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Approximation on the sphere by Besov analytic functions

by

EVGUENI DOUBTSO0V (Barcelona)

Abstract. Boundary values of zero-smooth Besov analytic functions in the unit ball
of T are investigated. Bounded Besov functions with prescribed lower semicontinuous
modulus are constructed. Correction theorems for continuous Besov functions are proved.
An approximation problem on great circles is studied.

1. Introduction. Let C" be the n-dimensional complex space (usually
n > 2) with the unit ball B = B, = {|z| < 1} and the unit sphere S =
S, = 8B. By v and ¢ we denote the normalized Lebesgue measures on B
and § respectively. In dimension one we use the notation I = By, T = oD.
C(8) is the space of all continuous functions on S, the symbol L3C stands
for lower semicontinuous functions, and H(B) is_the space of all analytic
functions f : B — C. Finally, A(B) = H{B) " C(B) is the ball algebra and
H®(B) = {f € H(B) : f is bounded}.

In the present paper we investigate boundary values of some Besov an-
alytic functions. More precisely, given 0 < p < co and ¢ > 0, define

1£1B, = § AP~ 2 dutz),
B

42,(B) = { £ € H(B): [l apm) + 2 1851 a2 < o0,

j=1

where 8; = 8/8z;. (From a different point of view, A} (B) is a weighted
Sobolev space of analytic functions.) To avoid technicalities, we do‘not con-
sider the spaces AT (B), m > 1, defined in terms of higher derivatives.

To justify the term Besov space, cousider the particular (unweighted}

case ¢ = 1, For p > 1, the Besov space By 1/P(8Y on the sphere is defined

1991 Mathematics Subject Classification: Primary 32A40; Secondary 32435, 32E25.
Supported by the Centre de Recerca Matematica, Institut d'Estudis Catalans (Bar-
celona) under a grant from DGICYT (Spain).
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- »
BLP(S) = {f e L*(S) : ;é %5% do(2) do(w) < oo}.

By the corresponding classical trace theorem (this result holds in the
general setting of Sobolev spaces when f is not assumed to be analytic, see
for example [N]), if f € A2, (B), then trace(f) € BLYP(9).

Note also that the spaces under consideration have an equivalent de-
gcription in terms of radial derivatives. Indeed, define

R = szaj and A—;Q(B) = {f < H(B) : ||f”qu + ”Rf“qu < OO}
=1

Then A}, (B) = E;Q(B) for all 0 < p < oo and g > 0 (see [BB], Theorem 5.3).

Our objects of investigation are the Besov spaces with zero smooth-
ness Ay(B) := A; (B). More precisely, we consider H*°(B) N AX(B) and
A(B)NAL(B)when 0 < p < 2. Note that H*(B)NAL(B) Cc H*(B)NAL(B)
if 0 < p < ¢ Indeed, suppose that f € H°(B). Then by the Cauchy
mequality |0;f(2)}|{1 — [2|) < C, z € B, 1< j < n, therefore

. r

[ 10572 00— )7tz < 0 W v (z).

Note also that the intersections under consideration are not trivial since
A(B)\ AL(B) # @ for all 0 < p < 2. An explicit example of a function f €
A(B)\ A}(B) is given in [R3], Theorem 17.9 (moreover, f maps almost every
radius into a curve of infinite length). This example has a generalization for
all p < 2.

On the other hand, if p > 2, then H™(B)NA}(B) = H*(B) because in
thiQS( ca;se A},(B) contains even the Hardy space HP{B}; moreover, A}(B) =
H*(B).

We are going to prove, in particular, the following results (g* stands for
the boundary values of g, as usual).

THEOREM A. Let 0 < p < 2 and ¢ € LSC(B) N L*(8), ¢ > 0. Then
there exists o function g € H>(B) N A(B) such that [g| < ¢ on B and
lg*| = ¢ o-a.c.

THEOREM B. Let 0 < p < 2. Suppose that ¢ € O(B), v > 0, and £ > 0.
Then there exists a function g € A(B) N AL(B) such that |g| < ¢ on B and
o{lgl =} >1-e.

In the final section of the paper we obtain a theorem of type B on
approximation on the great circles Tp = {A{: A& T}, ¢ € S.

For the “pure” spaces H>°(B) and A(B) the ahove theorems were ob-
tained in [Al] and [A2] respectively. If p = 1, then Theorem A (with
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w € C(8), ¢ > 0) was proved in [Dul] (recall that the theorems are in-
teresting for small p > 0). Theorem A in dimension one (again ¢ € C(T),
w > 0) was obtained in [Do]. Note that this result has an interpretation
in terms of inner-outer factorization (in the sense of Beurling, see [Do] for
details).

The base of the proofs, as in [Dul] and [Do), is the approximation con-
struction of A. B. Aleksandrov in LP(S), 0 < p < 1 (see [Al], and also [R2]
for an exposition of this construction). The point is the possibility to keep
estimates of the Aj-norm in the induction construction.

Comments. Al Tt is necessary to explain why we do not consider
H>(B)NAL (B) with p # ¢. First, let ¢ > p. Then by the Cauchy inequality
H*(B) C A;,(B), so this case is degenerate.

On the other hand, if ¢ < p, then the theorem is not valid for A3 (B)-
Indeed, suppose, without loss of generality, that p > ¢ > p—1land ¢ 2 L.
Let f € A% (B). Then the trace theorem yields

] LSO o) dow) < oo

58 |z — w‘2n-l~p~«q-1

In other words, we have a restriction on the smoothness of f. In partigular,
there exists ¢ € C(B), ¢ > 0, such that the above integral diverges with @
in place of f.

A2. Theorem A is closely related to the following problem (see [R3],
19.16). Given 1 < ¢ < 2, is there an inner function f (i.e. f € H>(B,),
n 2 2, |f* =1 o0-a.e and f is not constant) such that grad(f) € L*(B)?
(Note that ¢ = 1 is a very smooth function, so the argument from comment
Al is not applicable.}

The result by Y. Dupain [Dul] gives a positive answer for ¢ = 1. More-
over, if 0 < p < 2, then Theorem A shows that there exist inner functions f
in B such that grad(f) € Ay(B).

On the other hand, A. B. Aleksandrov observed that there are no inner
functions with gradients in L3/2(B). To show this, we need the following
result (here f(¢) = f(r(), 0<r<1,(€5).

TaEOREM (M. Tamm [Ta), see also [A3], Chapter 5, 4.4), Let f €
H®(B,),n>2 0<t<occand

o = F¥lleagsy = o1 =)M3,

Then the essential range of f* coincides with f(B). In particular, if |f*| =1
o-a.e., then f is constani.

r—1—.
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Now, let grad(f) € L*(B). Then the Holder inequality gives
1

£ = Flls < | (§lezed(£)(a0) da) do(0)
g8 r

1
< (1-r)t § | lerad(f)(@0)[* dz do (C).
Sr
Therefore, if t = 3/2, then [|f; — f*[|3u5) = o(l - Y2 r = 1, s0 we
apply the above theorem.

B1. Note that ¢ € C(B) is arbitrary in Theorem B. If the modutus ¢ is
supposed to be smooth, then a stronger result holds.

THEOREM (B. Tomaszewski [To|, Corollary 1). Let n > 2. For every
g > 0 there exists & = ae,n) > 0 such that for every function ¢ € Lip; (Sn),
@ > 0, there exist nonconstent functions g € A(B,)NLip,, such that |g(¢)] <
0(¢) for ¢ € 5y, and

o{( €8 iglQ)l = ()} >1-=

2. Auxiliary results. Given {,7 € §, put d(¢,n) = |1 — {{,n)|*/?
and E () = {¢ € §: d(n,{) < 6}, 0 < § < 2. Note that d defines
a (nonisotropic) metric on S and the sets E,(6) are balls in this metric.
Define also V() = o(B,(8)).

LemMa 2.1 ([R1], 5.1.4). Letn e S =8, and 0 < § € A < 1. Then
V(4)/V(é) < A/é)zn and 27 "§M <V < gn g2n

LeMMA 2.2 (see, for instance, [R1}, 1.4.10). Letw € B, a > 0, b > ~1.
Then

S (1 — |=)® du(2)

g (1= (zyw)rriratt =

const(a, b)
(1~ Jwl)e”

LEMMA 2.3. Letn >2,0<p< 1, geN, pg 2 n+1, and n € 8. Define
B(4)=E,(4), A€ (1),

h(t 2) = :

(2 +t- t(z:"?))q,
Then there exist My = My(p,q) = 8 and o = alp,q, M) €

t>2, ze¢ B

c (0,1) such that

(2.1) [15)() = Re k(Mo A™2, )11, 5y < @V(A),
Oh(My A2
22) e I (S PP
% Ap(B)

for all A € (0,1).
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Proof. 1. By Lemma 2 of [Al] (see also [R2], Lemma 3.7), there exists
My > 2 such that (2.1) holds if Mo > M.
9. Let M > 2 and A € (0,1). Then put ¢ := MA~2% > 2. Since
Ohlt, 2) tq
Oz; |7 |2+t t{¢,mlett
Lemma 2.2, with @ = pg—~n > 0and b= p—1 > -1, and Lemma 2.1
provide

O, 2) |* A ) Nl el 2 PR
353 A, (B) 2 11— 4t + 2)~L{z,m)|pate
t 2)~Pe o .
<Cpq) (1- t((t,:— g)'l)pq—n < Cp,g)t™" < CaV{(AYM™™.

Now, if M;™Cy < 1 and My 2 Ma, then (2.2) holds. To finish the argument,
put Mg == max{8, M1, My} m

3. Approximation in I?, 0 < p < 1. First, we approximate the char-
acteristic functions of the sets Eq{r) C §.

Let E C 8, R € [0,1], and define A(E,R) = {r{: (€ E, R<r <1}
(the truncated E-cone).

LEMMA 3.1, For p € (0,1), there exists a constant 8 = B(p) € (0,1) with
the following property: Suppose that B = E¢(r) C S (( € 5,7 € (0,1)),
s €(0,1) and R € [0,1). Then there is an f € A(B) such that

(3.1) fl<1on B and Ifl < OHE\A(E, Ry,
(3.2) 1z ~ Re f“lz,p(,s‘) < ﬁO"(E),
(3.3) 105, ) < o(B), 1Si<m

Remark. It is useful to imagine that o(E) and » are small and R is
cloge to 1.

Proof. Put § = swmin{r,(1 — R)} and fix ¢ =
pg > 2n 1 (m particular, ¢ = 2n + 1).

Let {Ck}Y., © Fe(r/2) be maximal with respect to having thg sets
By, (6) pairwise disjoint. Note that NV(§) < V(r), so N 52 < 72" by
Lemma 2.1.

Let My > 8 be the constant provided by Lemma 2.3. We are going to
check that the function

¢(p) € N such that

N i
=Y hu(?) = 2;—; 2+ Mos~2(1 = (2, ¢k))*

k==l
satisfies the conditions (3.1)-(3.3).
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1. Let ¢ € E. First, there exists at most one point {; such that d(¢, x)
< §. Second, given m € N, put Hy, = {Co : 2716 < d(€, ) < 2™6} If
(k € Hppn, then E;, (6) C E¢(4™6); therefore, the cardinality of Hy, is esti-
mated by V(4™8)/V (8) < 4*™ (see Lemma 2.1).

Ou the other hand, if d(¢, (&) = 2™*4, then

iha(€)] € (Mp22™2)~2 < 47™9,
Thus .
IfEI <279+ > @ m <L

el

Now, let £ € S\ E. Then d{¢,{x} > r/2forall 1 £ k < N. Note that

11— pA| > o|1=A|if g € 0,1] and A € I. Therefore |1 - (,QE Ce)| > 2 /8 for
all pe [0,1] and £ € S\ E. Since My > 8 and N§2" < r?™, we obtain
N
£(e6)] < 3 _ Ih(06)] < N(6/7)% < 56207 < o
k=1

To finish the proof of (3.1), it is sufficient to estimate |f(z)| for |z| < R.
In this case |L — (z,¢x}| > 1 — R for all 1 £ k < N. Thus, as above,
1£(2)] € N6%(1 - R)™9 < N§*™5e% < 30
2. Since the union of the E,(26) covers B¢ (r/2), we have NV(25) >
V(r/2), so Lemma 2.1 provides 2*"NV(6) > V(r) = o(E). The triangle
inequality for p-norms, 0 < p < 1, and the estimate (2.1), with A = §, give

N
15— Re flEnqs) < o(B) = NV(8) + 3 ILs, 6
fe=s1
< o(B) - NV(8)(1 - a(p)) < S(p
where 8(p) = 1 —27%(1 - a(p)) < 1.
3. By (2.2), we have

—Re hk“in(s)

Jo (B},

16: 1%, &

< 2 185hw %, o

The proof is complete. w

, <NV(6) < o(B).

Remark. We suppose in Lemma 2.3 that n > 2. On the other hand,
an analogue of this result in dimension one does hold (a similar statement

is Lemma 2.2 of [Do|), so Lemma 3.1 (together with all results below) holds
for all dimensions n.

Now we are able to approximate LSC functions.

LEMMA 3.2. For 0 < p < 1, there eists a constant v = (p) € (0,1)
with the following property: Suppose that ¢ € LSC(B) N LP(S), ¢ > 0, and
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¢ > 0. Then there is o funciion F € A(B) such that

(3.4) |F| <4 onB,
(3.5) v - RGFHEMS) < ')’“Wlin(s):
(56) 1B F I, gy < 9Esy 1S 5<n

Proof. Since ¢ is lower semicontinuous, there is a ¢y € C(B) such that
¥ > o > 0 and +1 approximates ¢ in LP(S). Therefore, we assume that
¥ & C(B).

Coustruct a finite set of (nonisotropic) disjoint balls E,, C S such that a
linear combination of their characteristic functions Z%ml emlE,, cm >0,
approximates 1 from below in L¥(S). More precisely, define Ay, = A(Em, R)
(the truncated Ep-cones) and h = M emla,, such that ¢ ~h>26>0
on § (for some §) and

(3.1 2t = Al sy < (L= AE) sy
Now take {and fix) R < 1 so close to 1 that
(3.8) $—hz8 onB.

Put ¢ = max{l,em : 1 € m < M} and 5 = § [(2c0M). Given B,
x>0, and R € (0,1), Lemma 3.1 provides frm.

Define v = (1 & 3)/2. We claim that the function F := Em 1 Emfm i8
as required.

Since the sets A, are mutually disjoint and coMx» =8 /2, the properties
(3.1) and (3.8) provide ¥ > |F| + /2 on B, so we have (3.4).

Recall that 0 < p < 1, s0 (3.2) and (3.7) imply (3.5). Indeed,

1~ Re Fll gy < 0= RliZacs) + Z SnllLzn = Re fmlZas)

mesl

s(g) T+ BllAlLs s S NelGe s

!\.alh‘

Finally, (3.3) yields

M
) S Z ¢ “a.?-fm“,{p(,a) < Z ko (Bm) < “’lf/)llip(sy

mesl m=1

18:F1%,m
50 (3.6) holds. w

4. Bounded Besov analytic functions. In this section we use Lemma
3.2 to construct a fanction from H®(B) N AL(B) with a prescribed strictly
positive LSC modulus,
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THEOREM 4.1. Let 0 < p < 2 and © € LSC(B) N L™(8), ¢ > 0. Then
there exists a function g € H®(B) N A},(B) such that |g| < ¢ on B and
9" = @ o-a.e

Proof. Define 1 = logp. Without loss of generality, we suppose that
Yop>0and 0<p <l
Suppose, as induction hypothesis, that m € N, {F}7, < A(B) and

(4.1) Re (TZFk) <4y on B,
k=1
(4-2) ”Fm”ip{s) <™ 1”"%””(3
(43) ]M—MCgmﬂmm<www&m

(4.4) 185 Fmli%, 3y < Y™ o[IFe s

Base of induction. Put % = 5. Then Lemma 3.2 yields an F € A(B).
Define Fy := F.

Step m + 1. Lemma 3.2, with ¢ = g — Re (3 1wy Fi) > 0, yields the
function Fiy. Clearly (3.4)—(3.6) provide (4.1)-(4.4) for m + 1. So the
induction construction works.

Define h = 3.7, Fi and g = exp h. Notice that 3" 40, 7™ < oo, therefore
h € HP(B) (see (4.2)), so g € H™(B); moreover, (4.1} gives |g| < ¢ on B.

The standard identification h* «» h and (4.3) provide Re A" = 4 o-a.c.,
hence |g*| = ¢ o-a.e.

Finally, we claim that g € AL(B). Indeed, (4.4) implies h € A%(B); on
the other hand, |8;g| = |g| - |8; h\ < const |9;h|. This completes the proof. w

l<jsn

Remark. We use the same p € (0,1) in the estimates (3.5) and (3.6).
This fact has an explanation. Indeed, if we use a smaller p > 0 in (3.5), then
we obtain a weaker type of convergence for Zk 1Fk, but HP-convergence
is sufficient with any p > 0. On the other hand, we gain in (3.6) because the
Al-norm of F, (which is of interest for small p > 0) can be estimated by
the LP-norm of 4o ~ Re(3j-, Fi) and the latter norm rapidly decreases.

It is natural to ask what happens when the modulus ¢ is not LSC and
has zeros (at least, on the sphere). The situation is complicated alveady for
the space H*(B,), n > 1.

If n > 1, then some LSC hypothesis is not unreasonable. Indeed, let
g € H>°(B), Then

¢ — M,(¢) = 658 Sup lg* (A

is an LSC function on § (for further LSC information see, for example, (R3],
Chapter 12).
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1If we congider a modulug ¢ with zeros on 5, then we have to be careful.
Let n > 1 and g € H*(B). Then { log|g*|do > —oc. In dimension one
this property characterizes the set {|g*| : ¢ € H*(B)}, but this is not true
if n > 1. The following statement is a good example.

THeoREM ([KM], Theorem 2}. Let n > 2. There exists a nonnegative
function ¢ € C(S), ﬂ log v der > —o0, which vanishes ot one point only, but
such that the estimate |g*| < ¢ o-o.e. for g € H®(B) implies g = 0.

After the above discussion we give an immediate corollary of Theo-
rem 4.1.

COROLLARY 4.2. Assume that 0 < p < 2, ¢ € L(9), f € H®(B)N
AL(B), K|f*| = ¢ = kif*| o-a.e. for some constants K,k > 0, and ¢/|f"|
is LSC Then there is o function g € H*(B) N AL(B) such that |¢*| = ¢
g-a.6., and g and f hove the same zeros in B.

Proof Put ¢, = @/|f*|. Then Theoremm 4.1 yields gy € H*(B)NA,(B)
such that |gf| = ) o-a.e. and g has no zeros in B. So define g = fg1 €
H®(B)Nn AL(B). m

5. A correction theorem for A(B)N A;(B). The correction theorem
for the ball algebra (see [A2], see also [R3], Chapter 15, for a presentation
of this result) says that any function ¢ € C(S) can be modified on a set of
arbitrarily small measure in such a way that the new function v, satisfies
the estimate ¥y < « and ¢ = Reg™ for some g € A(B). In the present
section we prove the latter result with g € A(B) N 4;(B).

First, iteration of Lemma 3.2 yields the following approximation lemma.

LEMMA 5.1. Let 0 < p < 1 and M € N. Suppose that 2 € C(B), ¢ > 0.
Then there exists a function Zy € A(B) such that

(5.1) |Zm| <2y on B,

(5.2) ReXy <4 on B,

(5.3) [l4 ~ Re EM”LTJ{S < 'YM“";b”ip(s)a

(8.4) 18520 W, 3) < 775 Wlangsyy  TSIEm

where v = v(p) € (0,1) is the wnsmnt from Lemma 3.2. »

Now we can apply an sbstract approximation scheme from [A2] with
control of the AL-norm,

THEOREM 5.2. Let 0 < p < 2. Suppose that 9 € C(B) and ¢ > 0. Then
there ewists a function g € A(B) N AL(B) such that

Reg<y onB, o{Reg<t}<e
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Proof. Put 9 = 9. We suppose that 1 > ¢ > 0 and 0 < p < I, as
usual. Fix N € N such that

AN < 47P(1 = y)e.

Suppose, as induction hypothesis, that m € Zo, {he}, < C(B), 0 <
1 < 47% on B, and {gx}Tt, C A(B). Assume also that

(5.5) lgx] < 28R4y, < 2V°%  on B,

(5.6} Regy < tx on B,

(5.7) b — Re e[ Gngy < v Wk lIGaggy £ 7V TATPY,
lllGnsy . 4Pk

5.8 oell? (9 < o

(5.8) H619k||‘4p(13)< T S1=3 1<j<n,

forall 0 < k < m.

Base of induction. Lemma 5.1, with M = N and ¢ = 1, yields a
function Xy € A(B). Define go := X,

Step m + 1. Put @1 = min(4~™"1, 1y, ~ Re gm ). Note that ¢4y > 0
(see (5.6)). Again, given M = N +m + 1, ¢ = 11, Lemma 5.1 provides
T Define gmi1 = Xar. Since (5.1)-(5.4) = (5.5)-(5.8), the induction
construction works.

Define

oo
g= Z Gk
k],
We claim that g satisfies the conditions of the theorem. First, the esti-
mate (5.5) yields g € A(B).
Now define auxiliary functions wi, = (¥m — Re gm) — ¥m+1 = 0. Then

m m
Y= ERegk+Zwk + Yrneted
P

=0 L]
for all m € N. Recall that [thm.1| < 4~™1; therefore,

[ ]
Y=Reg+ Y wp,
kem=0)

in ]ﬁrticula.r, Reg < 4. On the other hand, the definition of ¥4, and (5.7)
yie

o{Reg < 1} < Za{wk >0} = Zg{wk - Re gy > 4-~lem1}
k=0 fer=0

< e~ Regilp <YV = L <
k=0 , e 1=
The last property g € AL(B) follows immediately from (5.8). w
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COROLLARY 5.3. Let 0 < p < 2. Suppose that ¢ € C(B), ¢ > 0, and
¢ > 0. Then there exists a function g € A(B) N Ay(B) such that

gl <@ onB, o{lg] <e}<e.

Proof. Notc that g € A(B) N AL(B) implies expg &€ A(B) N Az(B). So
it is suficient to apply Theorem 5.2 with ¢ = logw. w

6. Approximation on great circles. In §5 we considered approxima-
tion with respect to one measure. In the present section we prove a theorem
of type B on approximation with respect to a family of measures, The Besov
version of this result is extremely technical, so we restrict our attention to
the “pure” ball algebra.

Recall that the function

M;(¢) = esssup |f*(A)|  (f € H®(B), (€ S)
AeT '

is an important tool in the investigation of the boundary values of H*(B).
W. Ramey asked (see [R3], 19.22) whether there is an f € H>(B) (or
even f € A(B)), with | f*| not constent a.e., for which Mj is constant. The
following result yields such an f € H®(B).

TuEOREM (Y. Dupain [Du2]). Let ¢ € C(S), ¢ > 0. Then there exists o
nonconstant f € H%(B) such that, for every { € 5,

iz FrA0)] = o(X()  for almost all A € T.

The main result of this section provides, in particular, a nonconstant f €
A(B) with constant M (note that |f*| is not constant a.e. automatically).
To present the corresponding statement, we will use an abstract approach.

DEFINITION, Suppose that K is a compact Hausdorff space, C(K } is the
space of all (complex) continuous functions on K, X C ¢ (K) is a closed
subspace, P(K) is the set of all probability measures on K,and M C P(K).
Let 0 < p < 1. Then the triple (X, K, M) is said to be p-regular if there
exists a v € (0,1) with the following property: For every ¢ € C(K), ¥ >0,
there is an f € X such that

\fl <,
[ = Re fllGngey < V0llEsg, forall we M.

If M = {u} for a probability measure y, then we obtain one of the
equivalent definitions of the regular triple in the sense of [A2].

Tt is important in the above definition that we use the same function f
for all 4 € M, To illustrate this remark, recall that (A(B), 5, i) is regular
for any 1 € P(9) (see [A2), but (A(B), S, P(9)) is not regular.
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The following statements are analogues of Lemma 5.1 and Theorem 5.2
(the details of the proofs are even simpler because we can forget about Besov
norms).

LEMMA 6.1. Let (X, K, M) be p-regular, 0 <p < 1, and M € N. Suppose
that ¢ € C(K), ¥ > 0. Then there exists a Ty € X such that

|Za| < 2M4, ReZm <1,
It~ Re ZutllGoy < V10 g0y Jor cllp€ M.

THEOREM 6.2. Suppose that (X, K, M) is p-regular for some p € (0,1),
e C(K), ¢ >0, end g > 0. Then there emists a function g € X such that
Reg <+ and

p{Reg=19y}=>1—¢ forallpe M. w

Remark. If the space X contains constants, then the restriction ¢ > 0
is obviously superfluous.

The above results are of no interest without explicit examples of regular
triples with sufficiently rich M. So we move to “great circles”. Given ¢ € &,
put Te = {A: A€ T} C 8. Let mg be the normalized Lebesgue measure
on T, (the symbol m corresponds to T). Then define M = {m¢: ¢ €S}
We consider the triple (A(B), S, My).

First, recall a notion from [Du2]. Let {k;}}_y, {m;}j=y CZand N € N.
The corresponding fundamental set is defined by the equality

E({k.?}3{m_?}:N) = {C €5: Rer € l:?—k-;‘?N—-{, %—L"Nt—];):

2m; —1 2m; +1 .
Inz; € [ ;\f , j\f ), 1§j§n}.

Note that often E({k;},{m;}, N) = @, so we consider only nonempty
fundamental sets. A specific geometry of these sets permits establishing the
following lemma on “multi-approximation” in L¥, 0 <p < 1.

LeMMA 6.3 (Y. Dupain [Du2]). For 0 < p < 1, there exists a constant
8 = B{(p) € (0,1) with the following property: Let i be o fundamental sel
and 3¢ > 0. Then there is an f € A(B) such that

(6.1) F(2)l <1 fzeS,  (f(2)<x freS\E,

6.2) {11e(¢) - Re FOQP dm(A) < Bmg(Te NEY + 5 for all( € 5.
T
Remark. The geometry of the fundamental sets plays a very important
role only in the proof of the above lemma. In applications it is esgential that
fundamental sets in the Nth generation are small provided N is large.

PROPOSITION 6.4. The triple (A(B), S, M) is p-regular for all 0<p<1.

icm

Approzimation by Besov analytic functions

Proof Let € O(S), P >0, ”'tﬁ“g(s) =1. Put

1-8
2 Enegqﬂr AP dm()) > 0.
Take N sufficiently large and represent the s

fundamental sets

£ ==

phere as the union of disjoint
{E;}7-, such that, for some § = é(e) > 0, e

m
1
Y€l < > als, < Y-8, a; >0
Jj=1

Put A:max1<j<m{a. 1} G- .
<i< i 1p. GGlven the sets F,; and s = =1
Lemma 6.3 yields functions f;. Define 5 and x := (mA)~  min{e, 4},

f = Zﬂjfj.
=1

1. Let ¢ € Ej. Then (6.1 id ,
therctons 1] < o (6.1) provides ()] < a5 +mAsx < a; 4+ 6 < p(¢),

2. By (6.2), we have

m

er [$(A) — Re FAQIP dm(X) < e+ Y a? [ [15,(A¢) — Re (AP dm(A)
i=1 T
S e+mhsx+ B [w(A)P dm(r)
T
<EE2 oo amy foralges
i

So (A(B), 8, My) is pregular with v = (8 +2)/3. m

COROLLARY 6.5. Let ¢ € C(S)
Lo 5. 9 >0, and e > 0. Then there exists
function f € A(B) such that |f| < ¢ and me{|fi=@}>1—cforallC e Sc.l

Proof Let ¢ > 1. Then we apply The
' -2 —4
the exponent. Ppiy orem 6.2 for o = log ¢ and take

Remark. If (X, K, M) is p-regular, then an abstract analogue of the

above corollary holds. To i ;
Theorem 37, prove this, we have to use the technique of [A2],
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Multiplicative functionals and entire functions, IT
by

KRZYSZTOF JAROSZ (Bdwardsville, TI1,)

- f];.[s:l:r;ct. Fet A ’be1 a com_plex Banach algebra with a unit e, let ¥ be a nonconstant
entire function, and let 1" be a linear functional with T{e) = 1 and guch that ToF : A
is nonsurjective. Then T is multiplicative, TATE

1 Introduction. Let 7' be a nonzero multiplicative functional on a com-
plex ]?)anach algebra 4 with a unit e, and let A~ denote the set of all
invertible elements of 4. Then T'(e) = 1, and T(z) # 0 for any z € A~}

A.M. Gleason [5] and, independe: /
pendently, J. P.Kahane & W.Z
proved that the converse implication also holds. elosko 18, 1]

THEOREM 1 [G-K-Z] If T is a linear functi
: r funct ! m .
Banach algebra A such that T(e) = 1 and ol om a compler unttal

T(z}#0 forre A,
then T is multiplicative.

In. fact, they proved even a stronger result.

THEOREM 2 [G-K-Z|. If T is a linear functi
: nctional on ;
Banach algebra A such that T(e) = 1 and a compler unital

{1) T(z) #0 forz €expAd,
then T' is madtiplicative.

mnﬁ[e]ref exli A -::l{expy ty € A}, In 1987 R. Arens asked if the expo-
tial function above can be replaced by an arbitrary nonconst: i
Fanction F, that is, whether ! et entive

T(z) #0 foraze F(A)={F(y):ye A}
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