constructed. Correction theorems for continuous Besov functions are proved.
An approximation problem on great circles is studied.

1. Introduction. Let C" be the n-dimensional complex space (usually
n > 2) with the unit ball B = B, = {|z| < 1} and the unit sphere S =
S, = 8B. By v and ¢ we denote the normalized Lebesgue measures on B
and § respectively. In dimension one we use the notation I = By, T = oD.
C(8) is the space of all continuous functions on S, the symbol L3C stands
for lower semicontinuous functions, and H(B) is_the space of all analytic
functions f : B — C. Finally, A(B) = H{B) " C(B) is the ball algebra and
H®(B) = {f € H(B) : f is bounded}.

In the present paper we investigate boundary values of some Besov an-
alytic functions. More precisely, given 0 < p < co and ¢ > 0, define

1£1B, = § AP~ 2 dutz),
B

42,(B) = { £ € H(B): [l apm) + 2 1851 a2 < o0,

j=1

where 8; = 8/8z;. (From a different point of view, A} (B) is a weighted
Sobolev space of analytic functions.) To avoid technicalities, we do‘not con-
sider the spaces AT (B), m > 1, defined in terms of higher derivatives.

To justify the term Besov space, cousider the particular (unweighted}

case ¢ = 1, For p > 1, the Besov space By 1/P(8Y on the sphere is defined
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