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Besov spaces on symmetric manifolds—the
atomic decomposition

by

LESZEK SKRZYPCZAK (Poznad)

Abstract. We give the atomic decomposition of the inhomogeneous Besov spaces
defined on symmetric Riemannian spaces of noncompact type. As an application we get
a theorem of Bernstein type for the Helgason-Fourier transform.

Several function spaces on R™ admit an atomic decomposition in the
sense that every member of the space can be decomposed into a sum of
simple building blocks, called atoms. The decomposition, which comes from
the theory of Hardy spaces, proved to be useful for function spaces defined
not necessarily on R" (see, e.g., [14], [15]). In this paper we describe the
atomic decomposition of inhomogeneous Besov spaces on symmetric spaces
of noncompact type. Both the function spaces and atoms are defined in terms
of the Helgason-Fourier transform. Although our approach is non-Euclidean,
our Besov spaces coincide with the Besov spaces defined on Riemannian
manifolds by H. Triebel [20] via uniform localization and our decomposi-
tion is analogous to that given by M. Frazier and B. Jawerth [7] for Besov
spaces on R™. This is closely related to the inhomogeneity of the spaces. On
the other hand, our theorem of Bernstein type differs from the Euclidean
one.

The paper is organized as follows. In the first section some basic facts
about symmetric manifolds of noncompact type and the non-Euclidean har-
monic analysis are recalled. Section 2 contains definitions of atoms and Besov
spaces. In particular, we prove a formula of Calderdn type that takes a cru-
cial part in our construction. The main result is proved in Section 3. In the
last section we prove several simple applications, including the theorem. of
Bernstein type. .

Throughcut the paper we use the term “symmetric Riemannian mani-
fold” instead of “symmetric Riemannian space” and reserve the term “space”
for function spaces.
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1. Preliminaries. We first recall the basic notation of Fourier analysis
on Riemannian symmetric spaces of noncompact type. General references
are [12] and {10]. Let G be a real semisimple Lie group, connected, noncom-
pact, with finite center, and K be a maximal compact subgroup of G. Let
g =t @5 be the Cartan decomposition of the Lie algebra g of G and ¢ the
corresponding Cartan involution. The point 0 = {eX'} is called the origin in
the coset space X = G/K. We have a natural identification between s and
the tangent space of G/K at o. The Killing form of g induces a K-invariant
scalar product on s, and hence a G-invariant Riemannian metric on G/X.
The map ¥ — y = (expY) - o is a diffeomorphism of 5 onto G/K. Set
ly| = |V|. It is the distance to the origin in G/K.

Fix a maximal abelian subspace ¢ in 5. Let M be the centralizer of u
in K. Denote by a* (resp. af) the real (resp. complex) dual of a. The Killing
form of g induces a scalar product on a* and a C-bilinear form on of. Denote
by X the root system of (g,a). Let W be the Weyl group associated with
3 and let m,, denote the multiplicity of the root oo € X. Choose a Weyl
chamber a; in ¢ and the corresponding set Xy of positive roots. Let oy be
the closure of at, and a%, a¥ the similar cones in a*.

Let g = £ @ a @n be the Iwasawa decomposition of g. We have the
corresponding decompositions of the group G: the Cartan decomposition
G = K(expa;)K and the Iwasawa decomposition G = K expalN. Here N
is the analytic subgroup of G corresponding to the nilpotent subalgebra n.
Denote by k(xz) and H(z) the Iwasawa components of z € G in K and o.
We put

A(gK, kM) = —H (g™ 'k).
The value exp A(z, b) is the complex distance from o to the horocycle in X
through z with normal b. Finally, let

o(H) = % S maa(H) (Hea)
acXly
and let n =dim X, e =dima, d=n — c.

We identify functions on X with functions on G, which are K-invariant
on the right. The homogeneous space B = K/M = G/MAN is called the
boundary of X. We denote the action of G on X and B by (g,2) — g %
and (g,b) > g(b). If f is a suitable function, e.g. continuous with compact
support, then its Helgason-Fourier transform is the function on a* x K/M
given by

HE(b) = f(;c)e(—\/:TA+g)A(:c,b) dz

Fl@)elV =GR go b= kM, (A, kM) € o* x K/M,

Qe e
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dz being a suitable normalized G-invariant measure on X and dg the Haar
measure on G. The map f — Hf can be extended to an isometry of
Lo(G/K) onto La(aX x B, du(A)db). Here db = dkM denotes the G-invariant
measure on B such that db(B) = 1. The Plancherel measure dy is given by

dp(A) = |c(A)|~2dX where c(}) is the Harish-Chandra c-function. One has
the inversion formula

f(z) = const - S
a*x K/M

HE( kM )e =M+ H =" R g, 3y g M.

The Helgason—Fourier transform can be represented as the composition
Hf = F(R(f)) of the Radon transform

RE(H kM) =™ | f(k(exp H)nK)dn (H €, k€ K)
N
and the Buclidean Fourier transform on u,
Fg) = {g(@)e V" PEgg  (rea”).

A

If the function f is bi-K-invariant then its Helgason—Fourier transform is
kM-independent and in consequence it is a W-invariant function on a*.
Moreover, it can be represented as the composition Hf = F(A{f)), where
A is the Abel transform
Af(H) = e#) | f((exp H)n)dn
N
The Ly-Schwartz space Cp{X) on X, 0 < p < 2, is defined as follows:
Cp(X) ={f € CF(X):
sup (H)"Z~P(H){f(Dy : ky(exp H)ksy : D3)| < o0

ky koK
Hea

(H € y).

(Dl,Dz & U(g); > 0)}

Here, f(D1 : k1(exp H)ks : Dy} denotes the natural action of Dy, Dy € U(g)
(the universal enveloping algebra of g) on f € C°°(G) and

Z(gK) = S e~ 2" k) gi.
K
The space Cy(X) equipped with the natural topology becomes a metrizable
Fréchet space. The space C§°(X) of test functions is a dense subspace of
Co(X) and Cp(X) C Co{X) if p < q. The space Cp(X) is contained in L,{X)
for ¢ > p but not for ¢ < p. The space C,(X) dual to Cp(X) consists of
those distributions on X that can be extended to continuous functionals on
Cp(X). The spaces C,(X) become locally convex topological vector spaces
when equipped with weak topology. The image of the space Cp(X) in the



918 L. Skrzypczak

Helgason—Fourier transform can be explicitly described (see [4]). In particu-

lar, Hf(-,b) € S(a*) (the Schwartz space on o*) for any f € Cp(X) and any |

b € B. Moreover, the spaces Cp(X), p < 2, do not contain functions with
compactly supported Helgason-Fourier transform.

The convolution on G of a bi-K-invariant function with a K-right invari-
ant function is K right invariant and therefore it induces the “convolution”
on X of two functions one of which is K-invariant on X. We will denote this
“sonvolution” in the same way as the convolution on G. It is known that
the Helgason-Fourier transform of the “convolution” of suitable functions
is equal to the product of the corresponding Helgason~Fourier transforms.
The definition can be extended to distributions (see [12, Ch. IT, §5]).

2. Besov spaces and atoms—definitions. In this section we define
Besov spaces and atoms we will work with. Moreover, we prove their sim-
ple properties needed in the next section. From our point of view the most
significant difference between the Euclidean spaces and the symmetric Rie-
mannian manifolds of noncompact type is the exponential growth of vol-
umes of balls in the second case, if the radius tends to infinity, This is why
it is not reasonable to define spaces of Besov type via behavior of functions
with compactly supported Fourier transform. So we choose the approach via
“pnon-Euclidean local means®.

We start with the construction of a continuous resolation of unity on o*.
Let A be the Laplace-Beltrami operator on X and let I = —A — |g|?. Let
k be a K-invariant C*°-function on X and let x = A(k). We assume that &
is a radial real-valued function and that

suppk C 2(0,1), HE({0) #0.

Here (z,7) is a geodesic ball. Let Y = 'k and &" = A(k™). Then
HETYA) = APV HE(A) and & = A (k), where A, denotes the euclidean
Laplace operator. We recall that H(k™) = F(k"). The function F(x"} is
radial and admits real values on a* since &" is real-valued and radial. Let
Ag € o0” be different from 0. We may assume that

T dt
(1) J(FRY)(th0) = =1
a
The last integral is absolutely convergent. By dilations and rotations the

identity (1) is valid for any A € a*, A # 0. We define

' : dt
(2) (Fron)(A) =1~ S (FuN)2(EA) e
1]
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Then (Frg n)(0) =1 and
< dt
(3 (From) = (720 L.
1
The identities (1) and (2) imply F(so,n) € S(a*) and &g y € C5°(a). Thus
1

(4) Hko, + | (HEV (1) % -1,
0

where ko, = A ko, If f € Ly(X) then the following formula of Calderén
type holds:

) £(o) = (Fx o)) + | (7 Y %k ))&
0

(convergence in Ly(X); see [17]), where kY = H~1(HEN (¢-)).

pEFINI’I‘ION l.Let ]l <p<oo,l <g<oco,and s ¢ R Let N be a
positive integer such that 2N > |s|. Let {ko, & }o<i<1 be the system of
functions defined above. Then -

) B0 = {7 el 11 B, 001 W)

1

/e
=1 ko | L1+ { fel ek Lp(X)HG’%)l <o}
0

Remarks. 1. The expressions in (6) are of course norms that depend
on N and the given system of functions &Y. It will be proved that different
systems define equivalent norms.

2. In the Euclidean case the above approach to the Besov spaces is due
to H. Triehel [21].

3. It was prove in [16] that for 1 < p < oo,
(7) By (X)) = (Hp(X), Hp (X ))s,q

where H;(X) is the Bessel-potential space and (, )g,q denotes the real inter-
p(?lation method. In consequence the above defined Besov spaces coincide
with the Besov spaces defined on X by uniform localization (cf. [20}).

In the next lemma we prove the properties of the system of functions &Y
that will be needed in our constructions of atoms.

LEMMA 1. Let kY, 0 <t < 1, be the system of functions described at the
beginning of this section.
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(a) There is a constant C depending on k and N but independent of ¢
such that

(8) 6 o < Gt and {K L SC (0<t <)
(b) For any f € C1(X) we have

1

dt

(9) f=f*ko,N*ko,N+S(f+f*k;o,N)*k£V*ki\’-{.
0

The convergence of the integral is understood in the Cy(X) sense.

Proof. To prove the first inequality we use the well known estimates
(10) Ic(,\)|_2§0(1+1)\|2)d, d=n-q, a=dma.
We have
kN¥()| < sup e {HEV(N)] le(A)]2 dA
2€0(0,1),bEB o
<o | [HEY ()L + AP 2 dA
n*
<ot § HEY )| + MDY 2ax < 617,
u'k
since 0 < t < 1 and HEY € 8(a*). The second inequality is a consequence
of the first one and the polynomial growth of balls near the origin.

The proof of formula (9) is similar to the proof of formula (47) in
[17). Therefore we sketch it only. A standard argument with a Dirac se-
quence consisting of compactly supported smooth bi-K-invariant functions
shows that the smooth functions are dense in C{(X). On the other hand, if
f € 0®°(X)NC{(X) then using the dominated convergence theorem one can
easily see that there is a sequence {f.} C C§°(X) such that f, — f in C1{(X).
Thus it is sufficient to prove (9) for f € C§°(X) and the Ly-convergence. Let

1

Felo) = ((F + £ % ko) kY % k() %‘3 £> 0.
Then )
1
HF(\B) = (Hf +HHhon) (A, b) | HEY (2) %’?

£

and by (8), | fell2 < CIIf + f * kf'||2log (1/€). So, as & — 0,

1
If = £+ ko xkg — fell < H’hff — HfHko,n (Hko,N SRLGLAPRCY 5’})

. dt
—Hfé(mc;’"f(t)\) T”z 0.
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COROLLARY 1. Let ~o0 <8< 00, 1 <p< oo, 1 <q<oo. Then

(a) (?§°(X) C By (X)) (topological embedding),
(b).'cf s > 0 then (6) with ||f|, instead of ||f x ko] is an equivalent
norm in By (X).

Proof. First we note that I'k{¥ = t72k}™! becaunse A(FEY) =

~Ap(r)) and —Ag(wl') = t725 T Let f € C5°(X). By the above re-
mark and (8), we have

1

8 1/p
11 BEgll < Cl oo + (gtq<2N~s>n panis %)
0

< O flloo + 117 flloo)
since 2N — s > 0. If § > 0 then

1
7l < 1w Bovlly + § 16 %R k) &
0

1 1/q
< |If * kol + C(St‘“f”f*ktf‘f”g ?) ’
0
where the last inequality follows from the Hélder inequality.

Now we define atoms that will be used in the decomposition of the Besov
Spaces.

DEeFINITION 2. Let £2 = £2(z,7), 0 < r < 1, be a geodesic ball in X. Let
seRand 1 <p <oo. Let I and M be integers with

(11) L>([s]+1)4+ and M >max([-s],~1),
where d =n — @, n = dim X, o = dima and (t)+ =max(t,0).

(a) A smooth function a is called an s-atom centered in {2 if

(12) suppa C 2{z, 2r),
(13) sup [(IMa)(z)] <1 for any m < L.
wE X

(b) A smooth function a is called an (s, p)-atom centered in §2 if
(14) suppa C 2(z, 2r),
(15) 22.%7 |(I'™a)(z)| < P=2m~"P  for any m < L,
(16) DP(Ha){0,b) =0 for any B3, |8] < M, and any b € B.
If M = ~1 then (16)-means that no moment conditions are required.

The following lemma is a simple consequence of the definition.
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LEMMA 2. Let a be an (s, p)-atom centered in 2(z,7) (an s-atom centered
in Q(z,7)). Then the function ag, g € G, defined by ag(z) = alg™'z) is an
(s,p)-atom centered at 2(g - z,7) (an s-atom centered in (2{g - z,r)).

Proof. The estimates of I'™a, are obvious since {' is an invariant dif-
ferential operator. The formula

(17)  Alg- =, g(b)) = Az, b) + Alg - 0,9()),
(see [13]) implies
(Hag)(A,b) = e VT4 (Ha) (A, g7 b).

Thus the moment condition is a consequence of the Leibniz rule.

ge G, be B, o=¢kK,

The atomic decomposition of Besov spaces with p = 1 requires a rigid
control on the location of the support of the atoms, therefore we need some
coverings of the manifold X. Let rj, j = 0,1,2,..., be a sequence of positive
numbers decreasing to zero. Let (2; = {£2(,,75) 152, bea uniformly locally
finite covering of X by balls of radius r;. The sequence (23,7=0,1,...,0f
coverings is said to be uniformiy locally finite if there is a positive constant
C such that for every j and every # € X the point z is an element of at
most C balls of the covering 2.

LeMMA 3. Let X be o symmetric manifold of noncompact type. There is
o uniformly locally finite sequence {(2;} of coverings of X by geodesic balls
of radius r; = 279, (2; = {2(x;4,75) fien; =0, 1, .. Moreover, if l € N
and (2;; = {§2(z;,,1r;) }ien then the sequence {22}, 5 =0,1,..., 1s also
uniformly locally finite.

Proof We sketch the proof only since the arguments are standard.
Tet 0 < r < 1. We show that there is a uniformly locally finite covering
{2(z;,7)} and a positive constant ¢ independent of 7 such that 2(zq,cr)N
2z er) = B if i # . Let {(2(y;,3),expy )} i=1,2,..., De a covering of
X by exponential charts. Since the group of isometries acts transitively on X
and the exponential mapping commutes with isometries there are constants
C,Cy independent of ¢ such. that

Chde(exp,, (21), expy, (22)) < dx (71, 22) < Cade(expy, (21), expy, (22))s

71,22 € £2(yi, 4), where de (resp. dx) denotes the euclidean distance {Tesp.
the distance in X). We can find points z,..., 2%, € (11, 3) such that

(18) inf{dy(z,z;)i=1,.... k) <r

and

for any = € {1, 3)

dy(zsz;) > ford,j=1,...,k ¢ j, where

O (3 )

2’ Can/m
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Next we can find points Tx,41,..., %k, € 2{y2, 3) \ Ui.“il {X{z;,r) such that
(18) and (19) are satisfied for k; < i,5 < kp. Since Ty < 7/2 we also have
dx (x4, 25) > 71 for 1 < ky < j £ kg. Continuing this process we construct
the covering we are looking for, with ¢ = min(1/2, C1/(C2+/n)).

Let z € X and Jg = {i: z; € 2(z, (2l + 1)r)}. Then

Cs|Ju| 7T < Z vol 2(z, (21 + 1)r) < vol 2(z, (21 + 1)r) < Ce(2L + 1)™r™.
Jjetq
Thus
|Ja| € Cs(21+1)%c7™,

(s being a constant independent of 2z and [. This finishes the proof.

3. The atomic decomposition of Besov spaces

THEOREM 1. Let s € R, 1 <p< o0, 1 < g< 0. Let L and M be fized
integers satisfying (11). Let {2;}132, be o uniformly locally finite sequence
of coverings of X, 2, = {2(x;4,277)}.

(a) Bach f € By (X) can be decomposed as

(20) f= Z 8i¢; + Z Z 85,i05;  (convergence in C1(X))

ieN F=0 ieN

where a; 15 an s-atom centere_d in the ball 2(w14,1), a4 15 an {s,p)-atom
centered in the ball 2(x;;,277), and s; and s;; are compler numbers with

(21) (ﬂbezm |3”p) 1/p N (i (ZE; |s_,-,i]p)q/p) 1/q <o

3=0
(with the usual modification if either p = oo or ¢ = co).

(b) Conwversely, suppose that f € C1(X) con be represented as in (20)
and (21). Then f € B, (X).

Furthermore, the infimum of the left hand side of (21) over all admissible
representations (for a fized sequence of coverings and fized integers L, M)
is an equivalent norm in By (X).

Proof (a) Step 1. Let & = {F;;} be a decomposition of X into a
sum of disjoint sets such that Bj; C $2(24,:,277). Let GEj; = n~1(E;,;) and
TE;; = GEjq x (2797,279), where v : G — X is the natural projection.
Let (k)Y), 2N > max(s,0), 0 <t < 1, be the system of functions described
at the beginning of Section 2. Let N be an integer such that 2NV > |s]. We
choose integers Ny and Ny satisfying 2Nz > M, 2N; = N + Na. Let {k;‘vl},
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0 <t < 1, be the system of functions described above. We put

) se=r0n( | (3 (F o+ Fxdo)  kY1(6) ‘“)pdg)l/p,

GE;y ~2-i-1 ¢
28) aiu(o) = 551] | [0+ Frko) « KR ™40 T d,
TE;:
X i/
(24) Sz"—:CN,L( 3 |f*’60,N1!p(9)d9) p:
GEy,;
(25) ai(z)=s7t | (Frhom)(g)kom (97 e) dg,

GEo,

where = € G (with the usual modification if p = 00). Here Cn,r, and ¢yt
are constants independent of f and 7,4 that will be described later. We note
that a;,; are smooth K-right invariant functions on G and in consequence
they are well defined on X The K-right invariance of a; ; follows easily from
bi-K-invariance of kY and (23).

Step 2. We prove that a;; is an (s,p)-atom centered in the ball
2z, 279). The proof that a; is an s-atom is similar and therefore it is
omitted here.

Let K & (z;:,277"), 2 € G. Y gK € E;;, g € G then
271 < dx (2K, z;:) < dx((g7 2)K,0) + dx(0,g7" - T4}
< dx((g7*z)K, 0y + 277
Thus (g~ 'z)K ¢ 2(o,t) for t € (27771,277). This and (23) imply a;,(x)
= 0. 8o (14) is satisfied.

Since the operator I'™ is invariant and a;; can be interpreted as a con-
volution we have

97

(Ia;4)() = 35%1’““( } Ixom((F 4 F ko) % k)] % ki %—’5) (2)
931

2 dt

=i § VI Fakon) xRN @I K (g7 n)dg
2“5“‘1GE5,1'

(cf. [13]). But
(™) (w) = 2R ),
Therefore Lemma 1 implies

sup TR (2)] < Co(279) R
2-i-1<e<n—d
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where Cj is a constant depending on N and on the system of functions kév 2,
In consequence,

Mot | sw Mg a)
GE;, 27 TISES20d
g~
oo\ dt
VLU +F ko)« k0 (g) | do

2-i-

X

(et
| I(F+ Fekon) % k1(g)

g~i-1

X(S( sup

Gy FITISESE

< sj_,il S %E

GEB;

P 1/p
dg)

m - ' 1/1-'”
[Tk (g 4) )P dg)

< CRTICO(Z—J')s—Em—n VOl(Ejli)l/p’ < (2—«j)s—2m—n/p_

for any m < L, after an obvious definition of Cn,f.
Now we check the moment condition. We see at once that

(26) DP(Hk;"*)(0,b) = DP(Fk;*)(0) =0

for any multi-index 8, || < 2N», and any b € B. On the other hand, by the
Fubini theorem and the formula (17),

(Haz) (X By =50 | [(F+ Fokon) * kY )(g)
TE;;:

_ o . dt
X

=st | [+ Frkom)*k)(g)
TE;;

® e(—\/:TA+a)A(g'o,b)(f}{ki\fz)()\’g—l(b)) %dg.
Combining the last identity with (26) we get
(27) | DA(Hay,:)(0,8) =0

for any b € B and any 3 with |5 < M.

Step 3. Now we decompose f € B , into a sum of atoms. Easy com-
putations show that

Vb = kN k.
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Thus we can write the formula from Lemma 1 in the following way:

s 277 d
N
f=Fxkong * ko +Z S (f + fxkong ) * ke * ki -
'=02—-j—1
ST 5

J=0 i=1
The last identity leads to the decomposition of f into atoms that are de-

scribed in Step 1.
Moreover,

(S

i ; .
< C(i?w(g ( 2; l(f+f*k0,N1)*kiv|(g)£?>P dg)?/p)qu
=0 pios

G

i o79q ( 2§j ( S W(f =+ f > Ko,y ) * kf(g)lp dg) v %)q) h

<C
=0 3-¥-1 G
o 2—7 - 1/g
<o(Sowm | N0 +ikom) +B15 )
J=0  g-i-t

1 1/q
dt
C’(St"””f* ko, * ki 1|2 )
0

: AR
o[ d)
0

where the second inequality follows by the Minkowski inequality for integrals
and the third one from the inequality g > 1. The proof will be completed
by showing that

e 7 1/ P 3 {kN }
(28) (Y isil) ™ < cllf 1B (XY,

=0
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We have

00 1
—1(Z|Si|p)l < ”f*ko NHP SHf*kt *anl*kN“p

i=0

0
1 1/p
- dt
< Ukl (el ors &)
0
! /g
: ¢ dt
X (SW 1Ko,y % kY |14 —)
0 i
<118 (X))
(see Corollary 1). Thus
1/p = g/p\1/q
20) (X lal) "+ (o (Dlsse®) ) < Cllr B 01,
i€l J=0 igN
This finishes the proof of part (a) of the theorem.
(b) Step 1 Let f =3, ysiai+ 3720 2 sen 54,ij,s With

(ZE[:; }Siip) 1/p N (i (Z ‘8j1i|p)¢I/P) Ve oo

j=0 {eN
Then
3 N
[FARE o1kt
: A
< H 8;0i % k ” +( 1% S50 )
'EGZN i o0,N . g 12 [ v n
g gt\M/9
HZZSJ.,,OW*IGGNH +( t'-sq ZZSJ”%* t) .
J=0igN F=0 ieN

We estimate each summand separately. The estimates for the first and the
second term are independent of s. Estimating the last two terms we consider
two cases: s > 0 and 8 < 0.

Step 2. We estimate the first and the second summand. The inequality

(30} H %.sia,' *kg,NHp < O” f;l;sg-ai‘ ) < C(iezwlsilp)l/p

is obvious since the covering is uniformly locally finite and the functions a;
are uniformly bounded, (see (12}, (13)). To estimate the second summand
we note first that

o k¥ llp = 2V 0 as 5 kelp < O,
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S The rest of the estimates runs as follows:
b
1
1 th —g N q dt
(gl s)” (el g en)
0 ieN [0} J==0 €N
/g —k
1 a/e dt o 2 1/q
- N it -
<o(jrn( 5 wponsra)’§) <o}, L Semsnn])' )
0 X ielN fo==0 2~ k=1 J=0 " igN

! alp dt)llq \1/p ok
o i N =C Jeel” . . —s 1/p\ g\ 1/q
< C’([S)t (WZN isil ) t (LEZN ) < C(;} (J;O (EZNISJ"IP 2_k_?;§£2_,ct s, *kfvﬂﬁ) ) )
Step 3. Let 0 < s < 2N. The definition of the functions ay,; (see (14),

(15)) implies + c( i ( Z sup

ko

a\1/q
RPICIREANY
iEN B

oo . k=0 | jeki127lgigah
(31) UZZs”a;,t*ko NH <CZ (Z'SM S |as,ql dm) o 3 /
= =0 P, (ki) (27— s\ ) 19
e - | < O( (2 (Slasalr) artees-))
<CY (Z|3j'ilp) Fois k=0 j=0 "ieN
F=0 iGN oS i e .. o\ /g
—(i—k
a/p ”"C(E( Z (Zisj,i|p) 2~0 )a) )
(Z (Z 185, ) ) : k=0 = jek+l ieN
=0 igH
. . a/py 1/q
where the last inequality follows from the Hélder inequality. - ( (Z lsg,llp) )
Tt remains to estimate the last summand. Let J be smallest mteg:r sa;cgh 170 Vien
1 and (14}

that 2J > ([s] +1)+. Then J < N and J < L. From Lemma 1 an (14)-{18) Step 4. We turn to the case s < 0. This is the case in which the moment
we see that Ny 27 (g-sy1-2]. condition is important. We begin by observing two simple facts about the
(32) lla;.: *kN |, < 2|\ Jaj,1||p|ikt v £ C(277) Radon and inverse Fourier transforms. Let # be a smooth function and
and supp f C £2(o,r), r > 0. Let £ be the horocycle through z € X with normal

¥ s P\ 1P kM. The Haar measure dn on N induces a do on the horocycle &, = N - o
(33) H Zsmﬂ"j ixk ” <02 (Z |84.4] ) and by translations on ¢, Therefore,

icN

The last inequality can be proved in the following way: RF(H, kM) = e H) S F(z) do(z)

/p ¢
“ZSj,tﬂj,z'* e || < C'H(lej,élplaj,ilp) *lkiVIH _
ieN P ieN

(cf. [13)). It is not difficult to see that do(2(o,r) N &) < Cr¥ if only r is
sufficiently small. Moreover, it was proved by Helgason [18] that the Radon

<Gy ( VD lspalPlags(my )P dm) dy transform maps C§°(X) into C§°(a x B) and that supp f C £2(o,r) implies
X o suppRf C B(0,r) (the support conservation property.} Thus, there exists a
” constant C' depending on r, but independent of f such that the inequality
CS LAl ?l)(ley,uI” S lagi ()" dfﬂ) dy R d
G ieN el (34) sup  |RF(H,b)| < Crdsup | f(z)]
(H,b)EuxB weX

<027 (Z[Sj,ilp)up.

pore holds for any smooth function f with supp f ¢ 2(o,7), r <r,. On the other
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hand, since

(35) flz)=C S e(\/:T)“"Q)A(w:b)(l + |/\]2)n’
a*x B

X HFB) (L + AR [e(N)| 2 dAdb,
the estimate (10) implies

(36) sup |(z) |<GZ sup  |FALRF(A )]

=g (Mib)Ea* ><B
<O IARE | o),
I=0
where n' = [n/2] + 1.
o terms of the Radon transform the moment condition (16) reads
(37) { HPRa;(H, b) dH = 0,
o
for any b € B and any multi-index 3 with |3] < M.
Now we estimate a;; * ko,nv. Let a{z) = aw(g“ z), €j; = g5.:K, and

= Alkg . Lemma 2 shows that o is an (s, p)-atom centered in 2(0,277).
F&om 37) it may be concluded that

(38) Raxm(Ho)= | Ra(Ho—H)
B(Ho,z_j)
< (mi(H) = S 0%k(Ho)(H — Ho)?/B) dB.
3%

By Taylor’s formula, (34) and (15),
(39) |[Raxm(Hp)|<C |
B(Hu,Z"J’)
< (o ile=n/pEMA14n)
Together with (36), this gives
(40) sup o x ko w(m)| < Orp—ils—n/ptM-t14n)
rEX

|RG(HQ - H)l . iH - H0|M+l dH

where C is a constant independent of 5. But fyxh = (f % h),, and therefore
the inequality (40) is true after replacing a by any a;,; for given j.

The support of the function 2, ixko N is contamecl in (x4, 277 ) if
supp ko, v C £2(0,7,). The covering {.Q(w:,,,, i 4 7o)} is uniformly locally
finite and moreover there is a constant €' independent of j such that at most
(27" balls of the covering have a nonempty intersection. This can be proved
by the standard argument.
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In consequence, similar arguments to (31) show that
@ | EZSJ,zamko o] < G( (S lssal?)™) "

=0 igN = 1€N
The estimate of a;j; * kY is a.bit more difficult since we must take

dilations into account. Let §3p(z) = t~*4(t 1), 9 being a suitable function.
on ¢. Then

(42) Ra(-,b) % &) = 6:(6,-1(Ra(-, b)) x &™),
and in consequence
(43) Hax kY )N, 8) = F(6,-3 (Ral-, b)) % &™) (EN).

Changing the variable in the inversion formula we hence get
(44) axk] (z) =Ct™® S

a*x B

X F(64-1(Ra(-, ) % 6™ )(\)|e(t7IA)| 2 dA db.

We divide the integral in (44) into two parts: near the origin and at infinity.
We conclude from. (10) that

VT A ) Az b)

(45) \ S e(\/m_lt‘“l)\-i-e)fl(m,b)
RB(0,1)x B
% F(6y-1(Ra(-, b)) % &™)N) et N)| 2 dA db
<ct™  § [F(Be-r(Ral,0)) % ™Y + |A[%)#/2 dA db

B{0,1}x B

< o iu%|f(6t-1(Ra(-,b))*nN)(/\)L

Now we estimate the second integral. We have
(46) ‘ ! VT Ab)
{a*\B(0,1})x B
F(6,-1(Ral(-,B)) % 67 YN [elt=22)| "2 d) dbl
<¢c |
(a*\B(0,1))x B
X N[22 el et 10) |72 dadb
< ¢t sup |F(6-1(Ra(-, b)) %X TN,

a*x B

(F (-1 (Ra(,5)) x V)M
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where the last inequality follows from (10) since 0 < ¢t < 1 and from the
inequality 2n’ > n + 1/2.

The functions §,-1 (Ra) satisfy (37). So, in the same manuer as in (38)
and (39) we can see that
(47) |61 (Ra) x &(Ho)|
<ce

B(Hﬂlt—lzﬂj)

< szj(a—n/p+n+M+1)t—M-1.

|Ra(t(Ho — H))| - |H — Ho|+' dH

This gives for t > 277 the inequality
(48) F(64-1(Ral-, b)) x w) (1) € oI rlbemn/prm)y=M-1,

The same is true if we take &™+" instead of x".
So, the counterpart of (40) for ¢ > 277 looks as follows:

(49) sup o x kN (2)] < =M1~ no=j(stn/ptn+M+1)
(see (44)—(48)). We thus get, for £ > 277,
(60 flagix K@), < Ot ¥ I egsomn/pan b,

Using this estimate and the inequality (33) for ¢ < 277 we can show in the
same way as in the case s > 0 that
y p) q/p) 1/q

1
(St*isq i N sjit, * ki Hq dt)
0 j=0icN

Thus we have proved that

B, 01 < (S ls) "+ (3 (Slesa?) ™) "

ieN j=0 ieN
Together with (29), this proves the theorem.

<(n(x

j=0 ieN

(1) |f|

Remarks. 1. It follows imomediately from the above theorem that the
definition of the spaces By  (X) is independent of the function &k and the
integer N with 2N > |s!.

2. There is a group-theoretical interpretation of atomic decompositions
due to H.-G. Feichtinger and K. H. Gréchenig [5, 6]. This approach seems to
be more suitable for homogeneous function spaces. Moreover, it requires the
integrability of the representation considered. In contrast to the Euclidean
case the representations that built up the Helgason~Fourier transform are
not only nonintegrable but even not square-integrable as e¢lements of the
principal series of the group G.
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4. Some applications. In this section we prove several simple conse-
quences of the main theorem. We concentrate on the cases p = 1 and p = oc.
If 1 < p < co then the Besov spaces are interpolation spaces of the corre-
sponding Bessel-potential spaces. So, in that case some of the results below
follow by the real interpolation method.

ProprosITION 1. Let L < p,¢,.q0, 01 < 00 and s, 50,51 € R
(i) (Elementary embeddings)
(52) ;pqo(X)CB;q-l( ) ifQOﬁQl:
(53) B3, (X) C B, (X)  if 51 < s0.
it) (Embeddings with different metrics)

(

(54) Bplo(X) CBLo(X)  if sy =50~n/p,
)
)

(55 BI%,(X) C Byl (X) if so-~n =35 —n/p,
(56 B?,I(X) - Ll(X) - Biw(X),
(57) B, 1(X) C O(X) C B, o (X),

where C{X) denotes the space of bounded continuous functions on X.

Proof The embedding (52) follows immediately from Theorem 1 and
the monotonicity of the sequence spaces [,. Now, (52) implies the embed-
dings Bpo, (X) C Bjo(X) and By} (X) C B.;‘ql (X). Thus it is sufficient
to prove that B;° (X') € Bp% (X). But this is a simple consequence of the
definition of the spaces provided that sp > s;.

If we take the constants M and L in the definition of atoms sufficiently
large then every sp-atom is an sj-atom and every (sq, p)-atom is an (s, o0)-
atom if 37 = sg — n/p. This implies (54). The proof of (55) is the same.

Both embeddings in (56) and the right embedding in (57) follow easily
from the Calderén formula (5), the definition of the Besov spaces and (8).
We prove the right embedding in (57). Let f =), )\iarl-zj ¥ Ajia5: bea
decomposition of f into atoms. Since we deal with a uniformly locally finite
sequence of coverings there is a constant C' such that every point z € X
is an element of at most C balls 2(x;;, “‘-") Thus the series representing
fend o,1{X) is absolutely convergent in the sup-norm. In consequence, fis
a continuous function and

s T+ (2 32 al))

1= % 3 'iEIj,m

< Csup il + 0 Dlsupasal)?)

g
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The constant C is independent of the given decomposition, and there.fore
taking the supremum over  and then the infimum over all representations

of f we get (57).

PROPOSITION 2. Jf s = 0 and 1 < g < oo then the space B (X) isa
convolution algebra.

Proof. Let 9,0 be functions satisfying the conditions {1)~(3) and more-
over let supp®d C 2(0,1/2) and suppé C 2{0,1/2). Then the function
k — © x 6 satisfies the conditions (1)-(3) as well. Moreover, if N = Ny + No
then

kY =90 %6y
because I" is an invariant differential operator and the functions are bi-K-
invariant [12]. Using these functions we get
1

l/q
(Et-”nf*g*kiv 14" ool L) s oo
< 1F 1 B3 g (X - g | BE oo (Xl
Tt remains to estimate the term ||f * g * kw ollp- If 8 > O then
1f % gxkxolh < Cllfll - llgx kol < CIF 1 BY 4 (X - llg | BLoo ()]

Let 5 =0 and 2L > N. Then
I1F % g knolla

< C|\f* (I = D) kol (T = A)Folls

< Cif | B (X
dat
t

)

: dt
% (!lg*kN.olll + sup [lgx kN1 §N (T — AP TV kel “t—)
0<i<l 5

1
> (Hg*kN,CI”l"JV Sg*ky*(]—ﬂ)—‘bk?\r
)

< C|f | B (X))

< CIF 1B - Hlg | BY oo -
This finishes the proof of the proposition.

We also have the following Fourier embedding theorems of Bernstein
type.

PROPOSITION 3. Let 1 € g € 2. Then the Helgason—Fourier transform
H maps Bg’(ql/q"”z)(X) continuously into LI(a* x B, |c(A)|~2dAdb).
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Proof. For p = 2 and ¢ = 2 the theorem is obvious since BY ,(X ) =
Ly(X) (see [16]). If p =2 and ¢ = 1 then the Calderén formula implies

1
[ < 5t o+ R e &
0

1
: di
< 1M N2l HRo,mllz + §IHAHES o7k ||y T
0

1
- dt

< [ flalikoliz + 2 F % kY2 S sup 72| kY5
0 1 te(0,1)

1

- di
<ol femirer e E),

0
where the last inequality follows from (8). For 1 < ¢ < 2 the theorem follows
now by real interpolation.

To formulate our main result of Bernstein type we introduce the following
notation. Let &; be the convex hull of the set {w(p) : w € W}. We put
Ty = 0" ++ /—=18). The set 7; is the tube in o} with base & around a*.

THEOREM 2. Let Ty = a* ++/—18; be the tube defined above. Then for
any f € BY((X) and any b € B the Helgason-Fourier transform Hf(-,b)
can be extended to a measurable function in T1. Moreover, there is o positive
constant C such that

(58) U HAO A+ V=T, eV "2 dAdb < O f | BR4 (X))

a*x B
for every n € 81.

Proof. To prove the theorem we use the atomic decomposition.

Step 1. According to Theorem 1 the constants L and M satisfying
(11) are at our disposal. We take M = —1. The constant L will be described
later on.

Let @ be an s-atom centered in £2(0,1). Then the Eguchi Theorem (cf.
4, Lemma 4.1.1]), Sobolev embedding theorem for Riemannian manifolds
and (12) and (13) imply

(59) sup (14 [A])"|Ha(A,b)] £ C sup

{f(Dy:x: Dy
(ADYET B 2ef(o,1)

L
<0y [Malh <0,
J=0
where Dy, Dy € U(g) and C is the constant depending on L but independent
of a.
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In the same manner we can see that the inequality

(60) sup  (1+[A)"Ha(r,b)| £ C
(Mb)ETx B
holds for any (s, 1)-atom o centered in £2(0, 1) (cf. (14)-(16)).

Now, let a; be an (s,1)-atom centered in 2{0,277). For simplicity of
notation we introduce the operator 6; acting on continuous functions on o
by 6 f(H) = f(tH). We put

o = 2707 R" 0 855 0 R{ay).
The support conservation property implies suppa C 2{a,2). On the other
hand, (34) and (36) imply
sup [(I™a)(z)| <€ forany m < L',
zeX

where I/ = L — [n/2] — 1 and the constant C is independent of 7 and ¢;.
Thus a is an (s, p)-atom centered in 2(o, 1) after multiplication by a positive
constant independent of j and a;. Thus

Has (A, b)| < 27302735 Ha(277 X, B)| < €279 (L+ 277A) ™™
In consequence,
(61) sup (Hoi(Ab)| < C27 (L+ 277 A~
€

and the congtant C is independent of a; and A.
Step 2. If a;, is an (s,1)-atom centered in £2(zj,;,2;), then a{z) =
a4i(g5,i2)s ji = g54K, 1s an (s,1)-atom centered in 2(0,277) and
(62) Mg, b) = el HADAEOIH@, g 1), wET
Let p=A++/—17n, 1€ S. Then
[ (Haji(u ) db < € § e~ (@R iiR) dkssup H{a) (4, b)]-
B i beB
The integral on the right hand side is equal to the value _ /=3, (%5,i) of the
spherical function ¢_, /=7, at 25,

But the spherical functions ¢_ g, are bounded for n € &1 (ck. (12,
Theorem IV.8.1]}. In consequence,

(63) | iHaga(h+v=Tn,b)|db < C27* (14 2792 ™™,
B
In the same way we can prove that the inequality
(64) | 1Mo +v=In,b)[db <O+ Y™
B

holds for any s-atom a;.
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Step 3. Let f &€ BY (X)) and f =3 wsiai+ 52 5 g .a::
the atomic decomposition of f. Then i 270 2oien 53,i85,5 be

{ ‘H(Z siai(A + \/jin,b))| e(N)"% dA db

W% B iEN
SO lsd JUA D)™ ar <Oy s
ieR g iEN
In a similar way

3 S sl § VR0 + v=T0,8)| dble(2) =2 dA

j=0 ieN B

<O (D faaal) § L+ [279AD[e(x)2 A

J=0 €N a*

(o o] [ o]
SOY Y lsiglsup2 Y 2 < 0N S sy

J=0 ieN J el i=0icN

if $ = n. This finishes the proof.

Remark. One can also consider the Fourier image of Bf ; (X) under
the action of the spherical transform '

F) = { pos(@) f(z) de,

X

A E o,

The last theorem is true for the spherical transform since we have f{}\) =
Sg Hf(A,b)db if f € C;. Moreover, using the standard arguments with
boundedness of the spherical functions ¢ with A € Ty, one can prove that
the function f is holomorphic inside 7; if f € BY, (X).
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Sufficient conditions of optimality
for multiobjective optimization problems
with v-paraconvex data

by

T. AMAHROQ and A, TAA (Marrakech)

A.Lbstract. We study multiobjective optimization preblems with y-paraconvex multi-
function data. Sufficient optimality conditions for unconstrained and constrained problems
are given in terms of contingent derivatives.

1. Introduction. Many authors have studied multicbjective optimiza-
tion problems in terms of some tangent derivative notions. Corley [4] has
given optimality conditions for convex and nonconvex multiobjective prob-
lems in terms of the Clarke derivative. Luc [6] also gives optimality con-
ditions when the data are upper semidifferentiable. Luc and Malivert {7]
extend the concept of invex functions to invex multifunctions and study
optimality conditions for multiobjective optimization with invex data in
terms of contingent derivatives. Taa [12] gives optimality conditions with
no assumption on the data but with the Shi derivative which is an enlarged
version of contingent derivative.

In this paper we establish sufficient optimality conditions in terms of
the contingent derivative for unconstrained and constrained multiobjective
optimization problems when the data are vy-paraconvex or compactly -
paraconvex with + > 1. It is shown that the y-paraconvexity data consid-
erably simplify the sssumptions in the optimality conditions. The notion
of y-paraconvex multifunctions has been introduced by Rolewicz [10] and
opennesy and metric regularity of such multifunctions are studied in Jourani
5] (see also Allali and Amahroq [1] for another proof).

2. Preliminaries. Let X and ¥ be two Banach spaces and let F be a
multifunction from X into Y. In the sequel we denote the effective domain

1991 Mathermatics Subject Classification: Primary 90C29; Secondary 49K30.

Key words and phrases: contingent derivative, y-paraconvex multifunction, optimality
conditions, B-tangentially compact, compactly 4-paraconvex multifunction, Pareto mini-
mal point.
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