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Constructions of cocycles over irrational rotations
by

W. BULATEK (Torut), M. LEMANCZYK (Torud)
and D. RUDOLPH (College Park, Md.)

Abstract. We construct a coboundary cocycle which is of bounded variation, is homo-
topic to the identity and is Holder continuous with an arbitrary Hilder exponent smaller
than 1.

Introduction. This paper is a continuation of investigations from [5]
and is devoted to constructions of Holder continuous cocycles with nonzero
topological degree which are coboundaries over some irrational rotations. We
recall that Furstenberg [2] proved that no Lipschitz continuous cocycle with
nonzero degree is a coboundary. The Lipschitz condition can be weakened
to the absolute continuity (see [3], [4], [8]). However, in [5] a construction
of a bounded variation continunous coboundary cocycle with nonzero degree
has been presented showing that further weakenings are not possible. Here,
by a refinement of the construction from [5] we give an example of a de-
gree 1 bounded variation coboundary cocycle which is Hélder continuous
for an arbitrary Holder exponent smaller than 1. In fact, constructions of
counterexamples of this type are equivalent to constructing special Cantor
sets related to continued fraction expansion of an irrational number.

A part of this paper has been written when the second author visited
Mathematical Institute in Luminy. He would like to thank Professors G.
Rauzy and Ch. Mauduit for the most pleasant stay.

1. Notation. Let ¢ be an irrational number from [0,1) and

3 1
g=—7

a1 +

=1[0:ay,as,...]
as + ...
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2 W. Butlatek et al

be its continued fraction expansion. The positive integers a,, are called the
partiol quotients of . Put

(1) P():O: P =1, Pn+1:a'n+1Pn+-P—lg
Qo=1 CG1=a1, @nil=0n41Q@n+ Qn1.
‘We have
1 P, 1
2 S SN YY) [P . —
( ) Qn(Qn.+1 + Qn) Qn QnQ'n—{-l

Qi @nel] + Qul|@niral = 1,
where ||| denotes the distance of a real number ¢ from the set of integers.
By {t} we denote the fractional part of .
Let T denote the irrational translation mod 1 by a on [0,1). From the
continued fraction expansion of & we obtain, for each n, two Rokhlin towers
£n, €, for T whose union is the whole interval [0, 1). For n even,

én = {00,{Q@n}), T[0,{Qne}), ..., Tnr1@nt@n-2)=20 {Qa})},
En = {[1 - {Qn+1a}1 1)!T[1 - {Qn—l-la}v 1)1 s ’TQﬂ—l[l - {Qn+1a}1 1)}

Given a subsequence {ny} of natural numbers we define

I = [0, {azny+1Qany@}),  Jp = T D [0, {Qan,0}),
s=1,...,a2n,+1. Then

C'-En,ﬂ+1m1
= J =
s=1

and by (1), me = {Ie, Tlx, ..., 79211} is a Rokhlin tower.

Each measurable map ¢ : S — §! will be called a cocycle. By a standard
method we will identify §' = [0,1) (with addition mod 1). Lebesgue measure
on §* will be denoted by . After our identification, 7' becomes a rotation

T(SE‘rr'i:t) — e27m’(:::+ce)7 I e [0’ 1)'

We say that a cocycle ¢ is a coboundary if ¢(z) = £(T'z)/é(z) for a mea-
surable function ¢ : $* — §'. Notice that if ¢ is a coboundary then the
corresponding extension

T, : (S x 84, B,f) — (8* x 8L B,7i), T,(w,2) = (Tm,¢(2)2),

where B is the product o-algebra and i is the corresponding product mea-
sure, is not ergodic (the function F{(gz, 2) = £(z)z7! is T-invariant). Actu-
ally, T,, is exgodic iff for each k € Z\ {0} the cocycle ¢* is not a cobound-
ary ([11). Two cocycles will be called cohomologous if their quotient is a
coboundary. Each cocycle is cohomologous to a continuous one ([7], see also
[6], [9]); moreover, in the cohomology class of each cocycle ¢ there is a con-
tinuous one with a given degree d € Z (recall that for a continuous function
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Yo S — S its degree d(¢) is defined as (1) — {0, where 9 : [0,1] = R
is continuous and e2"*(=) = 4(e27%)). Define

p(2)p(Tz)...I™ " z), n21,
(3} P2y =< 1, n =0,
(@(T"2)...e(T*2))7t, n< -1

Following [5] if there exists a set ¥ C S' of positive measure with the
property that (™ (z) = 1 whenever z,T"z € Y (such a set is called a fizing
set for ) then ¢ is a coboundary.

2. Construction of o and a coboundary cocycle ¢ : §' — §* which
js Holder continuous, has bounded variation and is homotopic to
the identity. We start with the following simple observation.

LEMMA. Suppose that L € N is odd. Then for every odd K > 1,

(e
-t =]l n
r=0 i=1 L KL

Below, by a modification of the construction from [5] we will define a class
of continuous bounded variation coboundary cocycles which are of degree 1.
Then we will show that under certain additional assumptions, these cocycles
are even Holder continuous.

Let (K,.) be an arbitrary sequence of odd numbers, K, = 3. Put

LU = 1, Ln = KnLn_l, 1] Z 1.

Assume that o == [0 : a1, a9, ...] has unbounded partial quotients and more-
over that {agg41 : k > 1} is unbounded. Let £; > 0 with

o0
ZEJ’ < 1.
i=1

We will define f; : [0,1] — [0,1] continuous increasing with f;{0) = 0,
Fi(1) = 1and 5377 || Fi+1 = filleo < 0. A sequence (k;) will be selected so
that if we define
Qany—1
ﬂj = J; U...u J;{j, Bj = U Aj,a, where A;, = TsAj,
§==0

then p(B;) < £;. The function f; will be constant on. the gaps between A;,
and linear (possibly constant) on A; .. The set of those values of f; which are
assumed on the intervals of constancy will be exactly {1/Lj_1,2/Lj-1,...
..., 1}. Moreover, on such intervals the limit function f will coincide with

CJ; = Aj,gl ...y Aj,-?tj
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we denote the union of those A;, on which f; is strictly increasing then
Cjy1 C Cj and fjp1 = f; off C;. Finally, we will show that all such cocycles
are coboundaries by exhibiting fixing sets.

DEFINITION OF fi. Select &y so that
K
T2k -+1

We define f1 to be equal to 1 on [0,1]\ Ay, f1(0) = 0 and then complete f;
to obtain a linear continuous function. Note that if © € J1 then

Ssl.

K1Qapy —1

> h(T')

t=0

= (@) + ATF D)+ .+ AT B0) + 04,

hence

K Qap, —1

S (T

i=0

= f(z) + f(T¥1m) + ...+ T Hmg) + My,

where My € N.

DEFINITION OF fa. Select kg > k1 so that

K
2 S £0.
a2ka41

We have Ay C Ip C J%; consequently, T"%1Ay C T J] = T
r=0,..., K1 —1. If we take A; and consider its partition into Ag Qg r T
0,. Kl 1, and the corresponding gaps then we put consecutively the
values 1/L1,2/ L1,...,1 on the gaps and then complete fz linearly on the
remaining intervals. Note that if z € J; then

KZQﬂJﬂg—l Ky—1Hp~1 .
Y ATz =Y Y (@m0 4 0,
i=0Q =0 j=0

where My € N, since if T*z € J}\ Ay then Y770 f(T™iz) € N by the
Lemma and the definition of f1, where p > 1 is the smallest natural number
such that 7%z € Ji. Hence

T K2Qaeg—1 Kyi—1 Kg~1
S A= 3 S At 1
i=0 s=0 =0

Moreover, observe that if z € J}\ Az then by definition of f; and the Lemma
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we have
KiQap, 1
D T = f(@) + [(TPna) + .+ (TE D) |
i=0

= fa(z) + foT9%12) +
= M{,
where M{ € N. Finally, note that ||fz — fi] <1 /L1

DEFINITION OF f3. Select k3 > ko s0 that

vk fz(T(Kl—l)szl ) + My

< £3.
I2%q 41

We have Ay C I3 C J3; 80 Agy, is a left-hand subinterval of T? J1. We know
that

D20, B3,Qaiyr -+ Do(Ky—1)Qa,
are all the intervals where f; is strictly increasing. The appropriate transla-
tions of As will partition A, rQap, M0 Ko translations of Az and K, gaps.
We put

r 1 r 2 r+1

L +E’ L_1+E;’ L
as the constant values on the consecutive gaps and then complete fs linearly
on the remaining intervals. If now z € J} then

Ky Qapg 1 ‘ K1—1Ks—1K3—1
Z fs(sz) Z Z Z f3(Tquk1 +8Q2k2+Jsz3 '.l:) + M;,
=0 g=0 =0 j=0

where My € N, since if T"z € J} \ Az then Y72 F(T"z) € N by the
Lemma and the definition. of f,, where p > 1 is the smallest natural number
such that T%z € JZ. Moreover, observe that if z € J3 \ Az then

Ko@Qaxy ~1 Ki1-1Kz-1
Z F(T'g) = z Z F(ToR2ea+iQ2ka ) 4 1,
i=0 s=0 j=0
Ky-1 Kg-1
= Z Z fs(TBszl-’r“jszzm) My = ML;:
a=0" j=0

where Mj € N by the definition of f3 and the Lemma. Finally, | f3 — fal|
< 1/Ls.

Continuing, we define f,, in such a way that

K,
= < En
A2k, +1
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and if
An—l,s;u An—l,s:: R (Sl = O)
are all the intervals where fn_1 is strictly increasing then the appropriate
K,_1 translations of A, will partition each A,_1,,; into Kn_1 subintervals
and K1 gaps and if we fix s; then
7 n 1 ’ T + 2 ,.”’7+1

Ln-—2 Lp-y Ln—2 Ln——l Ly
are the constant values of f, on the consecutive gaps, where r/Lp— is
the biggest value of constancy of fn_1 not exceeding the values of fn_; on
An-1,s; Then fr is completed linearly. Also, if z € J! then by the Lemma,

KnQak,—1 K1-1 K31 Kn-1

Z fn(Ti:r) — Z Z Z fn(leszl+j2Q2k2+-..+J"nQ2lunm)_l_Mn’
i=0 §1=0 ja=0  ja=0
where M,, € N. As before, for z € Ji_ 1\ A, by the definition of f, and the
Lemma we get

Kn-1Qzk,_;—1

S AT

3 A'n-ﬂl,stn_l

f={)
Kl—lKQ—l Kn-—‘l“‘l .
— Z Z Z f(T“Q%l+MQ2’°2+"'+3“'1Q%"~1m) - My_q
F1=0 jo==0 Fn—1=0
Ki—1K,—1 Kn_1-1
— Z Z Z f’n(leQZkl+j2Q2kg+---+jw.—1Q2kn__1CE) +Mn—1=M;,,_11
F1=0 ja=0 Fn—1220

where M, _; € N, Finally, || fn — fa-1]l £ 1/Ly,..1. We have
Z ”f-n—i—l - fn“ < 1/Ln < 00
nzl
and therefore f = liMp—co fr i8 well-defined, increasing continuous and
fO) =0, f1) =1
THEOREM. If f is defined as above then the coeycle 2™ s o cobound-
ary.
Proof. We have u(B;) < g4, § = 1,80 0 < w(Y) < 1, where ¥ =
[0,1) \ U5, Bj- It remains to prove that Y is a fixing set for 2™,
All we need to show is that if z, 7"z € ¥ then

(4) fle)+ f(Ta) + ...+ f(TN'z) € Z.
First, note that if also Te,T?%z,..., 7"tz € Y then f(Tizg) = 1 for
i=0,...,N —1 and so we are done. Therefore, assume that T"% £Y for
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some 0 < n < N and let » be minimal with this property. Now
f.(:c),f(Tml), oo, f(T™1z) = 1 and there exists j > 1 such that Tz € B;.
Since T’T‘ xz & By ]:uve have Tz € Aj;, but B; can be considered as a Rokhlin
tower with base Jj and height Qap, K; ~4, so we must have Tz € J}. As-
sume that j is the biggest such that € A;. We will prove that
(5) F(Tz)+ .+ fI™Fe 51 e N
Indeed, first notice that T"z & B, because Tz ¢ A;1 by our choice
; o
of j and if T"z € Bjy1 \ Ajpq then Tz € Bjyq, so T 1z would belong
to Y, a contradiction. Therefore, by the definition of f; we get
KiQan; —1
Z fj (Tn+z'm)
=0
K]_—l Kz—l Kj -1
— Z Z L Z fj(T'm:LQZIel+m2Q2k2+---+ij2kj -i-nm) + M;
H
m1=0mg=0 g =0 !
where M; € N. But since T"z ¢ Bj1, we see that f;(1™z) can be different
from f(T™'z) only for those 1 which are of the form i = my Qur, +m2Qox, +
o+ - M Qar,; . Consequently
K;Qar;—1
Z f(Tn+i$)
i=0
Ki-1Kg~1 Kj“"’“l
= E Z . Z F(T™ @iy TMaQuky Tt My Gk 1) 4 AL
my=0mg=0 m;=0
However, T"z ¢ A;.3, so that

f(TmiQ%: FmaQuieg -+ Qaky +7"m) v (Tml Qary Tm2 Qg+ +my Q2 +nm)_

fi+1
By the definition of f;4; we obtain
Ky -1 Kq—1 Ki—1
Z Z Z fj+1(T'n'|-1Q2k1+m2Q3kg+--~+ij2kj+nm) €N,
mi=0rmg=0 g0
s0 (5) has been proved.
ch;lW,l note that z; = T 9: %Kiy ¢ Ji 1\ 4; (since in fact z; € J;{j+1),
an .
aad btt ;;:fore we can repeat the same arguments for zy,...,%;_1 as for zg
22 € Ty \ Ajors vy @im1 €T3\ Ao
and the corresponding sums are integers. It remains to prove that z; =
Tw¥ig, | € V. Obvicusly z; ¢ By since z; € JE+1 Suppose that,
z; € By. Then autoratically T“kwj € By for all k =0,1,...,pa, where po
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is greater than Qap, K1, in particular z;—3 € Bg, which is a contradiction.
Similarly if z; € Bz then T"“:cj € By for all k = (,1,...,p3, where py is
greater than Qax, K2 + Qog, K1; in particular z;_» € B, which is a contra-
diction. In the same way we exclude the possibility z; € By, ..., z; € B;. If
z; € Bjyr, v > 1 then we still obtain a contradiction by similar arguments,
though this time to the fact that T"x ¢ By, forallr > 1. m

Define
Py = 1/Ln~—1: bn = uﬁ' - IAn,-}-lla n=12...

Note that h,, represents the distance between consecutive values of constancy
of f,, while p,, represents the length of the shortest interval of constancy
for fn_l.]_.

ProOPOSTTION. If there exist C > 0 and 0 < § < 1 such that for all
n >0,
(6) hn < Crf,
then the function f defined in the Theorem is Hilder continuous.
Proof. Take z,z' € [0,1). We want to prove that
(7) |#(z) - £(z)] < Clz ~a'|".

If there exists n > 1 such that z, 2’ belong to the same interval of constancy
of fn then (7) is satisfied. Suppose that this is not the case. Then there
exists a smallest n with the property that either

(i) between z and z’ there is at least one interval of constancy of f,+1 or
(ii) z and 2’ belong to two consecutive intervals of constancy of fui1
(these two intervals can be of different size).

In case (1) we have

|z —2'| 2 pn,  |f(2) - f(&)] < hn
50 (7) follows immediately from (6).

In case (ii) we have

|z~ a'| > puy1,  |F(2) — F2)] = hna
and again (7) follows from (6).

Set in, = |I,| and 5, = |J}|. In view of (1) and (2), for each n 2 1 we
have
Q2kp 1+l

QQJﬂn+1 +1 + QZk,ﬂ..l

A2knt1 41
Qz-'ﬂn+1

<ty <
so that

T <intl
3Q2kn+1

Constructions of cocycles 9
Moreover,
> Jn > L
e [ —_— T,
2k, +1 Q2kot1 + Qo
Therefore Jpr1 C Tnt1 C Jn. Furthermore,
. 7:n+1 1 1
Jntl = 2 =
02kppr+l  OQ2n102hnpatl 3 2Q2k, 11 —102kn 13 O2hp s+l
1
= >

T 3 22Qak, 10— 202k, 11 ~102ky 1 G2k b1
By continuing, we see that for each n > 1,

(8) Jn 2 -
R o
Now, |A'n+1[ = Kni1Jn41 < Entns1 < Enjfn. Thus pp 2 (1—5n)jn and by (8):
1—¢
(9) 2 =

=g ]
n 1 772k +1
3. 92k, 1'H5=1+ G

CoROLLARY 1. If for a = [0 : a1,a,...] there ezists a sequence (k)
such that for eachn = 1,

1 1—¢ 8
<C n
(b) Ki-...-Kp_1 ™~ (3,22kn—1 Hiiﬂ_:ﬁl as)

jor some C' > 0 and 0 < § < 1 then there exists a coboundary cocycle
¥ 1 8' — S which is of bounded variation, Hélder continuous and has
degree 1. m

CORQLLARY 2. There erists an irrational number o and a bounded vari-
ation coboundary cocycle which is homotopic to the identity and Hélder con-
tinuous with an arbitrary Holder ezponent 0 < § < 1.

Proof Let 0 < A, — 0 and define p, = 2*+ T +*=p;, where o > 0. We

will assume that
™

i
(10) (Yn > 1) ;,\j 2 5.
Therefore
(11) B = 28Y75.

Choose —1 < n; < 1 so that p; = P; + 7 is odd. Note that

n—1 n—1
1Y 5= Y m

i=0 =0

< n.
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We have
(12) for each 0 < § < 1 there exists ng such that for ali n 2 no,

Zmz né -+ (n+l)(n+2)6+ (im)é.

=0 iaO
Indeed, first notice that

2
=it =0
Ei:[} bi
by (11). Then observe that lim p, /pp—-1 = im pp/Dn—1 = 1, 50
. Dn
lim =20 = Q.
E?:ol y2

Therefore (12) holds true since § < 1.
Put a; = 5+ 57, agpey = 5" - 5P and oy = 1 for all £ > 1. So we
let £, = 1/5™ and K, = 5P~. Now set k, = n. By Corollary 1 it suffices

to show that for every 0 < § < 1 there exists C' > 0 such that for all
n21,

1 1—1/5"
<
RPi ., . .5Pn-1 — C(s.gn—l . (5.5190).

whence it is enough to show that

8
. (51‘1»"?“1 . 51311 ))

5 ‘
C. 5p1+~-+ﬂn-—1 (1 . if) > 5n6 . 5(n+l){n+2)6/2 . 5(pg+,.‘+Pn)5.
5y =

Therefore our assertion follows directly from (12) for an appropriate choice
of C. n

Remark. In [8] it is shown that if f:§' — R and g € L*(§') with
9(x) = 320 9n€*™™ and g, = o(1/n) then for every irrational o there
exists a subsequence (Q;) of denominators of « such that

(13) g9 =0 in L3S,

generalizing the previously known similar result for absolutely continuous
functions (see [4]). As noticed in [3], the condition {13) says in particular
that for each nonzero d € Z the cocycle e?™id=t3(=)) i5 ergodic with respect
to every irrational rotation.

The result of this section says then that (13) is not satisfied for the
cocycle g(x) = f(x)—=, where f comes from Corollary 2; the condition (13)
is not satisfied though the Fourier coeflicients of g are absolutely summable
and g, = O(1/n) with g, = o(1/n) for n from a set of density 1
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