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if, and only if,
n
rr;,"lz,\;)"j 0  (n—o0)
=1

for each My in o(Ty) which is not equal to one.

A similar result holds for an operator T' which generates a w-compact
monothetic group G(T') of invertible operators in B(X) using the represen-
tation of G(T) in terms of the unimodular eigenvalues of T' given in [4],
Theorem 3.3.
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Cyclic space isomorphism of unitary operators
by
KRZYSZTOF M. FRACZEK (Torun)

Abstract. We introduce 4 new equivalence relation between unitary operators on

separable Hilbert spaces and discnss a possibility to have in each equivalence class a
measure-preserving transformation.

Introduction. Let U be a unitary operator on a separable Hilbert space
H. ¥or any « € H we define the cyclic spoce generated by z as Z(z) =
span{U™z : m € Z}. By the spectral measure 1, of = we mean the Borel
measure on the circle determined by the equalities

Oz (n) = Sz” dpin(2) = (U2, 2)
T
for every n € Z.

THEOREM 0.1 (spectral theorem, see [9]). There ewists in H o sequence
T1,%3,... such that

o0
(1 H = @Z(mﬂ) and gy > P, ...

nml,
Moreover, for any sequence yy,ys, . .. in H satisfying (1) we have po, = phy,,
Hag B fhysy - o

One of the mosl important (still open) problems in ergodic theory is a
classification of ergodic dynamical systems with respect to spectral equiva-
lence, i.e. given a sequence

(2) f P ope .

of positive finite measures on the circle we ask if there exists an ergodic
dynamical system T': (X, B, ¢) — (X, B, o) such that some spectral sequence
(1) for U = Uy (Uy : L2(X, 0) — LA(X, p), Urf = f oT') coincides with (2).
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The spectral type of u, (the equivalence class of measures) is called the
mazimal spectral type of U. By the multiplicity function My of U we mean
the function My : T — NU {+oc} given by

MU(Z) = Z XA, (z)
n=1

where A; =T and 4, = An(U) = {z eT: Z—"fﬂj‘:(z) > 0} (lt is well defined
up to & fty,-null set). Then
T=A1DA42D ...
The set
E(U)={neNU{+oo}: iz, {z € T: My(z) =n} > 0}
is called the set of essential values of the multiplicity function My.

For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have
become of a renewed interest (see [1], [2], [4], [6]-[8], [10], [11]). In [5],
M. Lemanczyk and J. Kwiatkowski Jr. construct, for an arbitrary set 4 C
Nt containing 1, an ergodic automorphism 7' whose set of essential values
of the multiplicity function is equal to A. The aim of this paper is to present
a new viewpoint on spectral classification suggested to me by Professor
Lemanczyk.

Every measure 1 can be uniquely decomposed into a sum u = u® 4 ué
where p° is continuous and pd is discrete. For a spectral sequence g, >
Pz, 3> ... we have ug » pug > ... By the c-multiplicity function M§; we
mean the function M§ : T — NU {400} given by

M (z)= 3 xc,(2)

where Gy =T and Gy = {2 € T+ 3522 (2) > 0}. The set

E(U)={neNU{+o}: g, {z € T: Mi(z) =n} > 0}
is called the set of essential values of the c-multiplicity function M§.
Let D(U) : NU {400} — NU{+oc} be the function given by D(I/)(n) =
card D,, where

D _{{ZEAn\An+l:le1({Z})>0} forn=1,2,...,
e e Mol A s ({2)) > 0} for n = +oo.

In Section 1 we define a cyclic space (s.c.) isomorphism of unitary op-
erators on a separable Hilbert space and we try to find a complete set of
invariants for such an isomorphism. Using the results from Section 1 and
those from [5], we show that in the c.s. equivalence class of every operator
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U : H — H whose maximal spectral type is continuous and 1 € E°(U) we
can find a weakly mixing automorphism.

The author would like to thank Professor Lemanczyk for some valuable
discussions.

1. Cyclic space isomorphism and its invariants

Lemma 1.1 Let Uy : Hy — Hy and U, Hy — Hy be unitary operators.

Then for every unitary operator V - Hy — H, the following conditions are
equivalent.

(i) For every x € Hy, Z(Va) = VZ(z).
() If H is a Uy-invariant closed subspace of Hi, then VH is Us-

invariant, and if H is o Us-invariant closed subspace of Hy, then V-1H
is Uy -invariant.

Proof. (i)={ii}). Suppose that H is a U;-invariant closed subspace of H;
and y € V.H. There exists z € H such that y = Vz. Since Z(y) = V2 (z)

Usty, Uy € 2(y) = VZ(z) CVH

and so VH is Up-invariant. Similarly, we can get the remaining part of (ii).

(it)=>(1). Let = € H,. Since Z(z) is Up-invariant, V Z(z) is Up-invariant.
Since Ve € VZ(z), Z(Vx) C VZ(z). Similarly, if y = Vz then Z(z) =
Z(V~ly) C V7 Z(y) = V~1Z(Vz). This gives VZ(z) C Z(Vz) and finally
ZVz)=VZ(z). w

DEFINITION 1.1. We call a unitary operator V : Hy — H, a cyclic space
isomorphism of Uy and Uy if it satisfies (i} or equivalently (ii) of Lemma 1.1.

H

LEMMA 1.2. Let p1 and v be positive finite Borel measures on the circle.
Assume Uy : L*(T, p) — LA(T, p) and Uy : L2(T,v) — L2(T,v) are unitary
operators given by

Urf(z) = Uaf(z) = 2f(2). _
If Vi L3(T,u) — L3(T,v) is a c.5. isomorphism of Uy and Us then there ex-
i5ts o nonsingular invertible map S : (T, B,v) — (T, B,u) and h € L*(T,v)
such that
Vi=h fof
for every f e LT, p).

~Proof. For A € B put H = x4L*(T, ). Then H is a Ui-invariant
subspace of L*(T, ). By the Wiener Lemma (e.g. [9], Appendix) there exists
a Borel set $(A) such that VH = xa(4)L%(T,»}. From V({0}) = {0} and
V=1({0}) = {0} we see that u(4) = 0 iff ¥(P(4)) = 0. f AN B = § then
XaL?(T, ) L xpL*(T, ) hence

xe() L (T, v) L xgmL*(T,v)
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and finally ${A)NS(B)=0.If A= U2, A, with {An} pairwise disjoint
then

xew B2 (T, 0) = Vxyz, 4. L (T 1)) = v(@lmﬁ('w, ®)

=P V(xa. L (T, 1)} = P xsan (L)
n=1

n=1

= Xum @(An)Lz(T, V),

n=l

hence $(A) = J°°, #(An) and by a standard argument the equality also
holds if {A,} are not pairwise disjoint. Since V(L*(T, u)) = LA(T,v) we
have &(T) = T. Hence T = ${A) UP(A°) and therefore H(A)° = P(A°).

Consequently, @ : (B, g) — (B,v) is a o-Boolean isomorphism. Therefore
there exists a nonsingular invertible map 5 : (T, B,v) — (T, B, ;+) such that
P(A) = 571(A) for every A € B.

Set h = V{(1). For A € B we have 1 = x4 -+ Xa4-, hence A = V(xa) +
V(x4e). But the functions V(x4) and V(x4-) have disjoint supports, so
V{xa) must be equal to A on its support and similarly for V(x.=); hence

Vixa)=h-xa(a) =h x4a085.

Since this is true for any characteristic function, it is also true for linear
combinations of such functions and finally for all f € L?(T, »). Since V' is
unitary, for every A € B we have

p(SA) = HXAUS’”:Li2 dy = ||x a8 |Za g
T

= IV (a8 ey = 1B xal320) = § 1Rdr.
A

Hence |hj? = dpo S/dv. =

LEMMA 1.3. Assume that U4 : Hy — Hy and Us : Hy — Hy are unitory
operators and V : Hy — Hy a c.s. isomorphism of Uy and Usa. Let

o0
H = @Z(mn) ond g, D o, ...

n=1

be a spectral decomposition of Uy. Then

Hy = EDZ(V:J:,,) and v, P Pve, P .

n=1

Moreover, fig,, = ooy f WVen = Mo, and hence E(Ur) = E(Uz).
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Proof. Since V is a unitary operator,

[ae] [» ] oo
B, = V(H) = V(D 2(e)) = DV2(2a) = P 2(Van).
n=1 n=1 n=1

We first show that Z (V) is a maximal cyclic space. Suppose there exists
y € Hy such that Z(Ve1) & Z(y). Then Z(z1) ¢ Z(V~y). This contradicts
the fact that Z(wx;) is maximal. Thus gy, is the maximal spectral type
Of Uz.

Similarly, since V| Z(wq)L 18 & c.8. somorphism, uy ., is the maximal spec-
tral type of Uz|z(va,)+- In this way we conclude that gy, is the maximal
spectral type of Us restricted to Z(Vz,) ® Z(Vzn1) @ ... for every n > 1
and finally that gy, = pyv., > ...

If pte, > fiy,,, but they are not equivalent then we can write
Z(2n) @ Z(Bn41) = Z(zy) @ Z(27,) © Z(Tn+1)

where par L fig,,; and fe € fi, ., (in fact, the latter two measures are
equivalent). Now

V(Z(z) © Z(zn1n)) = 2(Va,) 8 Z(Vay,) @ Z2(Vana);
but Z(z!!) & Z(xn+1) is a cyclic space, hence necessarily
V(2(z}) @ Z(zns1)) = Z(Vay) ® Z(Vani).

This shows that the spectral measures py,» and pya,,, are orthogonal so
WV, ¥ MV, and they are not equivalent. w

Remark. It follows from this lemma that E(U) is an invariant of c.s.
isomorphism. Notice that if z is an eigenvector of Uy, then Z(z) is a one-
dimensional space. Therefore its image via a c.s. isomorphism V' must also
be one-dimensional, hence V' is also an eigenvector (though possibly corre-
sponding to a different eigenvalue). This gives rise to a second invariant of
¢.s. isomorphism. The theorem below explains how a combination of these
two invariants gives rise to a complete set of invariants for c.s. isomorphism.

THEOREM 1.4, Let U; 1 H; — H; be o unitary operator on a separable
Hilbert space, § == 1,2. Then the following conditions are equivalent.

(i) Uy and Uy are cyclic space equivalent.

(ii) There are spectral sequences uy > pa > ... of Uy andvy > v > ..
of Uy and a measure space isomorphism S (T,v1) — (T, p1) such that

Up = pn oS  foraln>1
(iii) B(U,) = E5(Us) and D{U1) = D(Uz}.
Proof. (i)=(ii). Suppose V : Hy — Hp is a c.s. isomorphism of {1

and U,. Fix a spectral decomposition Hy = @~ Z(zs) of Uy and put
fin = e, for each n > 1. By Lemma 1.3 we have a spectral decomposition
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Hy = @2 Z(Vxy,) of Uy and v, = pva, for each n > 1. There exists
a unitary isomorphism Vi : @52 L3(T, pn) — Hi of the operators U and
U1 and a unitary isomorphism V; : Hy — @22, L*(T, v ) of the operators
Us and U such that Vi(L%(T, pn)) = Z(z,) and VaZ(zn) = L2(T,1y,)) for
n = 1, where

U(ifn(zn)) = i Zn fn(2n).
=1 n=1

Hence the operator V' = V2 V'V is a c.s. isomorphism of the operator I/ on
Pri L2(T, ) and U on @5, L*(T, v ), and V/(L3(T, py)) = L3(T,v,)
(so V' restricted establishes a c.s. isomorphism) for n > 1.

By Lemma 1.2 there exist nonsingular invertible maps S, : (T, B, v,,) —
(T, B, pn) and hy, € L*(T, v, ) such that V'|zaer, yf = hn - f 0 S, for every
n > 1. Hence we have

v ( i f”(z”)) = i Bn(zn) - fn(Snzn)
n=1 =

n=1
for 3507 1 fn € D2 LA(T, ).
For every n # m, consider
H = {f{zn) + flzm) : f € L}(T, 1)}
This is a closed U-invariant subspace of @5, L*(T, uy). Without loss of
generality, we can assume that pn, = p1a, (ie. din/dps = xa, ). Then
VIH = {hn(2) f(Snn) -+ heon(20) F(Smzm) 1 f € L2 (T, )}

Since V'H is U-invariant, for every f € L*(T, ps1) there exists g € L2(T, u1)
such that

znhn(zn)f(snzn)+zmhm(zm}f(‘s'mzm) = hn(zn)g(snzn)+hm(zm)g(SmZM)-

By the orthogonality of the natural embedding of L*(T, tn) and L2(T, )
in the space under consideration,

zhy (2)f(Snz) = hn(2)g(Snz),
2hm (2) f(Smz) = hm (2)g(Sm2),

hence S;1(z) f(z) = g(z) and Sz} f(2) = g(z) a.e., because hy, # 0 pp-a.e.
and fm # 0 prm-a.e. by Lemma 1.2. If f = 1 then S7%(2) = g(2) = S5 (2),
hence § = S, = 5, for every n # m and we get vy = p, 05 80 by replacing
Vp by py 0§ the result foliows.

(ii)=>(i). Suppose there are spectral sequences py > ps o» ... of Uy
and ¥1 3> 1y 2> ... of U3 and an jsomorphism § : (T,21) — (T, 1) such
that v, = p, 0§ for all n > 1. We will consider the unitary operator

2 €T y-a.e.,
2 €T pm-ace.,
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V' @iy LT, pn) — Do LA(T, V) given by

v/( i Falm)) = i LN

We first prove that V' is a cyclic space isomorphism of U on
B, LT, pun) and U on @Dl L*(T,vy). Let H be a closed U-invariant
subspace of @,_, L*(T, u,). We show that V' is U-invariant. We know
that H is ¢(U)-invariant for every 1) &€ L°°(T, 41 ). Hence if Yoo Falzn) €
H then 377 1 9(2a) fal2n) € H.

Let 5°7° 1 gn(2n) € V' H. There exists >omey Fulzn) € H such that g, =
fn oS From |S7(z)| = 1, it follows that

D 5 e falzm) € H

n=1

and hence

o0 00
U( Zgn(zn)) = Z znfn(Szn) e V'H.
el n=1
In the same manner we can see that if H is a U-invariant subspace
of Prr; L*(T,v,) then V/~1H is U-invariant. Consequently, the operator
V =V 'V'V;"" is a c.s. isomorphism of Uy and Us.
(il)=>(iii). If there are spectral sequences 4y > py > ... of U, and
vy 2 vy > ... of U3 and an isomorphism 9 : (T,v1) — (T, 41) such that
Up = pp 05 for all n > 1 then

An(Uz) = ST AR (U),  Cu(Usz) = §71Co(Th), 3 =pdos.
Hence
Cn{U2) \ Crt1(U2) = S7HCr(U1) \ Crs1(T1)),
ufllAn(Ug)\An+1(Ua) = #?!Anwl)\flwwl) 5
for n > 1 and

(16xWa) =57 (N ), Hine, utwa = Mg, anomy S
nz=]

n=1

and finally £°(Uy) = E¢(Us) and D(Uy) = D(Us).
(iii)=>(ii). Let p and v be the maximal spectral type of U and U,. If
ES(U1} = E°(Us)} and D(U;) = D(Uy) then

HCn(U2) \ Crs1(U2)) > 0 i u(Cr(Us}\ Crpa(Uh)) > 0
forn > 1 and
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»(N ColU2)) >0 if s(N Calth)) > 0
n=]1 n=1
and card Dy, (Uy) = card D, (Uz) for n € Ny {+c0}. .

Since Ap\Apt1 = (Cp\Cnp1)UD, and ﬂ:"o:l Ay = Npet CrUD, there
exist nonsingular invertible maps Sy, : (Ar(U2) \ Any1(U2), 1;2’ — (A, (U)\
Ans1(U1),p) for n > 1 and S, : (M52 An(Ts),v) = (Mazy An(U1), u).
We define a nonsingular invertible map S : (T,v) — (T, ) by

S(z) = S,(x) for z € An(U2)\ Any1(U2),
() =9 8u(z) for z € 7, An(Un).

Then we have

V'An(Uz) = ’u'lAn(Ul) o8,
Let pn == pla, () a0d v = pla,oy) 0 S Then pg > pe > ... and ¥ >
vs > ... are spectral sequences of Uy and Us respectively, and vy = pin 0 §
foralln>1. =

2. Cyclic space isomorphism of unitary operators in the case
where an operator corresponds to an ergodic dynamical system.
Given a dynamical system T : (X, B, ¢) — (X, B, g), set Sp(T) = {A € C:
Jrerrna fT = M-

CoroLLARY 2.1. Let (X1, B1,01,T1) and (Xa, B2, g2,T2) be invertible,
ergodic dynamical systems. Then Up, and Ug, are cyclic space equivalent if
and only if FE°(Ur,) = E°(Ur,) and card Sp(T) = card Sp(T%).

Proof. By ergodicity, for every spectral sequence ugﬂ P ,LL(;) > ...
corresponding to Un,, 4 = 1,2, only the maximal spectral type ,ugi) may not
be a continuous measure. m

Without ergodicity the above corollary is not valid as the following ex-
ample shows.

ExAMPLE. Let Tz = & + ¢ be an irrational rotation. Then T and T x T
are not s.c. equivalent (because D{T)(1) = oo and D(T xT)(1) = 0), though
card Sp(T") = card Sp(T" x T').

COROLLARY 2.2. Let Ty and Ty be weakly mizing. Then Up and Un,
are eyclic space equivalent if and only if E(Up) = E°(Up,).
In [5] M. Lemanczyk and J. Kwiatkowski Jr, proved

PROPOSITION 1. Given a set A C NT, 1 ¢ A, there exists an ergodic T
such that E(Up) = A, Moreover, T can be constructed to be weakly mizing.

From the proof of Proposition 1 in [5] it follows that for a set A C NT,
1 € A, there exists a weakly mixing T such that E¢(Ur) = A. Since all their
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examples have singular spectra, by taking the direct product of an example
T realizing A C N* with a r having countable Lebesgue spectrum we reach

E(T x7)= AU {+00}.
Hence

CoROLLARY 2.3. Let M o = {U : U has continuous spectrum and 1 €
E¢(U)}. Partition My ¢ into cyclic space equivalence classes. Then in every
class there exists a unitary operator Ur : L3(X, o) — L3(X, ), where T is
weakly mizing and L§(X, 0) = {f € L*(X, o) : { fdo = O}.
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