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Multiplicative functionals and entire functions, IT
by

KRZYSZTOF JAROSZ (Bdwardsville, TI1,)

- f];.[s:l:r;ct. Fet A ’be1 a com_plex Banach algebra with a unit e, let ¥ be a nonconstant
entire function, and let 1" be a linear functional with T{e) = 1 and guch that ToF : A
is nonsurjective. Then T is multiplicative, TATE

1 Introduction. Let 7' be a nonzero multiplicative functional on a com-
plex ]?)anach algebra 4 with a unit e, and let A~ denote the set of all
invertible elements of 4. Then T'(e) = 1, and T(z) # 0 for any z € A~}

A.M. Gleason [5] and, independe: /
pendently, J. P.Kahane & W.Z
proved that the converse implication also holds. elosko 18, 1]

THEOREM 1 [G-K-Z] If T is a linear functi
: r funct ! m .
Banach algebra A such that T(e) = 1 and ol om a compler unttal

T(z}#0 forre A,
then T is multiplicative.

In. fact, they proved even a stronger result.

THEOREM 2 [G-K-Z|. If T is a linear functi
: nctional on ;
Banach algebra A such that T(e) = 1 and a compler unital

{1) T(z) #0 forz €expAd,
then T' is madtiplicative.

mnﬁ[e]ref exli A -::l{expy ty € A}, In 1987 R. Arens asked if the expo-
tial function above can be replaced by an arbitrary nonconst: i
Fanction F, that is, whether ! et entive

T(z) #0 foraze F(A)={F(y):ye A}

1881 Mathemati ] ) jon: Pri
4615 o ematica Subject Clagsification: Primary 46J05; Secondary 46H05, 48H30,
Research was supported in part by a grant from the International Research & Ex-

changes Board, with funds id Nait}
, provided by the National Endowment for th i
the U8, Departient of State. oot for the Humenities and
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implies that 7/T(e) is multiplicative. In this note we prove the Arens con-

jecture. )
The Gleason-Kahane—Zelazko theorem has been extended in several

other directions; a number of problems remain open 6], see also (1], (2]
and [7] for another version of the Arens conjecture.

2. The result

THEOREM 3. Let A be a complex Banach algebra with a unit e, let F be
a nonconstant entire function, and let T be a linear functional on A. Then

(i) if F' is nonsurjective then T'o F 1 A— C is nonsurjective if and only
if either T'/T(e) 1s multiplicative or T=0,

(i) if F is surjective then ToF: A C is nonsurjective if and only if
T=0.

Notice that we do not assume that T is continuous.

COROLLARY 4. Let A be a complex Banach algebra with o unit e, let F
be o nonconstant entire function, and let T be a linear functional on A such
that T'(e) = 1 and
(2) T(z)#£0 forxz € F(A).

Then T' i3 multiplicative. )

COROLLARY 5. Let A be a complex Benach algebra with o unit e, and

let F' be a surjective entire function. Then the linear span of F(A) is A.

Proof of Theorem 3. Assume first that T' is a multiplicative func-
tional and F is a nonsutjective entire function. By the Weierstrass Fac-
torization Theorem [3] any nonsurjective entire function F is of the form
F(z) = o+ exp g(#) for some entire function g and a constant g. For any 2

in A we have
T o F(z) = T{ae +expg(z)) = o+ exp(g(Tz)) # a,

gso T o F: A — C is nonsurjective.

To prove the remaining parts of the theorem we need to show that T is
continuous.

LEMMA 6. If T o F : A — C is nonsurjective then T is continuous.

Proof. Since F is nonconstant there is a point 2z € C such that
F'(zo) # 0. Replacing F(z) with F(z + z0) — F(zo) we may assume that
F'(0) 5 0 50 that F(z) = 3 oy @n2™ s a homeomorphism on. & neighbor-
hood U of the origin. Let

(F* v) -1 (w) p=‘-“ Z Brw™
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for all w sufficiently close to 0. We have

o0 oo
k
o n
w };ak(gﬁnw ) = a1 fw + (0182 + B )w® + (. )w?+...
Sll’.lCG the power series representation is unique @18 = 1 and all th f
ﬁmez;ts of 1:;110 higher pGWfI’ﬁ of w are zero. Hence for all sui‘ﬁcientlye sig(;li
fhf maweF ax;z Fo (F]U) (z) = &, 50 (Flyy)~* also defines a local inverse of
the map I : A — A. Tt follows that the range of F : A ~» 4 has a nonempt
interior in 4. However, each discontinuous functional on any Banach s ace
maps every open nonempty subset of the space onto the set of scalarspgze
. ¥

#T: A C were disconti
nuous, then T o F would be surjecti
‘ 8
to our assumption. m iective, contrary

To end the proof of the theorem
;] we assume that T . :
nonsurjective and we consider two cases: oF : A —- Cis

Te#0 or Te=0.

We show that in the first cage F is 1 jecti
' . nonsurjective and i ipli
tive, and in the second case T = 0. ’ T/()Is maltiplica-

Case Te # 0. Dividing b
. vy 1e we may th i

genorality, that T o1 y then assume, without loss of

By [9], 7" is multiplicative on A if if T i i

y 9, and only if T is multiplicative on ever

commutative subalgebra of A, so without loss of generality we may assum}ef
that our algebra is commutative.

For any x, ¥ in a commutative al

; gebra we have 2y = ((z+y)*—(z—y)?
N » > * a - - y 4

:ﬁ to proxfe' that T 1s.mult1p11c:at1ve it is suflicient to show that it preslrlr{es
the opgraitlon' of taking the square. Thus it is sufficient to prove that T
is multiplicative on subalgebras with one generator. Consequently, we may
assume that A hag a single generator. ’

Step 1. We now show that without | i

. @ oss of generality we may also
asgume that F'(2) = exp g(2) for some entire functi

| XD ¢ ) G on g, and that ‘

OET o F: A= C is C\{0). o enc that the range

Aggume that F(z) = Y00 0,2" is surject i

/ Ry jective, Then, =

any A € C we have e ] siace Te) = 1 for

N ) e 0] o]

() ToFA) 270 =T( Y anleN)™) =Te( > aX") = FO),
n==0 ne=(

80 the range of i:’oF : A ~» C contains the range of F : C — C. Hence, by our

;?gurgptlon, F is nonsurjective. By the Weierstrass Factorization Theorem

d is of the f?rn‘i F(z} = a-+exp g(z). Since T is linear, T'o F is nonsurjective

if and only if 7" 0 exp g is nonsurjective. Hence we may assume that a = 0,
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so that
F(z) = expg(2)-
It follows that the value missing from the range of F' considered as an

entire function on the complex plane is zero. By (3) the number missing
from the range of T o F : A — C s also zero. =

Step 2. We now prove the theorem for the disc algebra A(ID), that is,
for the algebra of all analytic functions on the open unit disc I that extend
continuously to I, and later we show how the general result follows from
this special case.

S0 suppose that A = A(D). Denote by Z the identity function on C,
and fix a nonzero complex number A = ret?. Since ¢ is a nonconstant entire
function there is a region (2 in € such that g is one-to-one on the closure
2 of 2 and ¢(£2) is a closed disc of radius r and center at some point wo.
The existence of such a region 2 is obvious if g is a linear function; if g is
a nonlinear entire function then the derivative of g is unbounded and the
existence of (2 follows from Bloch’s Theorem 3]. By the Riemann Mapping
Theorem there is a conformal homeomorphism s from the unit disc onto
12, and since the boundary of {2 is homeomorphic to the unit circle, s can be
extended to a homeomorphism between the closed unit disc T and 2
(see [4]). The function

f(z) := (g o #(z) — wo)/7
is an analytic homeomorphism of T onto itself. Put
w(z) = #(f7(e¥2)).
We have v € A(D) and g oy = AZ + wp. Hence, by our assumption,
(4) T(e* ) = T(e°¥ ) = e " T(F(¢)) # 0.

The rest of this step runs now exactly as in the original papers by Gleason (5]
and Kahane & Zelazko [8].
Put

(5) (p()\)=T(6)\z) :T(i ()\Z)n> ziT(Zn))\n'

n=

For any A we have
(M| < 1T - eI = 1T jle

and by (4), ¢(A) # 0, so by the Weierstrass Factorization Theorem and by
Hadamard’s Factorization Theorem [3],

o(A) = e,
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Comparing (5) and (6) we get
T(Z") = (T(Z))* forneN

Since polynomials are dense in A(D) it follows that T is multiplicati
‘ ’ demase ultiplicative of
the form T'(f) = f(a) for f € A(D), where o = T(Z). ’ °°

' Step 3. Let now A be an arbitrary complex Banach algebra with a
gingle generator x, that is, the polynomials of x are dense in A, The spectrum
K of x is simply connected and without loss of generality we may assume
that K is a subset of the open unit disc. So for any a(2) = Y~ 2™ in A(ID)
a(z) = 5 7az" i8 a well defined olement of A. We define T : A(D) — C by’

T(a) = T(a(z)).

Then T is a linear functional which maps F(A(D)) = {e?® : a € A(D)}

into C\ {0} and such that T{e) = 1. By the previous steps T is continuous
and there is o € D such that

Tla)=a(a) fora € A(D).

So 7' is multiplicative on the dense subset {a(z) : a € A(D)} of A. Since, by
Step 2, T is continuous it follows that T is multiplicative.

. Case Te = 0. We still assume that T'o F : A — C ig not surjective.
S?nce Te =0, the value missing from the range of T' o F' is not 0, so we can
dwic;'le T by the missing number and assume without loss of generality that
T o F does not assume value 1. As before, we first consider the case when
A is the disc algebra A(D).
~ Fix a nonzero complex number X = re' and a positive integer n. As
in Ste.p 2 before, by Bloch’s Theorem and the Riemann Mapping Theorem
tlj.ere is a region §2 in € such that F' is injective on §2 and F(7) is a closed
dise pf radiug r and center at some point wy. Notice that in contrast to the
previous case the region 2 is selected directly for the function F', and not
for the function g = In F' which may not be well defined now. Put

F2) = (Fosez) —wo)fr and ¥(z) = w(f~ (e¥2").

We.hawc ¥ € A(D) and F o = AZ" + wy. Hence, by our agsumptions, for
arbitrary A we have

AT(Z™) == T(AZ™) = T(F otp — woe) = T(F o) # L.
Thus T(Z™) = 0 for n € NU {0}, so T = 0.
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Now, if A is an arbitrary Banach algebra and Ap its subalgebra with a
single generator, it follows from the disc algebra case, exactly as in Step 3
before, that T is zero on Ag, and consequently T' is zero on A, w
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