STUDIA MATHEMATICA 124 (3) (1997)

if, and only if,

$$n^{-1} \sum_{j=1}^{n} \lambda_p^{k_j} \to 0 \quad (n \to \infty)$$

for each λ_p in $\sigma(T_1)$ which is not equal to one.

A similar result holds for an operator T which generates a w-compact monothetic group G(T) of invertible operators in B(X) using the representation of G(T) in terms of the unimodular eigenvalues of T given in [4], Theorem 3.3.

References

- G. Brown and W. Moran, Idempotents of compact monothetic semigroups, Proc. London Math. Soc. 22 (1971), 203-216.
- [2] —, —, An unusual compact monothetic semigroup, Bull. London Math. Soc. 3 (1971), 291-296.
- [3] B. Eckmann, Über monothetische Gruppen, Comment. Math. Helv. 16 (1944), 249-263.
- [4] T. A. Gillespie and T. T. West, Operators generating weakly compact groups, Indiana Univ. Math. J. 21 (1972), 671-688.
- [5] E. Hlawka, The Theory of Uniform Distribution, A B Academic Publishers, Berkhamsted, Herts, 1984.
- [6] M. A. Kaashoek and T. T. West, Locally compact monothetic semi-algebras, Proc. London Math. Soc. 18 (1968), 428-438.
- [7] K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- [8] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
- T. T. West, Weakly compact monothetic semigroups of operators in Banach spaces, Proc. Roy. Irish Acad. Sect. A 67 (1968), 27-37.

Department of Mathematics University College Cork, Ireland School of Mathematics
Trinity College
Dublin, Ireland

(3620)

Received February 20, 1996 Revised version January 8, 1997

Cyclic space isomorphism of unitary operators

by

KRZYSZTOF M. FRĄCZEK (Toruń)

Abstract. We introduce a new equivalence relation between unitary operators on separable Hilbert spaces and discuss a possibility to have in each equivalence class a measure-preserving transformation.

Introduction. Let U be a unitary operator on a separable Hilbert space H. For any $x \in H$ we define the *cyclic space* generated by x as $Z(x) = \operatorname{span}\{U^nx : n \in \mathbb{Z}\}$. By the *spectral measure* μ_x of x we mean the Borel measure on the circle determined by the equalities

$$\widehat{\mu}_x(n) = \int_{\mathbb{T}} z^n \, d\mu_x(z) = (U^n x, x)$$

for every $n \in \mathbb{Z}$.

THEOREM 0.1 (spectral theorem, see [9]). There exists in H a sequence x_1, x_2, \ldots such that

(1)
$$H = \bigoplus_{n=1}^{\infty} Z(x_n) \quad and \quad \mu_{x_1} \gg \mu_{x_2} \gg \dots$$

Moreover, for any sequence y_1, y_2, \ldots in H satisfying (1) we have $\mu_{x_1} \equiv \mu_{y_1}$, $\mu_{x_2} \equiv \mu_{y_2}, \ldots$

One of the most important (still open) problems in ergodic theory is a classification of ergodic dynamical systems with respect to spectral equivalence, i.e. given a sequence

of positive finite measures on the circle we ask if there exists an ergodic dynamical system $T:(X,\mathcal{B},\varrho)\to (X,\mathcal{B},\varrho)$ such that some spectral sequence (1) for $U=U_T$ ($U_T:L^2(X,\varrho)\to L^2(X,\varrho)$, $U_Tf=f\circ T$) coincides with (2).

¹⁹⁹¹ Mathematics Subject Classification: Primary 28D05; Secondary 47B15. Research partially supported by KBN grant 2 P301 031 07 (1994).

The spectral type of μ_{x_1} (the equivalence class of measures) is called the maximal spectral type of U. By the multiplicity function M_U of U we mean the function $M_U: \mathbb{T} \to \mathbb{N} \cup \{+\infty\}$ given by

$$M_U(z) = \sum_{n=1}^{\infty} \chi_{A_n}(z)$$

where $A_1 = \mathbb{T}$ and $A_n = A_n(U) = \left\{ z \in \mathbb{T} : \frac{d\mu_{x_n}}{d\mu_{x_1}}(z) > 0 \right\}$ (it is well defined up to a μ_{x_1} -null set). Then

$$\mathbb{T} = A_1 \supset A_2 \supset \dots$$

The set

$$E(U) = \{ n \in \mathbb{N} \cup \{ +\infty \} : \mu_{x_1} \{ z \in \mathbb{T} : M_U(z) = n \} > 0 \}$$

is called the set of essential values of the multiplicity function M_U .

For the background on spectral theory we refer to [3].

In the last few years, problems concerning spectral multiplicity have become of a renewed interest (see [1], [2], [4], [6]–[8], [10], [11]). In [5], M. Lemańczyk and J. Kwiatkowski Jr. construct, for an arbitrary set $A\subseteq\mathbb{N}^+$ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A. The aim of this paper is to present a new viewpoint on spectral classification suggested to me by Professor Lemańczyk.

Every measure μ can be uniquely decomposed into a sum $\mu = \mu^c + \mu^d$ where μ^c is continuous and μ^d is discrete. For a spectral sequence $\mu_{x_1} \gg \mu_{x_2} \gg \dots$ we have $\mu_{x_1}^c \gg \mu_{x_2}^c \gg \dots$ By the *c-multiplicity function* M_U^c we mean the function $M_U^c : \mathbb{T} \to \mathbb{N} \cup \{+\infty\}$ given by

$$M_U^{\rm c}(z) = \sum_{n=1}^{\infty} \chi_{C_n}(z)$$

where $C_1 = \mathbb{T}$ and $C_n = \{z \in \mathbb{T} : \frac{d\mu_{x_n}^c}{d\mu_{x_n}^c}(z) > 0\}$. The set

$$E^{\rm c}(U) = \{n \in \mathbb{N} \cup \{+\infty\} : \mu_{x_1}\{z \in \mathbb{T} : M_U^{\rm c}(z) = n\} > 0\}$$

is called the set of essential values of the c-multiplicity function $M_U^{\mathbf{c}}$.

Let $D(U): \mathbb{N} \cup \{+\infty\} \to \mathbb{N} \cup \{+\infty\}$ be the function given by $D(\tilde{U})(n) = \operatorname{card} D_n$ where

$$D_n = \begin{cases} \{ z \in A_n \setminus A_{n+1} : \mu_{x_1}(\{z\}) > 0 \} & \text{for } n = 1, 2, \dots, \\ \{ z \in \bigcap_{n=1}^{\infty} A_n : \mu_{x_1}(\{z\}) > 0 \} & \text{for } n = +\infty. \end{cases}$$

In Section 1 we define a cyclic space (s.c.) isomorphism of unitary operators on a separable Hilbert space and we try to find a complete set of invariants for such an isomorphism. Using the results from Section 1 and those from [5], we show that in the c.s. equivalence class of every operator

 $U: H \to H$ whose maximal spectral type is continuous and $1 \in E^c(U)$ we can find a weakly mixing automorphism.

The author would like to thank Professor Lemańczyk for some valuable discussions.

1. Cyclic space isomorphism and its invariants

LEMMA 1.1. Let $U_1: H_1 \to H_1$ and $U_2: H_2 \to H_2$ be unitary operators. Then for every unitary operator $V: H_1 \to H_2$ the following conditions are equivalent.

- (i) For every $x \in H_1$, Z(Vx) = VZ(x).
- (ii) If H is a U_1 -invariant closed subspace of H_1 , then VH is U_2 -invariant, and if H is a U_2 -invariant closed subspace of H_2 , then $V^{-1}H$ is U_1 -invariant.

Proof. (i) \Rightarrow (ii). Suppose that H is a U_1 -invariant closed subspace of H_1 and $y \in VH$. There exists $x \in H$ such that y = Vx. Since Z(y) = VZ(x),

$$U_2^{-1}y, U_2y \in Z(y) = VZ(x) \subset VH$$

and so VH is U_2 -invariant. Similarly, we can get the remaining part of (ii). (ii) \Rightarrow (i). Let $x \in H_1$. Since Z(x) is U_1 -invariant, VZ(x) is U_2 -invariant. Since $Vx \in VZ(x)$, $Z(Vx) \subset VZ(x)$. Similarly, if y = Vx then $Z(x) = Z(V^{-1}y) \subset V^{-1}Z(y) = V^{-1}Z(Vx)$. This gives $VZ(x) \subset Z(Vx)$ and finally Z(Vx) = VZ(x).

DEFINITION 1.1. We call a unitary operator $V: H_1 \to H_2$ a cyclic space isomorphism of U_1 and U_2 if it satisfies (i) or equivalently (ii) of Lemma 1.1.

LEMMA 1.2. Let μ and ν be positive finite Borel measures on the circle. Assume $U_1: L^2(\mathbb{T}, \mu) \to L^2(\mathbb{T}, \mu)$ and $U_2: L^2(\mathbb{T}, \nu) \to L^2(\mathbb{T}, \nu)$ are unitary operators given by

$$U_1 f(z) = U_2 f(z) = z f(z).$$

If $V: L^2(\mathbb{T}, \mu) \to L^2(\mathbb{T}, \nu)$ is a c.s. isomorphism of U_1 and U_2 then there exists a nonsingular invertible map $S: (\mathbb{T}, \mathcal{B}, \nu) \to (\mathbb{T}, \mathcal{B}, \mu)$ and $h \in L^2(\mathbb{T}, \nu)$ such that

$$Vf = h \cdot f \circ S$$

for every $f \in L^2(\mathbb{T}, \mu)$.

Proof. For $A \in \mathcal{B}$ put $H = \chi_A L^2(\mathbb{T}, \mu)$. Then H is a U_1 -invariant subspace of $L^2(\mathbb{T}, \mu)$. By the Wiener Lemma (e.g. [9], Appendix) there exists a Borel set $\Phi(A)$ such that $VH = \chi_{\Phi(A)} L^2(\mathbb{T}, \nu)$. From $V(\{0\}) = \{0\}$ and $V^{-1}(\{0\}) = \{0\}$ we see that $\mu(A) = 0$ iff $\nu(\Phi(A)) = 0$. If $A \cap B = \emptyset$ then $\chi_A L^2(\mathbb{T}, \mu) \perp \chi_B L^2(\mathbb{T}, \mu)$ hence

$$\chi_{\Phi(A)}L^2(\mathbb{T},\nu)\perp\chi_{\Phi(B)}L^2(\mathbb{T},\nu)$$

and finally $\Phi(A) \cap \Phi(B) = \emptyset$. If $A = \bigcup_{n=1}^{\infty} A_n$ with $\{A_n\}$ pairwise disjoint then

$$\chi_{\Phi(A)}L^{2}(\mathbb{T},\nu) = V(\chi_{\bigcup_{n=1}^{\infty} A_{n}}L^{2}(\mathbb{T},\mu)) = V\left(\bigoplus_{n=1}^{\infty} \chi_{A_{n}}L^{2}(\mathbb{T},\mu)\right)$$

$$= \bigoplus_{n=1}^{\infty} V(\chi_{A_{n}}L^{2}(\mathbb{T},\mu)) = \bigoplus_{n=1}^{\infty} \chi_{\Phi(A_{n})}L^{2}(\mathbb{T},\nu)$$

$$= \chi_{\bigcup_{n=1}^{\infty} \Phi(A_{n})}L^{2}(\mathbb{T},\nu),$$

hence $\Phi(A) = \bigcup_{n=1}^{\infty} \Phi(A_n)$ and by a standard argument the equality also holds if $\{A_n\}$ are not pairwise disjoint. Since $V(L^2(\mathbb{T},\mu)) = L^2(\mathbb{T},\nu)$ we have $\Phi(\mathbb{T}) = \mathbb{T}$. Hence $\mathbb{T} = \Phi(A) \cup \Phi(A^c)$ and therefore $\Phi(A)^c = \Phi(A^c)$.

Consequently, $\Phi: (\mathcal{B}, \mu) \to (\mathcal{B}, \nu)$ is a σ -Boolean isomorphism. Therefore there exists a nonsingular invertible map $S: (\mathbb{T}, \mathcal{B}, \nu) \to (\mathbb{T}, \mathcal{B}, \mu)$ such that $\Phi(A) = S^{-1}(A)$ for every $A \in \mathcal{B}$.

Set h = V(1). For $A \in \mathcal{B}$ we have $1 = \chi_A + \chi_{A^c}$, hence $h = V(\chi_A) + V(\chi_{A^c})$. But the functions $V(\chi_A)$ and $V(\chi_{A^c})$ have disjoint supports, so $V(\chi_A)$ must be equal to h on its support and similarly for $V(\chi_{A^c})$; hence

$$V(\chi_A) = h \cdot \chi_{\Phi(A)} = h \cdot \chi_A \circ S.$$

Since this is true for any characteristic function, it is also true for linear combinations of such functions and finally for all $f \in L^2(\mathbb{T}, \mu)$. Since V is unitary, for every $A \in \mathcal{B}$ we have

$$\mu(SA) = \int_{\mathbb{T}} |\chi_A S^{-1}|^2 d\mu = \|\chi_A S^{-1}\|_{L^2(\mu)}^2$$
$$= \|V(\chi_A S^{-1})\|_{L^2(\nu)}^2 = \|h \cdot \chi_A\|_{L^2(\nu)}^2 = \int_{A} |h|^2 d\nu.$$

Hence $|h|^2 = d\mu \circ S/d\nu$.

LEMMA 1.3. Assume that $U_1: H_1 \to H_1$ and $U_2: H_2 \to H_2$ are unitary operators and $V: H_1 \to H_2$ a c.s. isomorphism of U_1 and U_2 . Let

$$H_1 = \bigoplus_{n=1}^{\infty} Z(x_n)$$
 and $\mu_{x_1} \gg \mu_{x_2} \gg \dots$

be a spectral decomposition of U_1 . Then

$$H_2 = \bigoplus_{n=1}^{\infty} Z(Vx_n)$$
 and $\mu_{Vx_1} \gg \mu_{Vx_2} \gg \dots$

Moreover, $\mu_{x_n} \equiv \mu_{x_{n+1}}$ iff $\mu_{Vx_n} \equiv \mu_{Vx_{n+1}}$ and hence $E(U_1) = E(U_2)$.

Proof. Since V is a unitary operator,

$$H_2 = V(H_1) = V\left(\bigoplus_{n=1}^{\infty} Z(x_n)\right) = \bigoplus_{n=1}^{\infty} VZ(x_n) = \bigoplus_{n=1}^{\infty} Z(Vx_n).$$

We first show that $Z(Vx_1)$ is a maximal cyclic space. Suppose there exists $y \in H_2$ such that $Z(Vx_1) \subsetneq Z(y)$. Then $Z(x_1) \subsetneq Z(V^{-1}y)$. This contradicts the fact that $Z(x_1)$ is maximal. Thus μ_{Vx_1} is the maximal spectral type of U_2 .

Similarly, since $V|_{Z(x_1)^{\perp}}$ is a c.s. isomorphism, μ_{Vx_2} is the maximal spectral type of $U_2|_{Z(Vx_2)^{\perp}}$. In this way we conclude that μ_{Vx_n} is the maximal spectral type of U_2 restricted to $Z(Vx_n) \oplus Z(Vx_{n+1}) \oplus \ldots$ for every $n \geq 1$ and finally that $\mu_{Vx_1} \gg \mu_{Vx_2} \gg \ldots$

If $\mu_{x_n} \gg \mu_{x_{n+1}}$ but they are not equivalent then we can write

$$Z(x_n) \oplus Z(x_{n+1}) = Z(x_n') \oplus Z(x_n'') \oplus Z(x_{n+1})$$

where $\mu_{x_n''} \perp \mu_{x_{n+1}}$ and $\mu_{x_n'} \ll \mu_{x_{n+1}}$ (in fact, the latter two measures are equivalent). Now

$$V(Z(x_n) \oplus Z(x_{n+1})) = Z(Vx_n') \oplus Z(Vx_n'') \oplus Z(Vx_{n+1});$$

but $Z(x_n'') \oplus Z(x_{n+1})$ is a cyclic space, hence necessarily

$$V(Z(x_n'') \oplus Z(x_{n+1})) = Z(Vx_n'') \oplus Z(Vx_{n+1}).$$

This shows that the spectral measures $\mu_{Vx_n'}$ and $\mu_{Vx_{n+1}}$ are orthogonal so $\mu_{Vx_n} \gg \mu_{Vx_{n+1}}$ and they are not equivalent.

Remark. It follows from this lemma that E(U) is an invariant of c.s. isomorphism. Notice that if x is an eigenvector of U_1 , then Z(x) is a one-dimensional space. Therefore its image via a c.s. isomorphism V must also be one-dimensional, hence Vx is also an eigenvector (though possibly corresponding to a different eigenvalue). This gives rise to a second invariant of c.s. isomorphism. The theorem below explains how a combination of these two invariants gives rise to a complete set of invariants for c.s. isomorphism.

THEOREM 1.4. Let $U_i: H_i \to H_i$ be a unitary operator on a separable Hilbert space, i = 1, 2. Then the following conditions are equivalent.

- (i) U_1 and U_2 are cyclic space equivalent.
- (ii) There are spectral sequences $\mu_1 \gg \mu_2 \gg \dots$ of U_1 and $\nu_1 \gg \nu_2 \gg \dots$ of U_2 and a measure space isomorphism $S: (\mathbb{T}, \nu_1) \to (\mathbb{T}, \mu_1)$ such that

$$\nu_n = \mu_n \circ S$$
 for all $n \ge 1$.

(iii)
$$E^{c}(U_{1}) = E^{c}(U_{2})$$
 and $D(U_{1}) = D(U_{2})$.

Proof. (i) \Rightarrow (ii). Suppose $V: H_1 \to H_2$ is a c.s. isomorphism of U_1 and U_2 . Fix a spectral decomposition $H_1 = \bigoplus_{n=1}^{\infty} Z(x_n)$ of U_1 and put $\mu_n := \mu_{x_n}$ for each $n \geq 1$. By Lemma 1.3 we have a spectral decomposition

 $H_2=\bigoplus_{n=1}^\infty Z(Vx_n)$ of U_2 and $\nu_n:=\mu_{Vx_n}$ for each $n\geq 1$. There exists a unitary isomorphism $V_1:\bigoplus_{n=1}^\infty L^2(\mathbb{T},\mu_n)\to H_1$ of the operators U and U_1 and a unitary isomorphism $V_2:H_2\to\bigoplus_{n=1}^\infty L^2(\mathbb{T},\nu_n)$ of the operators U_2 and U such that $V_1(L^2(\mathbb{T},\mu_n))=Z(x_n)$ and $V_2Z(x_n)=L^2(\mathbb{T},\nu_n))$ for $n\geq 1$, where

$$U\left(\sum_{n=1}^{\infty} f_n(z_n)\right) = \sum_{n=1}^{\infty} z_n f_n(z_n).$$

Hence the operator $V'=V_2VV_1$ is a c.s. isomorphism of the operator U on $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \mu_n)$ and U on $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \nu_n)$, and $V'(L^2(\mathbb{T}, \mu_n)) = L^2(\mathbb{T}, \nu_n)$ (so V' restricted establishes a c.s. isomorphism) for $n \geq 1$.

By Lemma 1.2 there exist nonsingular invertible maps $S_n: (\mathbb{T}, \mathcal{B}, \nu_n) \to (\mathbb{T}, \mathcal{B}, \mu_n)$ and $h_n \in L^2(\mathbb{T}, \nu_n)$ such that $V'|_{L^2(\mathbb{T}, \mu_n)} f = h_n \cdot f \circ S_n$ for every $n \geq 1$. Hence we have

$$V'\Big(\sum_{n=1}^{\infty} f_n(z_n)\Big) = \sum_{n=1}^{\infty} h_n(z_n) \cdot f_n(S_n z_n)$$

for $\sum_{n=1}^{\infty} f_n \in \bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \mu_n)$.

For every $n \neq m$, consider

$$H = \{ f(z_n) + f(z_m) : f \in L^2(\mathbb{T}, \mu_1) \}.$$

This is a closed *U*-invariant subspace of $\bigoplus_{k=1}^{\infty} L^2(\mathbb{T}, \mu_k)$. Without loss of generality, we can assume that $\mu_n = \mu_1|_{A_n}$ (i.e. $d\mu_n/d\mu_1 = \chi_{A_n}$). Then

$$V'H = \{h_n(z_n)f(S_nz_n) + h_m(z_m)f(S_mz_m) : f \in L^2(\mathbb{T}, \mu_1)\}.$$

Since V'H is U-invariant, for every $f \in L^2(\mathbb{T}, \mu_1)$ there exists $g \in L^2(\mathbb{T}, \mu_1)$ such that

$$z_n h_n(z_n) f(S_n z_n) + z_m h_m(z_m) f(S_m z_m) = h_n(z_n) g(S_n z_n) + h_m(z_m) g(S_m z_m).$$

By the orthogonality of the natural embedding of $L^2(\mathbb{T}, \mu_n)$ and $L^2(\mathbb{T}, \mu_m)$ in the space under consideration,

$$zh_n(z)f(S_nz)=h_n(z)g(S_nz), \qquad z\in \mathbb{T} \ \mu_n\mbox{-a.e.}, \ zh_m(z)f(S_mz)=h_m(z)g(S_mz), \qquad z\in \mathbb{T} \ \mu_m\mbox{-a.e.},$$

hence $S_n^{-1}(z)f(z)=g(z)$ and $S_m^{-1}(z)f(z)=g(z)$ a.e., because $h_n\neq 0$ μ_n -a.e. and $h_m\neq 0$ μ_m -a.e. by Lemma 1.2. If f=1 then $S_n^{-1}(z)=g(z)=S_m^{-1}(z)$, hence $S=S_n=S_m$ for every $n\neq m$ and we get $\nu_n\equiv \mu_n\circ S$ so by replacing ν_n by $\mu_n\circ S$ the result follows.

(ii) \Rightarrow (i). Suppose there are spectral sequences $\mu_1 \gg \mu_2 \gg \dots$ of U_1 and $\nu_1 \gg \nu_2 \gg \dots$ of U_2 and an isomorphism $S: (\mathbb{T}, \nu_1) \to (\mathbb{T}, \mu_1)$ such that $\nu_n = \mu_n \circ S$ for all $n \geq 1$. We will consider the unitary operator

 $V': \bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \mu_n) \to \bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \nu_n)$ given by

$$V'\Big(\sum_{n=1}^{\infty} f_n(z_n)\Big) = \sum_{n=1}^{\infty} f_n(Sz_n).$$

We first prove that V' is a cyclic space isomorphism of U on $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T},\mu_n)$ and U on $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T},\nu_n)$. Let H be a closed U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T},\mu_n)$. We show that V'H is U-invariant. We know that H is $\psi(U)$ -invariant for every $\psi \in L^{\infty}(\mathbb{T},\mu_1)$. Hence if $\sum_{n=1}^{\infty} f_n(z_n) \in H$ then $\sum_{n=1}^{\infty} \psi(z_n) f_n(z_n) \in H$.

Let $\sum_{n=1}^{\infty} g_n(z_n) \in V'H$. There exists $\sum_{n=1}^{\infty} f_n(z_n) \in H$ such that $g_n = f_n \circ S$. From $|S^{-1}(z)| = 1$, it follows that

$$\sum_{n=1}^{\infty} S^{-1}(z_n) f_n(z_n) \in H$$

and hence

$$U\left(\sum_{n=1}^{\infty} g_n(z_n)\right) = \sum_{n=1}^{\infty} z_n f_n(Sz_n) \in V'H.$$

In the same manner we can see that if H is a U-invariant subspace of $\bigoplus_{n=1}^{\infty} L^2(\mathbb{T}, \nu_n)$ then $V'^{-1}H$ is U-invariant. Consequently, the operator $V = V_2^{-1}V'V_1^{-1}$ is a c.s. isomorphism of U_1 and U_2 .

(ii) \Rightarrow (iii). If there are spectral sequences $\mu_1\gg\mu_2\gg\dots$ of U_1 and $\nu_1\gg\nu_2\gg\dots$ of U_2 and an isomorphism $S:(\mathbb{T},\nu_1)\to(\mathbb{T},\mu_1)$ such that $\nu_n=\mu_n\circ S$ for all $n\geq 1$ then

$$A_n(U_2) = S^{-1}A_n(U_1), \quad C_n(U_2) = S^{-1}C_n(U_1), \quad \nu_1^d = \mu_1^d \circ S.$$

Hence

$$C_n(U_2) \setminus C_{n+1}(U_2) = S^{-1}(C_n(U_1) \setminus C_{n+1}(U_1)),$$

$$\nu_1^{\mathbf{d}}|_{A_n(U_2) \setminus A_{n+1}(U_2)} = \mu_1^{\mathbf{d}}|_{A_n(U_1) \setminus A_{n+1}(U_1)} \circ S$$

for $n \ge 1$ and

$$\bigcap_{n=1}^{\infty} C_n(U_2) = S^{-1} \Big(\bigcap_{n=1}^{\infty} C_n(U_1) \Big), \qquad \nu_1^{\mathrm{d}}|_{\bigcap_{n=1}^{\infty} A_n(U_2)} = \mu_1^{\mathrm{d}}|_{\bigcap_{n=1}^{\infty} A_n(U_1)} \circ S$$

and finally $E^{c}(U_{1}) = E^{c}(U_{2})$ and $D(U_{1}) = D(U_{2})$.

(iii) \Rightarrow (ii). Let μ and ν be the maximal spectral type of U_1 and U_2 . If $E^{c}(U_1) = E^{c}(U_2)$ and $D(U_1) = D(U_2)$ then

$$\nu(C_n(U_2) \setminus C_{n+1}(U_2)) > 0$$
 iff $\mu(C_n(U_1) \setminus C_{n+1}(U_1)) > 0$

for n > 1 and

 $u\Big(\bigcap_{n=1}^{\infty} C_n(U_2)\Big) > 0 \quad \text{iff} \quad \mu\Big(\bigcap_{n=1}^{\infty} C_n(U_1)\Big) > 0$

and card $D_n(U_1) = \operatorname{card} D_n(U_2)$ for $n \in \mathbb{N} \cup \{+\infty\}$.

Since $A_n \setminus A_{n+1} = (C_n \setminus C_{n+1}) \cup D_n$ and $\bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} C_n \cup D_{\infty}$, there exist nonsingular invertible maps $S_n: (A_n(U_2) \setminus A_{n+1}(U_2), \nu) \to (A_n(U_1) \setminus A_n(U_2), \nu)$ $A_{n+1}(U_1), \mu$ for $n \geq 1$ and $S_{\infty} : (\bigcap_{n=1}^{\infty} A_n(U_2), \nu) \to (\bigcap_{n=1}^{\infty} A_n(U_1), \mu).$ We define a nonsingular invertible map $S:(\mathbb{T},\nu)\to(\mathbb{T},\mu)$ by

$$S(x) = \begin{cases} S_n(x) & \text{for } x \in A_n(U_2) \setminus A_{n+1}(U_2), \\ S_{\infty}(x) & \text{for } x \in \bigcap_{n=1}^{\infty} A_n(U_2). \end{cases}$$

Then we have

266

$$\nu|_{A_n(U_2)} \equiv \mu|_{A_n(U_1)} \circ S.$$

Let $\mu_n := \mu|_{A_n(U_1)}$ and $\nu_n := \mu|_{A_n(U_1)} \circ S$. Then $\mu_1 \gg \mu_2 \gg \ldots$ and $\nu_1 \gg 1$ $\nu_2 \gg \dots$ are spectral sequences of U_1 and U_2 respectively, and $\nu_n = \mu_n \circ S$ for all n > 1.

2. Cyclic space isomorphism of unitary operators in the case where an operator corresponds to an ergodic dynamical system. Given a dynamical system $T:(X,\mathcal{B},\varrho)\to (X,\mathcal{B},\varrho)$, set $\mathrm{Sp}(T)=\{\lambda\in\mathbb{C}:$ $\exists_{f \in L^2(X, \rho)} fT = \lambda f \}.$

COROLLARY 2.1. Let $(X_1, \mathcal{B}_1, \rho_1, T_1)$ and $(X_2, \mathcal{B}_2, \rho_2, T_2)$ be invertible, ergodic dynamical systems. Then U_{T_1} and U_{T_2} are cyclic space equivalent if and only if $E^{c}(U_{T_1}) = E^{c}(U_{T_2})$ and $\operatorname{card} \operatorname{Sp}(T_1) = \operatorname{card} \operatorname{Sp}(T_2)$.

Proof. By ergodicity, for every spectral sequence $\mu_1^{(i)}\gg \mu_2^{(i)}\gg \dots$ corresponding to U_{T_i} , i=1,2, only the maximal spectral type $\mu_1^{(i)}$ may not be a continuous measure.

Without ergodicity the above corollary is not valid as the following example shows.

EXAMPLE. Let $Tx = x + \alpha$ be an irrational rotation. Then T and $T \times T$ are not s.c. equivalent (because $D(T)(1) = \infty$ and $D(T \times T)(1) = 0$), though $\operatorname{card} \operatorname{Sp}(T) = \operatorname{card} \operatorname{Sp}(T \times T).$

COROLLARY 2.2. Let T_1 and T_2 be weakly mixing. Then U_{T_1} and U_{T_2} are cyclic space equivalent if and only if $E^{c}(U_{T_{n}}) = E^{c}(U_{T_{n}})$.

In [5] M. Lemańczyk and J. Kwiatkowski Jr. proved

PROPOSITION 1. Given a set $A \subseteq \mathbb{N}^+$, $1 \in A$, there exists an ergodic T such that $E(U_T) = A$. Moreover, T can be constructed to be weakly mixing.

From the proof of Proposition 1 in [5] it follows that for a set $A \subseteq \mathbb{N}^+$, $1 \in A$, there exists a weakly mixing T such that $E^{c}(U_{T}) = A$. Since all their

examples have singular spectra, by taking the direct product of an example T realizing $A\subset \mathbb{N}^+$ with a τ having countable Lebesgue spectrum we reach

$$E(T \times \tau) = A \cup \{+\infty\}.$$

Hence

COROLLARY 2.3. Let $\mathcal{M}_{1.C} = \{U: U \text{ has continuous spectrum and } 1 \in$ $E^{c}(U)$. Partition $\mathcal{M}_{1,C}$ into cyclic space equivalence classes. Then in every class there exists a unitary operator $U_T: L^2_0(X, \rho) \to L^2_0(X, \rho)$, where T is weakly mixing and $L^2_0(X, \rho) = \{ f \in L^2(X, \rho) : \{ f d\rho = 0 \}.$

References

- [1] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian); English transl.: Math. USSR-Sb. 64 (1989), 305-317.
- [2] F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
- N. Dunford and T. Schwartz, Linear Operators, Wiley-Interscience, 1971.
- G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174.
- J. Kwiatkowski Jr. and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II, Studia Math. 116 (1995), 207-215.
- M. Lemańczyk, Toeplitz Z2-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
- J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406.
- M. Queffélec, Substitution Dynamical Systems—Spectral Analysis, Lecture Notes in Math. 1294, Springer, Berlin, 1987.
- W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press., Cambridge, 1981.
- E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
- [11] -, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88.

Department of Mathematics and Computer Science

Nicholas Copernicus University

Chopina 12/18

87-100 Toruń, Poland

E-mail: fraczek@mat.uni.torun.pl

Received February 26, 1996 Revised version January 20, 1997