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On the Yosida approximation
and the Widder—Arendt representation theorem

by

ADAM BOBROWSKI (Lublin)

Abstract. The Yosida approximation is treated as an inversion formula for the
Laplace transform.

0. Introduction. The Yosida approximation is a standard tool in prov-
ing generation theorems for semigroups ([7], [9], [12]). In [10], a related
power series was introduced and proven to yield an inversion formula for
the Laplace transform ([10], Theorems 2.2-2.3, or [7], pp. 221~223, Theo-
rems 6.3.3-6.3.6). Namely it was shown that the power series of the image
function converges to the original function. In this article we shall show that
this formula leads to a much simpler proof of a classical theorem of Widder
characterizing the Laplace transform of a bounded complex-valued func-
tion. Furthermore, we shall provide a power-series-approximation formula
for integrated Lipschitz continuous semigroups.

1. The Yosida approximation in Banach spaces. Let us start with
a definition.

DerINITION 1. Fix w € R. Let L be a Banach space and let (w,00) 3
A =+ f(A) be an infinitely differentiable function with values in I, satisfying

Mn!
) r(n) < 7
(1 1) ”f ()‘)H - ()\ — w)n+1’
where M > 0 is a constant. Put
fere) '
S Sl
1.2 ) = e HE 2 for p > w.
( ) g.ur(t) e l“l' e n1(n 'i' 1)[ or Li w

The functions g,,(¢} will be called the Yoside approzimation of f.
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Remark 1. The above definition is justified by the fact that when
= [(X,X) is the Banach algebra of bounded lmear operators acting
in a Banach space X, and f(\) = Ry = (A — A)™! is the resolvent of a

densely defined operator A satisfying (1.1), then, by R(n) (—1)™nlR}*,

we have
_ (m Ry)
it #

which is just the well-known Yosida approximation of the semigroup gen-
erated by A. The absence of the term e™#!I in our definition is due to the
fact that instead of working in the Banach algebra £{X, X'} we want to deal
with functions in an arbitrary Banach space. Since in what follows we shall
be interested in the mean convergence of g,(t} as 4 — oo (see (2.2), (2.3)
below), and for such a limit the factor in question is irrelevant, our results
apply equally to the classical definition.

The same power series appears in [7], p. 223, and [10]; compare also [3],
p. 236.

2
e ,U.tI_I_g e(nu Rl—#““”)t,

LemMA 1. The functions g,(t) are continuous and bounded by
Mewnt!(—w}

Proof Fix g > w. The estimate

)n.f(n) ,U-) tn~|~1‘uZ(n~|-1) o
ni(n + 1)! H n+ I — wntl

= M(e“ Mt/ (p-w) _ 1),

t'ﬁ-ﬁ-l 2n+2(

n={

which is valid by (1.1}, proves that the series appearing in (1.2) is convergent
absolutely and almost uniformly. Its sum is therefore a continuous function.
Furthermore,

(1.3)

as desired.

lgu(B)]| < M(e2HH/ W) o gmbty ¢ pewptilu-w)

PROPOSITION 1. The Laplace transform of g,(t) is given by

T p Wi
e Mgt f( ) >w, > .
(SJ (t)dt T\ X)) p—w

Proof Forw <v< pandn>1,

£0) = Y s L)

k=0

Pt g
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By (1.1),

j s L=

m

5_ T
“Hw”“”(‘gi—i) o

_ M(n + 1) (k=) / {pr—~w)

o= a” do
a
M h—v -1
MW"V(M‘—LU) n~—oooo

(&= (¢~ v)/(€ - w)) Thus f(v) = 1 £ () (v — @)™ /nl.
¥ X>wp/(n—w), then g > v = Ap/(A+p) > w and

(A+M> gf?u(#)(ﬂ,u"“)n‘

Consequently,

o0

| emgu(t) at
0

271 {n}
= =Gt ay 2 N TA ()
S { Z n' (n —I- 1 dt
oo 2
- AR~ ) f(”)(.u) ogoem(A+p)ttn+1 dt
= nl(n -+ 1)! ;

S £ (p)

Ju'Zn-l-2( l)nf ( ) [ 2 oo _Mz n
;0 (A p)t2 (/\w) EO(HM) n!
2 oo
= [ P Mo N NP
()vw) ,ﬁg,(z\-hu “) n! —()\-}-,u) f()\-i—p.)'.

Observe that f(-) is a function of a real variable, so that the proof of the
fact that it can be developed in a Taylor series was necessary,

EXAMPLE 1. If I, = £(X, X), B € L(X, X) and f{}) = Rp(\) satisfying
(1.1) is & B-resolvent of a closed and densely defined operator 4 : D(A)— X
(see [3], p. 230), then

(1.4) BRp(A) -
and Hy(t) ==

BRp(p) = (u~ A)Rp(N)Rp(p)

gu(t) + e~#* B is the Yosida approximation of the regularized
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semigroup generated by A ([3], p. 236). Its Laplace transform is given by

% B s 2 bY?
-t MLER A aa

§e H(t) dt = /\+,u)+()\+,u) B(,\-i—u)

(i3], p. 237, Lemma 4V); the assumption that A is densely defined is inessen-

tial. In particular, if B = I, we get the well-known result appearing in [4],
p. 312, and [9], p. 26, eq. (7.7).

9. The Widder—Arendt representation theorem and integrated
semigroups. Let L'(R") be the convolution algebra of (equivalence classes
of) Lebesgue integrable functions ¢ : Rt — R. We shall use the following
notation: L1(RT) 3 9 = {¢(z)} means that ¢ is the equivalence class of
the function R 3 z — 1(z) € R. In such cases, to avoid misunderstanding,
we shall always use z as an independent variable of the function . Other
variables should be considered as parameters.

Let w € R. The linear space LL(RT) of all (equivalence classes of)
functions ¢ such that ¢ = {e¥®y(z)} belongs to Ll(R"‘), is a Banach
space when considered with the norm [|4| z2 ety = ”'(/')H Li(e+)- Furthermore,

since
b4

I % plizygery = § e |§w<m-» y)p(y) dy|da

e y{m — y)o(y)| de dy

I
St @ Ot § OL’ﬁS
t::(_——"}g

e“”“S eV |(y)| dyle(a)| de

= HW'LL(R‘*‘)“@”LH%’),
LL(R*) is also a Banach algebra, multiplication being the standard conve-

lution

(@ * 0)(z) = {%h(z ~ y)ely) dy.
0

The function (w,00) 3 A — e = {e~**} € LL(R*) satisfies the Hilbert
equation

(A—plerxe, =¢e, —en.

Therefore, it is infinitely differentiable, and
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ar 1
*(n
(2.1) “_—d)m €y n!e)\( +1)

=I{e™*

2" Hlzy ey

LY (R+) L (R+)

e—-)\:newmz_n dip = n!
(A=~ w)ntl”

Ot_—-—>8

PROPOSITION 2. Suppose that f satisfies (1.1) with
=0.
¢ € LYR™) the limi (L1) w = 0. Then for each

(2 T(¢) = lim | p(t)autas

H—roo

ezists, and T : LY(RT) — L is o bounded linear operator with | T|| < M.

Proof. Consider the operators T, : LYR*) — L defined as T w{Y) =

S 1(t)gu(t) dt. The estimate (1.3) asserts that ||7,,|| < M. Since by Propo-
sition 1,

T = e () ) wane

and the ex, A > 0, form a total set in L*(R"), the proof is complete. w

PROPOSITION 3. Suppose that f satisfies (1

\1). Then for each ¢ € LX (Rt
the limit ) 1 ¢ € L®)

o0

t . T L o~
(2.3) )= Jim 3 e~ Mg () gu(t)dt = lim g e ()g,(t) dt

ewists, where £(u) = w?/(u — w) and §,(t) is the Yosida approzimation of

the function F(A) = f(A+w). Purthermore, T : L* o(RT) = L is a bounded
linear operator with | T| < M,

_ Proof Fixe > 0 and w € R. By assumption, the function (0,00) 2 X —
(A) 1= f(A 4 w) satishies

i M '
(24) IF O < 5

Let gu(¥), p > 0, be its Yosida approximation. Define h,(t) : [0,
and 7, : LH(RT) — L by

h .u(t) = @;(t) - e"'(w'*‘e(#))ﬂ (1)

and 7, () = §° (¢)h,,(2) dt, where g, (t) is the Yosida approximation of £.
Estlma.te (1.3) y1elds |hu(t)|| € 2M and ||T,]| £ 2M. Using Proposition 1

oc) — L
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we get
lim 7,(ex) = 11m S e~ Mh,(t) dt
‘_L—i'w 0
2
. 7 pA )
ES 4w
ull'ngo 1:(A+,Lb)2f(}\+]1.

(et
T M FwtetpP \Atetwtp

where £ = £(u1). Thus, as in Proposition 2,

lim 7,(p) = lim | o(t)hu(t)dt =0 forall p € L'(R*).
Mr00 B0 0

On the other hand, by (2.4) and Proposition 2, for all ¢ &€ L*(IRT), the
limit lim, o0 §o° @(£)5,.(t) dt exists. Let ¢ belong to LL(R™). Then ¢ :
{e**¢(z)} belongs to L'(R™). Thus, the limit

o0
(25)  lm { e WPa(t)g,(2) dt
1—00
0
= lim e~ EWTy8)g, (8) dt

t)dt — 111 p(t)h,(t) dt

b
i n
8

e“*o(t)g, )Gt

I Il

g 5
OB o d o

:5\

p(t)g.(t) dt = 11m

-
y

T
1
8

also exists. To complete the proof it is enough to show that ||7|| £ M. But
1T (O = [ timpmeo §” S G () dt]| < M]|6]2,me). m

Remark 2. The reason why in the case w # 0 one has to introduce
additionally the factor ™' in (2.3) is clearly explained by estimate (1.3)
and the fact that wu/(p — w) > w for w # 0.

THEOREM 1. Fizw € R. Let f(A) be an L-valued function. The following
statements are egquivolent.

(i) f is infinitely differentiable and there emists o constant M > 0 such
that for A\> w andn e N,

(2.6) TRl
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(ii) There exists a bounded linear operator T : L1 L(RYY - L such that
F) =T(ex) where ex = {e7**} for A > w,

The operator T is given by (2.3).

Proof. The implication (i)=>(ii) was actually proven in Proposition 3,
except for the formula f(A)} = T(ey). But, by (2. 3} and Proposition 1,

]

T(ex) = lim lim |

g0V j—ro0

e—)\te—e‘&g# (t) dt

s A+
)2f(>f+5‘2p;) = f(A),
as desgired.

In order to prove the converse statement it is enough to note that since
A — ey is infinitely differentiable, so is T'(e,), and, by (2.1),

O = 7( o)

Remark 3. The above theorem has already appeared e.g. in [6], pp- 158~
159 and [8], Theorems 2.1 and 2.3; it is the formula (2.3) that is new. In
the above mentioned paper the Post—Widder approximation was employed.
The same inversion formula was used by Widder himself to prove his famous
result presented below [11]. Actually, the proof of Theorem 1, as presented
in [6], {8], is nothing but repetition of Widder’s argument [11]. Our argument
seems to be completely new and leads to a substantial simplification of the
proof. Moreover, it appears to be of importance that, in contrast to the case
of the Post~Widder inversion formula, one is able to compute the Laplace
transform of g, (%) explicitly.

Let us also note that, if f{A) is a Banach algebra-valued function and
satisfies the Hilbert equation, then, as noted by J. KisyAski (personal com-
munication), the corresponding 7 is a homomorphism of the convolution
algebra L), (R*), Indeed, it is enough to note that 7 (e )7 (en) = T(exxey),
the set ¢, A > w, being total in L2 L(Rt), The above formula follows from
the Hilbert equation:

= lim I
e oo (A+e+pu

7!

Tym €A < ||T[]m- n

dAn

<17l 3%

LRt )

1
T(ea)T(en) = RyR, = Y

= ’J"(Mi)\(ex —~e,u)> = T(ex *ey).

Analogously one proves that if f satisfies (1.4) then BT(ex)T(e,) =
T(ex)T(eu)B = T{es*ey). This formula could be used as a starting point for
the proof of Da Prato’s generation theorem for regularized semigroups [3. m

[R)\ - Ru]
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COROLLARY 1. If f satisfies (1.1}, then the limit
¢
(2.7) Mli_)ngosgu(.s;)d!.'s =: u(t)
0

ezists (almost uniformly int € [0, 00)) and is a Lipschitz continuous function
with Lipschitz constant Me“™ on [0, {o]. Furthermore,
T A
S e~ Mu(t) dt = @ for A>w, A0
0

(2.8)

Proof By Theorem 1 the limit lim,_, o, Sg e~eeg (8) ds =: u(t) exists,
with e(pu} = w/{p —w), and since the integrand is bounded by Me“*® the
limit is easily proven to be almost uniform in [0,00). The function u(t) is
Lipschitz continuous by the same reason. Since for 0 < ¢ < £,

t t to
H SEME(#)SQP,(S) ds _Sg’u(s) ds” < M{ewu/(#—w)to Vv 1} S (1- e—E(u)ﬂ) ds — 0
0 0 0
as g — 0o, we get (2.7). Formula (2.8) follows by Proposition 1 and inte-
gration by parts, m

THEOREM 2 (Widder [11], p. 315, Theorem 16a). A necessary and suffi-
cient condition for an infinitely differentiable complez-valued function f())
to be the Loplace transform of a bounded measurable function is that there
ezist a constant M > 0 such that
n Mn!

(2.9) 70| < T

Proof It is evident that (2.9) is necessary. Conversely, if (2.9) holds,
then, by Corollary 1, there exists a Lipschitz continuous function w(z),
lu(t) —u(s)| < M|t — s/, satisfying (2.8). Since u(t) is complex-valued, by
the Lebesgue theorem it is a.e. differentiable, and by (2.8) one easily sees
that w'(t) is a function we were looking for,

As a by-product of our proof we also obtain an inversion formula for the

Laplace transform, valid if the original function is bounded:
d t
—1 2 .
7 = G Jim Lau(s) ds.

Remark 4. As is now well known ([1]), the above theorem is also true if
‘complex-valued function” is replaced by “function with values in a Banach
space with the Radon-Nikodym property”. The proof remains the same.

THEOREM 3 (Arendt). Suppose w < A — f (X) 4s an infinitely differen-

tiable Banach space-valued function. Then the following two conditions are
equivalent:

icm
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(a) there exists an M > 0 such that

ME!

[ERRICY] = m, k>0, A>w,

(b) there exists a function u(t) with values in the same Banach space,
Lipschitz continuous with Lipschitz constant € on, [0, t], such that

fy T oy
()‘)mge Mu(t)dt fOT')\}w,A:/_.O.
0
Fyrthermore,
¢ © . oom .
w(t) = lim {eog2 5 AU
() ,u—moé. 5ji ngo TL!(?’Z-F].)! f (,U,)ds,

Proof. The proof of (b)=(a) is straightforward. The converse was
proved in Corollary 1, m

The advantage of the proof we offered here in cormparison to Arendt’s
original argument is that an explicit approximation of u(t) is provided. This
result reflects the spirit of [6] and [8), where the Hille (i.e. Post~Widder)
approximation was considered,

Note that if w > 0 and f(A) = A~("~1R, where n > 1 and Ry, A > uw,is
a resolvent in a Banach space X, then the above result serves as a generation
theorem for an n-times integrated semigroup, say {T.(t),t > 0}, given by

: 0 n2nf_1y\n (k)
10 = Jy fer $ SR (1Y
n=0

p—oo 5 nl(n+ 1)1 \ pn—t
(the limit taken in the norm of £(X,X)). In particular, if n = 0, we have
t t
Y = i hat ZL AN ] = i (UZR —p;)‘g
Ty (t) ,}E%os[c Fgu(s)] ds ulgxgage wTH g,

0
which proves that T () is a limit of once-integrated semigroups generated
by u? R, - p. This result was already established in [2] with the limit taken
in the strong topology. Let us also note here that the Yosida approximation
of distribution semigroups was considered by H. Fattorini [5]. His results are
worth comparing with our formula (2.3).
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Quasi-multipliers of the algebra of
approximable operators and its duals

by

MICHAEL GROSSER (Wien)

Abstract. Let A be the Banach algebra Ko(X) of approximable operators on an
arbitrary Banach space X. For the spaces of all bilinear continuous quast-multipliers of A
resp. its dual A" resp. its bidual A**, concrete representations as spaces of operators are
given.

1. Introduction. Let X be an arbitrary Banach space (we do not as-
sume any kind of approximation property for X ) and denote by A the al-
gebra Kq(X) of approximable operators on X (ie. of all operators which
are uniform limits of continuous linear operators from X to X having fi-
nite rank), equipped with the usual operator norm. A can be considered as
A-A-bimodule in the natural way; therefore, the first resp. second Banach
duals A* resp. A** of A become A-A-bimodules by the frst resp. second
adjoints of the actions of 4 on A.

In this article, we shall give representations of the quasi-multiplier spaces
of A, A* and A**, respectively. The result for A itself is known already for at
least 17 years ([G1, 3.24 and 3.26]): QM(A) is isometrically isomorphic to
L(X*) where g € L(X*) corresponds to the quasi-multiplier ¢4 determined
by ix o dy(a,b) == a* o g* ¢ b** o ux. (The notation is explained in detail in
the following section.) For the special case where X* satisfies the bounded
approximation property, this result was restated and proved recently in [AR,
Corollary 4.3].

A", being isometrically isomorphic to I(X*), can be considered either
a8 an 4-A-bimodule in the natural way or, with multiplication defined by
composition of operators, as a Banach algebra in its own right. Adopting the
first point of view (as is done in Section 3), QM(A*) is given as QM4 (A4*) =
B4(A, 4; A*) while in the second case (treated in Section 4), QM- (A*) =
B4 (A, A% A*) (the subscripts to QM are meant to specify which of the
two variants is intended).
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