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On the spectral bound of the generator of a Cp-semigroup
by

Yu. TOMILOV (Kiev)

Abstract, We give several conditions implying that the spectral bound of the gener-
ator of a Cy-semigroup is negative. Applications to stability theory are considered.

1. Let X be a complex Banach space, (T'(t));>0 & Co-semigroup in X,
and A its generator with the domain D(A), the spectrum o(A) and the
resolvent set o(A4). Denote by R(A, 4) := (A—A)™1, A € g(A), the resolvent
of the operator A, by s(A4) := sup{ReX : A € ¢(A4)} the spectral bound of
A, and by wo = im0 In||T(t)||/t the type of the semigroup (T'(t))s>0-
Finally, for a linear operator 4, denote by C*(A) the set [, D(A™).
Among other results, G. Weiss has proved in [14] the following

THEOREM 1. Suppose that for every x € X and everyz* € X™,

VT2 Pdt < oo, pe L o0).
0
Then s(A) < 0.

(For p = 1 this result appeared also in [3, Ch. 7].)
The main purpose of the present paper is to show that for the casep=1

the conditions of Theorem 1 can be esgentially weakened. Namely, we require
oQ

S [(T(t)z, ™) dt < o0

0
only for x € 0%®(A) and z* € C®(A*). It is also established that if {A €
C:Re) >0} C o(A) and

sup S (R{s +it, A}z, z™)| dt < 00

20
for z € C*(A) and z* € C™(4), then a similar assertion holds. Cornbining
our results with the results of [1] we derive a criterion for some kind of
stability of (T(t))tz().

1991 Mathematics Subject Classification: 4703, 4TA05.

Feant



24 Yu, Tomilev

Recent developments related to the subject of this paper can be found
in [10]. The role of C®(A) for stability theory was studied in [17].

9. For our considerations we shall need some background from the theory
of operator semigroups. First, we recall some properties of the sets C*°(4)
and C°(A*). It is well known that C°°(A) = X. But, in general, the closure
of ¢™°(A4*)} is not the whole X*. This is due to the fact that, in general, the
semigroup (7™ (t))s>0 is not strongly continuous on X*. At the same time,
the set

X9 ={g* € X*: T*(t)z* is continuous, ¢ > 0}

is equal to D(A*), and it is a T*(t)-invariant subspace of X*, £ > 0; T (t)|xe
is a Cp-semigroup with the generator A® = A*|xo, called the sun-dual of
(T(t))tzg. Thus
(1) Co(A0) = X®, C®(A°) c C=(4").
(In fact, C°(A®) = C*(A*). See [8] for the proof.) Furthermore, the sub-
space X® ¢ X* induces on X the prime-norm

Izl = sup{i(z,2®)| : 2° € X©, |2®] <1}, =zeX,
which is equivalent to the original one. Therefore, there is C' > 0 such that
(2) |zl < Cllz|".

For all these facts, we refer the reader to [3].

Now, let £(X) be the Banach algebra of bounded linear operators on X
and let A be a maximal abelian subalgebra of £(X) containing (T'(%))¢z0- It
is known that A is closed under limits in the strong operator topology. So
the set {R(\, A) : X € p(A)} is contained in .A. Moreover, for every S € A
we have

aa(5) =a(5).
These basic facts can be found in [4]. For more details, see [5].

We start with the following staternent.

THEOREM 2, Suppose that
[+.4]
(i) for all x € C°(A) and z* &€ C*°(A*), S [(T'(t)x, z*)| dt < oo.
0

Then s(A) < 0.

Proof. Fix z* € C*°{A*). Consider the linear operator My« : C°°(A4) —
Li(R") defined by

(3) Mgz = (T(t)z,z*), t>0.
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The operator M« is closed by standard arguments. Since C°°(A} can be
regarded as a Fréchet space with the system of norms

[z]ln = I(Ao — A)*zll, neN, Ao € g(A) fixed,

the closed graph theorem implies the continuity of M. on C°(A). There-
fore, there is some m € N such that

[ #z-zlls < O = A7z, C(z") >0,
(here || - ||1 stands for the Li-norm) or
(| M~ B™ (Ao, A)alla < C(&7)lzll, =€ C=(A).

The last inequality implies that the linear operator Mg «R™ (g, A} is con-
tinuous on C™(A) with the topology induced from X. Therefore, from
C(4) = X it follows that

[ M= B™ (Ao, )21 < Cle*)|],

e X,

Now, fix # &€ ¢°°{A). Then, in the same way, the linear operator M :
C°(A®) — LY(R") defined by the right side of (3) is continuous. So, there
exists [ € N such that

1M R (ho, A2)z®l1 < O(2)|=®l,
Using (1) one can obtain
(| MR (Ao, AD)2®]y < C(z)l|z®], 2® € X®.
Thus the bilinear operator
B(x, 2%) = (T(#)R™ (o, A)z, B (Mo, 4%)z®)
= (T({t)R™ A, A)z, %), (2,2%) € X x X©,

is separately continuous on the Banach space X x X©. Consequently, there
exists C' > 0 such that

|1B(z,2®) 1 < Cllzll - [2°]];

In other words,

z® € C(A9).

ze X, 2 eX®,

J @ R™ (00, A)z,29)] dt < O]l - =)
0
hence
|(Te TR (20, A)zdt,z®)| < Clel- 2°],  we X, 2° € X©,
0

for every @ > 0 and every s € R. Using inequality (2) and the continuity of



26 Yu. Tomilov

the function T(£)R™+ (g, A) in the uniform operator topology we obtain

ie“’T(t)Rm“(Ag,A) dt” 420, s€ R} <.

(4)

With a reasoning similar to [4, Th. 2.16], we conclude that for A€ o(4)
there exists a character x» of the Banach algebra A such that
% (TER™H (X, A)) = Mo = A)~ (m+3),

Hence, again taking into account the continuity of T(t)R™ (Ao, A) in LX),

C1 2> sup{” ST R™ (Ao, A) dt“ a>0, s€ R}

)
> sup{l ESLGMXA t)RerI()\g dt] a0, s€ R}
0
5
0

> sup{l eteM(Xg — A)” (m+) dt, a0, se ]R}

Setting s = — Im A, we obtain

a

1 > sup SetReA()\o — A)—(m-H) dt‘
a2l 0
(5) |Ao — A|~tmta, Re =0,
— ReA _
(6) =S Y 3 - A=) 2L Rex £ 0.
= Re X

Next, assume s(A) > 0 and consider two cases according to (5), (6). If
there is A € o(A) with ReA = 0, then by (5) we immediately obtain a
contradiction. Otherwise, consider two possibilities.
a) o(A)N{A € C: Re) > 0} # 0. Then from (6) a contradiction follows.
b) o(A) € {} € C:ReX < 0}, but 5(4) = 0. Then there is {An:n =1}
C o(A) such that Re A, — 0 as n — co. From (6) we obtain

Cl > Sup lAO — A |“"(m+"‘) Eiﬁi:_‘“_l [ —— ...__._1_...
- Rl ™ Re An T |Re Anl
e — —(m+1) —————e~ —1 =
i\;}: {|Ao Anl R } co.

Thus we get a contradiction again. m

The next theorem is in some sense dual to Theorem 2.
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THEOREM 3. Suppose that
(i) {NeC:Rel>0}C o(A), and for allz € C=(A) and z* € C®(A™),

sup | |(R(s +it, A)z,z")| dt < oo.
5>

Then s(A) < 0.
Proof. Fix A; € o(A). Considering the bilinear operator
Bole,z®) = (R(\, A)z,2%), =ze€C®(4), 1%¢ C™(A),
with values in the Hardy space H!({\ € C : ReX > 0}), similarly to the

proof of Theorem 2, one can show that

s4-ico
(M sup | IBEK AR, A)z,5%)|dA

<Gzl - [2®], z€X, 2®€X®,

for some m € N and € > 0. Then, for any s > 0 and (g, ¥) C R, we obtain

s+1ib s+14b
(§ ROAR (o, A)wdra®) | < | [BOLAIE™ (o, A)a, )i )
8+ia s+ia

< Clla]) - [12°].

Hence by (2),
R(), A)Rm()\g,A)dA” §>0,a<b, a, beR} <y

for some Cy > 0.

Suppose that o(A) NiR # @ and o € o(A)NiR. By the spectral mapping
theorem for the resolvent, we have 1/(Xo — ) € o(R(Ao, A)) Let xo be the
character of the algebra A such that xa(R(o, A}) = 1/(Ao — @). Now, the
first resolvent identity implies xa(R(A, 4)) = 1/(A — a), A € o(A). Hence

s+zb
> sup{ H

3+ia

AA)Rm(AO,A)d,\H >0, a<b, a,b€R}

3+1ib
| xa(R(A,A))xa(Rm(Ag,A))d)\‘ :5>0,a<b, a,bER}

a--ia

2o

s+i§ 1
g S dX

:6>0, a<b, a,beR}
s+ia

=|Ag —a|™™ sup{
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. s+ib—a
= — e~ lig>0,a<h a,beRS.
|Xo — supﬂlns_l_m*a 8 , a,b € }

Setting o = Ima, b= Im« + 1, we obtain

s+i(lma+1) — o
> ] 1
Gz o =al e e - a
= Ao — | ™ sup gL ,
a>0

a contradiction.

Next suppose that o(A)NiR == @, but there exists a sequence {a, :n > 1}
C o(A) such that Rea, — 0 as n — cc. Then, for the sequences Xq,, and
an = Iman, by = Imay, + 1, n > 1, we have

EE X1
Cr2su| | xow (RO A Xar (R0, 4)) 42
5>0 stian,
—m s+1i—Reay S -
=|X ~ —_— L.
[Ap ~ Q| 21;13111 s Rem, | nZz

Letting n — oo, we obtain a contradiction. So s(4} < 0. m

Remark 1. If (T(%))s»0 is continuous in the uniform operator topology
for ¢t > to (for example, if it is differentiable or compact), then s(A) = wy
(see [3]). Thus, each of the conditions (i), (ii) ensures the uniform stability
of such semigroups.

Remark 2. For the discrete counterparts of Theorems 2 and 3, see [7,
9, 10, 15], and especially [11].

Remark 3. Conditions similar to (ii) were used in [10, 18] for the study
of the exponential stability of Cp-sernigroups.

Now we shall show that each of the conditions (i), (ii) implies the stability
of the “sufficiently smooth” orbits of (T'()):»0. The next statement, which
is a special case of a result given in [1, p. 803], will be essentially used.

THEOREM 4. Assume that o(A) C {A € C:Re A < 0} andsup,p | T(#) S]]
< oo for some S € L(X). Then

|T($) A8 — 0
(For a survey of this type results, see also [2].)

COROLLARY 1. Suppose that one of the conditions (i), (i) is satisfied.
Then there is mg € N such that

ITE)RE™ (Ao, DI — 0
Jor some Ao € g(A).

as t — 00,

as t - 00,
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(Observe that, in view of the first resolvent identity, the conclusion of
Corollary 1 does not depend on the choice of Ag € o(A).)

Proof If (i) or (ii) is true then, according to Theorems 2 and 3, we
have s{A) < 0. Next we prove that each of the conditions (i), (i) implies the
existence of n € N such that sup,5, |T(t)A™"| < co. Then from Theorem
4 we shall obtain the required conclusion for Aq = 0.

(a) Assume (i) holds. Then (4} holds for some m € N and Cy > 0. In
particular, we have

ig}g}”iT(s)A”m ds” <.
207

From the identity
t
THYA™ (MY _ 4= (m+]) ST(S)A"” ds (meN)
i
we obtain

i
sup | T(2) 4~ < A~ 4 sup| { T()A™™ ds|
t>0 =0l

< A= 40y

The desired result follows for mg = m + 1.

(b} Assume (ii) is true. Then there are m € N and C > 0 such that (7)
holds for Mg = 0. Fix € X and z® € X®. According to (7), the function
(R(A, A)A~™z,z®) belongs to the Hardy space H'({} € C : Re) > 0}).
Therefore, it is bounded in every halfplane {A € C: Re A > e}, € > 0 (see
6], for example), On the other hand, using the first part of the proof of
Theorem 2.1 in [13] we obtain the representation

m=1 A~ (m--k)tk

T(H)A™ e = Y =
k=0 ’
s-+ico  a¢
1 eMR(A, A)
=3 S_Sm m—*xﬁﬁ—'—-——m dr, s> max(0,wy), s € X

(the integral exists in the principal value sense). Then from the identity

m—1
R(\ A)A™™ = A""R(M A) + Z 3~ Uk+1) g—(m—F)
k=0
and the Jordan lemma, shifting the contour of integration we have for every
g >0,



30 Yu. Tomilov
s+ioo

1
el

a—io0

T()A ™ = eMR(\, AA™™zd), s>e.
Hence we obtain
5400

|(T(t)A-mm,m®ng-2-17—rew [ 1B, A)A™™2,29)] d),

s—ioo

8 > £,

Letting £ — 0+, we get

(TA™™z,3%)| < —C||=| - |=®]l, C >0

From (2) the necessary statement follows for mg=m. u

Finally, we give one more result, which includes conditions different from
those of Theorems 2 and 3, but has the same flavour. In [12] A. Pazy has
proved the following

THEOREM 5. Suppose that for every z € X,
o0

(i) J IT )2l dt < oo,
0

p € [1,00).

Then wy < 0.

Remark 4. If condition (iii} holds for a fixed z € X, then ||T'(t)z| — 0
as t — 0o. This was observed by G. Weiss [16].

Cur % (A)-version of Theorem 5 is as follows.

PROPOSITION 1. Suppose that for every x € C°(A),
oo
{17 ()|P dt < oo,
0

€ {1,00).

Then s(A) < 0.

Proof Fix Ag € o(A). By a reasoning similar to the proof of Theorem 2
we can show that there are m € N and C > 0 such that
o
VIT@R™ (Ao, A)al|? dt < O|jal?,
0

zeX.

In view of Remark 4, we have ||T(¢)R™(Xo, A)z| — 0 as t — oo, for every
z € X. The uniform boundedness principle implies

sup [|T(t)R™ (Ao, A)|| £ C
0
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for some C > 0. Now, following the proof of Pazy’s theorem from [3], we
obtain
tT(E)R*™ (Ao, A)e||F =

T (&) R¥™ (A, A)z||P ds

SVIT(E — 8)R™ (Ao, A)|PIIT ()R (Ao, A)2]? ds

[ I B e R

t
< CP | TD()RB™ (ho, A)i[? ds.
0
Again by the uniform boundedness principle

(8) [T ()R (Ao, A)|| =0

Next, as in the final part of the proof of Theorem 2, for every A € o(A)
there is a character y of the Banach algebra A such that

as t — oo.

xalT(E)RP™ (Mo, A)) = e {hg — A) ™2™,
Since
IT(#)R*™ (Ao, A)[| = sup |xa(TE)R*™ (Ao, 4))]
Aca(A)
= sup [N -2 = sup "R — AT,

AET{A}
by (8) we obtain s{A) < 0. m

A€o (A)

3. We shall show that the conclusions of Theorems 2 and 3 are not
reversible.

EXaMPLE 1. We use the construction of the classical example due to
Zabczyk [19]. Consider the Hilbert space X = €D,_, C* and the Cp-semi-
group (T'(t))s>0 on X given by

o0
T(1) = @e(mq/a)temt’
n=1
where An = (ai;)] =y is the n X n-matrix with a; ;41 =1,1=1,...,n—1,
and a4; =0 otherw1se

From the reasoning in [19] it follows that the generator of (T'(t)):z0 is

defined by
A= EB(A,, -
n=l
and has the domain {(z")7%; €
{in—1/3:n e N}. So s(4) = —1/3

(in—1/3)

: (ne™)%%,; € X} and the spectrum
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Next, it is easy to see that co = (¢§)3%, With 2§ = (e=™/2,...,e"™/3),

n > 1, belongs to C*(4) N C>(A"). Moreover, we have

o0 n tk

—1/3 —
(T(t)s,z) =€ v Ze I L t>0.

n=0 k=0
Observe that the series on the right side is uniformly convergent on compact
sets in R So for F(t) = e 30 e Y ks t*/k!, we have

o0 no Lk
P =gl +e e O G = =9I,
=0

n==0
oo

f(0)=Ze'”: T

n=0

hence . . )
_ & (e-1/3)t
FO) = 2qe
Thus, for # = z* = &y condition (i) is violated.

Remark 4. Similarly one can show that Proposition 1 is not reversible.

ExaMpLE 2. Consider a diagonal operator A on C" with the spectrum
{M, - At in {2 € C:Red < 0}. Obviously, such an operator has a
negative spectral bound but its resolvent R(), A) defined by

1 7l
R(\ Az = (/\i — Am,;) )

is not integrable in the sense of condition (ii).
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