

STUDIA MATHEMATICA 125 (1) (1997)

On the spectral bound of the generator of a C_0 -semigroup

by

Yu. TOMILOV (Kiev)

Abstract. We give several conditions implying that the spectral bound of the generator of a C_0 -semigroup is negative. Applications to stability theory are considered.

1. Let X be a complex Banach space, $(T(t))_{t\geq 0}$ a C_0 -semigroup in X, and A its generator with the domain D(A), the spectrum $\sigma(A)$ and the resolvent set $\varrho(A)$. Denote by $R(\lambda,A):=(\lambda-A)^{-1}$, $\lambda\in\varrho(A)$, the resolvent of the operator A, by $s(A):=\sup\{\operatorname{Re}\lambda:\lambda\in\sigma(A)\}$ the spectral bound of A, and by $\omega_0:=\lim_{t\to\infty}\ln\|T(t)\|/t$ the type of the semigroup $(T(t))_{t\geq 0}$. Finally, for a linear operator A, denote by $C^\infty(A)$ the set $\bigcap_{n=1}^\infty D(A^n)$. Among other results, G. Weiss has proved in [14] the following

Theorem 1. Suppose that for every $x \in X$ and every $x^* \in X^*$,

$$\int\limits_{0}^{\infty}|(T(t)x,x^{*})|^{p}\,dt<\infty, \quad p\in[1,\infty).$$

Then s(A) < 0.

(For p = 1 this result appeared also in [3, Ch. 7].)

The main purpose of the present paper is to show that for the case p=1 the conditions of Theorem 1 can be essentially weakened. Namely, we require

$$\int\limits_{0}^{\infty}\left|\left(T(t)x,x^{*}\right)\right|dt<\infty$$

only for $x \in C^{\infty}(A)$ and $x^* \in C^{\infty}(A^*)$. It is also established that if $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\} \subset \varrho(A)$ and

$$\sup_{s>0}\int\limits_{-\infty}^{\infty}\left|\left(R(s+it,A)x,x^{*}\right)\right|dt<\infty$$

for $x \in C^{\infty}(A)$ and $x^* \in C^{\infty}(A)$, then a similar assertion holds. Combining our results with the results of [1] we derive a criterion for some kind of stability of $(T(t))_{t>0}$.

foot

¹⁹⁹¹ Mathematics Subject Classification: 47D03, 47A05.

24

Recent developments related to the subject of this paper can be found in [10]. The role of $C^{\infty}(A)$ for stability theory was studied in [17].

2. For our considerations we shall need some background from the theory of operator semigroups. First, we recall some properties of the sets $C^{\infty}(A)$ and $C^{\infty}(A^*)$. It is well known that $\overline{C^{\infty}(A)} = X$. But, in general, the closure of $C^{\infty}(A^*)$ is not the whole X^* . This is due to the fact that, in general, the semigroup $(T^*(t))_{t\geq 0}$ is not strongly continuous on X^* . At the same time, the set

$$X^{\odot} = \{x^* \in X^* : T^*(t)x^* \text{ is continuous, } t \ge 0\}$$

is equal to $\overline{D(A^*)}$, and it is a $T^*(t)$ -invariant subspace of X^* , $t \geq 0$; $T^*(t)|_{X^{\odot}}$ is a C_0 -semigroup with the generator $A^{\odot} = A^*|_{X^{\odot}}$, called the sun-dual of $(T(t))_{t>0}$. Thus

(1)
$$\overline{C^{\infty}(A^{\odot})} = X^{\odot}, \quad C^{\infty}(A^{\odot}) \subset C^{\infty}(A^*).$$

(In fact, $C^{\infty}(A^{\odot}) = C^{\infty}(A^*)$. See [8] for the proof.) Furthermore, the subspace $X^{\odot} \subset X^*$ induces on X the prime-norm

$$||x||' := \sup\{|(x, x^{\odot})| : x^{\odot} \in X^{\odot}, ||x^{\odot}|| \le 1\}, \quad x \in X,$$

which is equivalent to the original one. Therefore, there is C > 0 such that

$$||x|| \le C||x||'.$$

For all these facts, we refer the reader to [3].

Now, let $\mathcal{L}(X)$ be the Banach algebra of bounded linear operators on X and let \mathcal{A} be a maximal abelian subalgebra of $\mathcal{L}(X)$ containing $(T(t))_{t>0}$. It is known that A is closed under limits in the strong operator topology. So the set $\{R(\lambda, A) : \lambda \in \varrho(A)\}$ is contained in A. Moreover, for every $S \in A$ we have

$$\sigma_{\mathcal{A}}(S) = \sigma(S).$$

These basic facts can be found in [4]. For more details, see [5].

We start with the following statement.

THEOREM 2. Suppose that

(i) for all
$$x \in C^{\infty}(A)$$
 and $x^* \in C^{\infty}(A^*)$, $\int\limits_0^{\infty} |(T(t)x, x^*)| dt < \infty$.

Then s(A) < 0.

Proof. Fix $x^* \in C^{\infty}(A^*)$. Consider the linear operator $M_{x^*}: C^{\infty}(A) \to$ $L_1(\mathbb{R}^+)$ defined by

(3)
$$M_{x^*}x := (T(t)x, x^*), \quad t \ge 0.$$

The operator M_{x^*} is closed by standard arguments. Since $C^{\infty}(A)$ can be regarded as a Fréchet space with the system of norms

$$||x||_n = ||(\lambda_0 - A)^n x||, \quad n \in \mathbb{N}, \ \lambda_0 \in \varrho(A) \text{ fixed},$$

the closed graph theorem implies the continuity of M_{x^*} on $C^{\infty}(A)$. Therefore, there is some $m \in \mathbb{N}$ such that

$$||M_{x^*}x||_1 \le C(x^*)||(\lambda_0 - A)^m x||, \quad C(x^*) > 0.$$

(here $\|\cdot\|_1$ stands for the L_1 -norm) or

$$||M_{x^*}R^m(\lambda_0, A)x||_1 \le C(x^*)||x||, \quad x \in C^{\infty}(A).$$

The last inequality implies that the linear operator $M_{x^*}R^m(\lambda_0, A)$ is continuous on $C^{\infty}(A)$ with the topology induced from X. Therefore, from $\overline{C^{\infty}(A)} = X$ it follows that

$$||M_{x^*}R^m(\lambda_0, A)x||_1 \le C(x^*)||x||, \quad x \in X.$$

Now, fix $x \in C^{\infty}(A)$. Then, in the same way, the linear operator M_x : $C^{\infty}(A^{\odot}) \to L^{1}(\mathbb{R}^{+})$ defined by the right side of (3) is continuous. So, there exists $l \in \mathbb{N}$ such that

$$||M_x R^l(\lambda_0, A^{\odot}) x^{\odot}||_1 \le C(x) ||x^{\odot}||, \quad x^{\odot} \in C^{\infty}(A^{\odot}).$$

Using (1) one can obtain

$$||M_x R^l(\lambda_0, A^{\odot}) x^{\odot}||_1 \le C(x) ||x^{\odot}||, \quad x^{\odot} \in X^{\odot}.$$

Thus the bilinear operator

$$B(x, x^{\odot}) := (T(t)R^{m}(\lambda_{0}, A)x, R^{l}(\lambda_{0}, A^{\odot})x^{\odot})$$
$$= (T(t)R^{m+l}(\lambda_{0}, A)x, x^{\odot}), \quad (x, x^{\odot}) \in X \times X^{\odot},$$

is separately continuous on the Banach space $X \times X^{\odot}$. Consequently, there exists C > 0 such that

$$\|B(x,x^{\odot})\|_1 \leq C\|x\|\cdot\|x^{\odot}\|, \quad x \in X, \ x^{\odot} \in X^{\odot}.$$

In other words.

$$\int\limits_{0}^{\infty}\left|\left(T(t)R^{m+l}(\lambda_{0},A)x,x^{\odot}
ight)
ight|dt\leq C\|x\|\cdot\|x^{\odot}\|;$$

hence

$$\left|\left(\int\limits_0^a e^{its}T(t)R^{m+l}(\lambda_0,A)x\,dt,x^\odot\right)\right|\leq C\|x\|\cdot\|x^\odot\|,\quad \ x\in X,\,\,x^\odot\in X^\odot,$$

for every $a \geq 0$ and every $s \in \mathbb{R}$. Using inequality (2) and the continuity of

the function $T(t)R^{m+l}(\lambda_0,A)$ in the uniform operator topology we obtain

(4)
$$\sup \left\{ \left\| \int_0^a e^{its} T(t) R^{m+l}(\lambda_0, A) dt \right\| : a \ge 0, \ s \in \mathbb{R} \right\} \le C_1.$$

With a reasoning similar to [4, Th. 2.16], we conclude that for $\lambda \in \sigma(A)$ there exists a character χ_{λ} of the Banach algebra \mathcal{A} such that

$$\chi_{\lambda}(T(t)R^{m+l}(\lambda_0, A)) = e^{\lambda t}(\lambda_0 - \lambda)^{-(m+l)}.$$

Hence, again taking into account the continuity of $T(t)R^{m+l}(\lambda_0, A)$ in $\mathcal{L}(X)$,

$$\begin{split} C_1 &\geq \sup \Bigl\{ \Bigl\| \int\limits_0^a e^{ist} T(t) R^{m+l}(\lambda_0,A) \; dt \Bigr\| : a \geq 0, \; s \in \mathbb{R} \Bigr\} \\ &\geq \sup \Bigl\{ \Bigl| \int\limits_0^a e^{ist} \chi_\lambda(T(t) R^{m+l}(\lambda_0,A)) \; dt \Bigr| : a \geq 0, \; s \in \mathbb{R} \Bigr\} \\ &\geq \sup \Bigl\{ \Bigl| \int\limits_0^a e^{ist} e^{\lambda t} (\lambda_0 - \lambda)^{-(m+l)} \; dt \Bigr| : a \geq 0, \; s \in \mathbb{R} \Bigr\}. \end{split}$$

Setting $s = -\operatorname{Im} \lambda$, we obtain

$$C_{1} \geq \sup_{a \geq 0} \left| \int_{0}^{a} e^{t \operatorname{Re} \lambda} (\lambda_{0} - \lambda)^{-(m+l)} dt \right|$$
(5)
$$= \sup_{a \geq 0} \left\{ |\lambda_{0} - \lambda|^{-(m+l)} a, & \operatorname{Re} \lambda = 0, \\ |\lambda_{0} - \lambda|^{-(m+l)} \left| \frac{e^{a \operatorname{Re} \lambda} - 1}{\operatorname{Re} \lambda} \right|, & \operatorname{Re} \lambda \neq 0. \right\}$$

Next, assume $s(A) \geq 0$ and consider two cases according to (5), (6). If there is $\lambda \in \sigma(A)$ with $\text{Re }\lambda = 0$, then by (5) we immediately obtain a contradiction. Otherwise, consider two possibilities.

a) $\sigma(A) \cap \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\} \neq \emptyset$. Then from (6) a contradiction follows. b) $\sigma(A) \subset \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < 0\}$, but s(A) = 0. Then there is $\{\lambda_n : n \geq 1\}$ $\subset \sigma(A)$ such that $\operatorname{Re} \lambda_n \to 0$ as $n \to \infty$. From (6) we obtain

$$C_1 \ge \sup_{n \ge 1} \left\{ |\lambda_0 - \lambda_n|^{-(m+l)} \left| \frac{e^{a_n \operatorname{Re} \lambda_n} - 1}{\operatorname{Re} \lambda_n} \right| : a_n = \frac{1}{|\operatorname{Re} \lambda_n|} \right\}$$

$$= \sup_{n \ge 1} \left\{ |\lambda_0 - \lambda_n|^{-(m+l)} \left| \frac{e^{-1} - 1}{\operatorname{Re} \lambda_n} \right| \right\} = \infty.$$

Thus we get a contradiction again.

The next theorem is in some sense dual to Theorem 2.

THEOREM 3. Suppose that

(ii)
$$\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\} \subset \varrho(A), \text{ and for all } x \in C^{\infty}(A) \text{ and } x^* \in C^{\infty}(A^*),$$

$$\sup_{s>0} \int_{-\infty}^{\infty} |(R(s+it,A)x,x^*)| \, dt < \infty.$$

Then s(A) < 0.

Proof. Fix $\lambda_0 \in \varrho(A)$. Considering the bilinear operator

$$B_0(x, x^{\odot}) = (R(\lambda, A)x, x^{\odot}), \quad x \in C^{\infty}(A), \ x^{\odot} \in C^{\infty}(A^{\odot}),$$

with values in the Hardy space $H^1(\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\})$, similarly to the proof of Theorem 2, one can show that

(7)
$$\sup_{s>0} \int_{s-i\infty}^{s+i\infty} |(R(\lambda, A)R^m(\lambda_0, A)x, x^{\odot})| d\lambda$$

$$< C||x|| \cdot ||x^{\odot}||, \quad x \in X, \ x^{\odot} \in X^{\odot},$$

for some $m \in \mathbb{N}$ and C > 0. Then, for any s > 0 and $(a, b) \subset \mathbb{R}$, we obtain

$$\left| \left(\int_{s+ia}^{s+ib} R(\lambda, A) R^m(\lambda_0, A) x \, d\lambda, x^{\odot} \right) \right| \leq \int_{s+ia}^{s+ib} \left| \left(R(\lambda, A) R^m(\lambda_0, A) x, x^{\odot} \right) \right| d\lambda$$

$$\leq C \|x\| \cdot \|x^{\odot}\|.$$

Hence by (2),

$$\sup \left\{ \left\| \int_{s+ia}^{s+ib} R(\lambda, A) R^m(\lambda_0, A) d\lambda \right\| : s > 0, \ a < b, \ a, b \in \mathbb{R} \right\} \le C_1$$

for some $C_1 > 0$.

Suppose that $\sigma(A) \cap i\mathbb{R} \neq \emptyset$ and $\alpha \in \sigma(A) \cap i\mathbb{R}$. By the spectral mapping theorem for the resolvent, we have $1/(\lambda_0 - \alpha) \in \sigma(R(\lambda_0, A))$. Let χ_α be the character of the algebra A such that $\chi_\alpha(R(\lambda_0, A)) = 1/(\lambda_0 - \alpha)$. Now, the first resolvent identity implies $\chi_\alpha(R(\lambda, A)) = 1/(\lambda - \alpha)$, $\lambda \in \varrho(A)$. Hence

$$C_{1} \geq \sup \left\{ \left\| \int_{s+ia}^{s+ib} R(\lambda, A) R^{m}(\lambda_{0}, A) d\lambda \right\| : s > 0, \ a < b, \ a, b \in \mathbb{R} \right\}$$

$$\geq \sup \left\{ \left| \int_{s+ia}^{s+ib} \chi_{\alpha}(R(\lambda, A)) \chi_{\alpha}(R^{m}(\lambda_{0}, A)) d\lambda \right| : s > 0, \ a < b, \ a, b \in \mathbb{R} \right\}$$

$$= |\lambda_{0} - \alpha|^{-m} \sup \left\{ \left| \int_{s+ia}^{s+ib} \frac{1}{\lambda - \alpha} d\lambda \right| : s > 0, \ a < b, \ a, b \in \mathbb{R} \right\}$$

 $= |\lambda_0 - \alpha|^{-m} \sup \left\{ \left| \ln \frac{s + ib - \alpha}{s + ia - \alpha} \right| : s > 0, \ a < b, \ a, b \in \mathbb{R} \right\}.$

Setting $a = \operatorname{Im} \alpha$, $b = \operatorname{Im} \alpha + 1$, we obtain

$$C_1 \ge |\lambda_0 - \alpha|^{-m} \sup_{s>0} \left| \ln \frac{s + i(\operatorname{Im} \alpha + 1) - \alpha}{s + i\operatorname{Im} \alpha - \alpha} \right|$$
$$= |\lambda_0 - \alpha|^{-m} \sup_{s>0} \left| \ln \frac{s + i}{s} \right| = \infty,$$

a contradiction.

Next suppose that $\sigma(A) \cap i\mathbb{R} = \emptyset$, but there exists a sequence $\{\alpha_n : n \geq 1\}$ $\subset \sigma(A)$ such that $\operatorname{Re} \alpha_n \to 0$ as $n \to \infty$. Then, for the sequences χ_{α_n} and $a_n = \operatorname{Im} \alpha_n$, $b_n = \operatorname{Im} \alpha_n + 1$, $n \geq 1$, we have

$$C_1 \ge \sup_{s>0} \left| \int_{s+ia_n}^{s+ib_n} \chi_{\alpha_n}(R(\lambda, A)) \chi_{\alpha_n}(R(\lambda_0, A)) d\lambda \right|$$

$$= |\lambda_0 - \alpha_n|^{-m} \sup_{s>0} \ln \left| \frac{s+i - \operatorname{Re} \alpha_n}{s - \operatorname{Re} \alpha_n} \right|, \quad n \ge 1.$$

Letting $n \to \infty$, we obtain a contradiction. So s(A) < 0.

Remark 1. If $(T(t))_{t\geq 0}$ is continuous in the uniform operator topology for $t\geq t_0$ (for example, if it is differentiable or compact), then $s(A)=\omega_0$ (see [3]). Thus, each of the conditions (i), (ii) ensures the uniform stability of such semigroups.

Remark 2. For the discrete counterparts of Theorems 2 and 3, see [7, 9, 10, 15], and especially [11].

Remark 3. Conditions similar to (ii) were used in [10, 18] for the study of the exponential stability of C_0 -semigroups.

Now we shall show that each of the conditions (i), (ii) implies the stability of the "sufficiently smooth" orbits of $(T(t))_{t\geq 0}$. The next statement, which is a special case of a result given in [1, p. 803], will be essentially used.

THEOREM 4. Assume that $\sigma(A) \subset \{\lambda \in \mathbb{C} : \operatorname{Re} \lambda < 0\}$ and $\sup_{t \geq 0} \|T(t)S\| < \infty$ for some $S \in \mathcal{L}(X)$. Then

$$||T(t)A^{-1}S|| \to 0$$
 as $t \to \infty$.

(For a survey of this type results, see also [2].)

COROLLARY 1. Suppose that one of the conditions (i), (ii) is satisfied. Then there is $m_0 \in \mathbb{N}$ such that

$$||T(t)R^{m_0}(\lambda_0,A)|| \to 0$$
 as $t \to \infty$,

for some $\lambda_0 \in \rho(A)$.

(Observe that, in view of the first resolvent identity, the conclusion of Corollary 1 does not depend on the choice of $\lambda_0 \in \rho(A)$.)

Proof. If (i) or (ii) is true then, according to Theorems 2 and 3, we have s(A) < 0. Next we prove that each of the conditions (i), (ii) implies the existence of $n \in \mathbb{N}$ such that $\sup_{t \geq 0} \|T(t)A^{-n}\| < \infty$. Then from Theorem 4 we shall obtain the required conclusion for $\lambda_0 = 0$.

(a) Assume (i) holds. Then (4) holds for some $m \in \mathbb{N}$ and $C_1 > 0$. In particular, we have

$$\sup_{t\geq 0} \left\| \int_0^t T(s) A^{-m} \, ds \right\| \leq C_1.$$

From the identity

$$T(t)A^{-(m+1)} - A^{-(m+1)} = \int_{0}^{t} T(s)A^{-m} ds \quad (m \in \mathbb{N})$$

we obtain

$$\sup_{t\geq 0} \|T(t)A^{-(m+1)}\| \leq \|A^{-(m+1)}\| + \sup_{t\geq 0} \left\| \int_{0}^{t} T(s)A^{-m} ds \right\|$$
$$\leq \|A^{-(m+1)}\| + C_{1}.$$

The desired result follows for $m_0 = m + 1$.

(b) Assume (ii) is true. Then there are $m \in \mathbb{N}$ and C > 0 such that (7) holds for $\lambda_0 = 0$. Fix $x \in X$ and $x^{\odot} \in X^{\odot}$. According to (7), the function $(R(\lambda, A)A^{-m}x, x^{\odot})$ belongs to the Hardy space $H^1(\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda > 0\})$. Therefore, it is bounded in every halfplane $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda \geq \varepsilon\}$, $\varepsilon > 0$ (see [6], for example). On the other hand, using the first part of the proof of Theorem 2.1 in [13] we obtain the representation

$$T(t)A^{-m}x - \sum_{k=0}^{m-1} \frac{A^{-(m-k)}t^k}{k!}x$$

$$= \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} \frac{e^{\lambda t}R(\lambda, A)}{\lambda^m} x \, d\lambda, \quad s > \max(0, \omega_0), \ x \in X$$

(the integral exists in the principal value sense). Then from the identity

$$R(\lambda, A)A^{-m} = \lambda^{-m}R(\lambda, A) + \sum_{k=0}^{m-1} \lambda^{-(k+1)}A^{-(m-k)}$$

and the Jordan lemma, shifting the contour of integration we have for every $\varepsilon > 0$,

 $T(t)A^{-m}x = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} e^{\lambda t} R(\lambda, A) A^{-m}x \, d\lambda, \quad s > \varepsilon.$

Hence we obtain

$$|(T(t)A^{-m}x,x^{\odot})| \leq \frac{1}{2\pi}e^{2\varepsilon t}\int_{s-i\infty}^{s+i\infty} |(R(\lambda,A)A^{-m}x,x^{\odot})| \, d\lambda, \quad s>\varepsilon.$$

Letting $\varepsilon \to 0+$, we get

$$|(T(t)A^{-m}x, x^{\odot})| \le \frac{1}{2\pi}C||x|| \cdot ||x^{\odot}||, \quad C > 0.$$

From (2) the necessary statement follows for $m_0 = m$.

Finally, we give one more result, which includes conditions different from those of Theorems 2 and 3, but has the same flavour. In [12] A. Pazy has proved the following

Theorem 5. Suppose that for every $x \in X$,

(iii)
$$\int\limits_{0}^{\infty}\|T(t)x\|^{p}\,dt<\infty, \quad p\in[1,\infty).$$

Then $\omega_0 < 0$.

Remark 4. If condition (iii) holds for a fixed $x \in X$, then $||T(t)x|| \to 0$ as $t \to \infty$. This was observed by G. Weiss [16].

Our $C^{\infty}(A)$ -version of Theorem 5 is as follows.

PROPOSITION 1. Suppose that for every $x \in C^{\infty}(A)$,

$$\int\limits_{0}^{\infty}\|T(t)x\|^{p}\,dt<\infty, \quad \ p\in[1,\infty).$$

Then s(A) < 0.

Proof. Fix $\lambda_0 \in \varrho(A)$. By a reasoning similar to the proof of Theorem 2 we can show that there are $m \in \mathbb{N}$ and C > 0 such that

$$\int_{0}^{\infty} ||T(t)R^{m}(\lambda_{0}, A)x||^{p} dt \le C||x||^{p}, \quad x \in X.$$

In view of Remark 4, we have $||T(t)R^m(\lambda_0, A)x|| \to 0$ as $t \to \infty$, for every $x \in X$. The uniform boundedness principle implies

$$\sup_{t>0} ||T(t)R^m(\lambda_0, A)|| \le C$$

for some C > 0. Now, following the proof of Pazy's theorem from [3], we obtain

$$\begin{split} t\|T(t)R^{2m}(\lambda_0,A)x\|^p &= \int\limits_0^t \|T(t)R^{2m}(\lambda_0,A)x\|^p \, ds \\ &\leq \int\limits_0^t \|T(t-s)R^m(\lambda_0,A)\|^p \|T(s)R^m(\lambda_0,A)x\|^p \, ds \\ &\leq C^p \int\limits_0^t \|T(s)R^m(\lambda_0,A)x\|^p \, ds. \end{split}$$

Again by the uniform boundedness principle

(8)
$$||T(t)R^{2m}(\lambda_0, A)|| \to 0 \quad \text{as } t \to \infty.$$

Next, as in the final part of the proof of Theorem 2, for every $\lambda \in \sigma(A)$ there is a character χ_{λ} of the Banach algebra A such that

$$\chi_{\lambda}(T(t)R^{2m}(\lambda_0, A)) = e^{\lambda t}(\lambda_0 - \lambda)^{-2m}.$$

Since

$$\begin{split} \|T(t)R^{2m}(\lambda_0,A)\| &\geq \sup_{\lambda \in \sigma(A)} |\chi_{\lambda}(T(t)R^{2m}(\lambda_0,A))| \\ &= \sup_{\lambda \in \sigma(A)} |e^{\lambda t}(\lambda_0 - \lambda)^{-2m}| = \sup_{\lambda \in \sigma(A)} e^{t\operatorname{Re}\lambda} |\lambda_0 - \lambda|^{-2m}, \end{split}$$

by (8) we obtain s(A) < 0.

3. We shall show that the conclusions of Theorems 2 and 3 are not reversible.

EXAMPLE 1. We use the construction of the classical example due to Zabczyk [19]. Consider the Hilbert space $X = \bigoplus_{n=1}^{\infty} \mathbb{C}^n$ and the C_0 -semi-group $(T(t))_{t>0}$ on X given by

$$T(t) = \bigoplus_{n=1}^{\infty} e^{(in-1/3)t} e^{A_n t},$$

where $A_n = (a_{ij})_{i,j=1}^n$ is the $n \times n$ -matrix with $a_{i,i+1} = 1, i = 1, \ldots, n-1$, and $a_{ij} = 0$ otherwise.

From the reasoning in [19] it follows that the generator of $(T(t))_{t\geq 0}$ is defined by

$$A = \bigoplus_{n=1}^{\infty} (A_n + (in - 1/3))$$

and has the domain $\{(x^n)_{n=1}^\infty \in X : (nx^n)_{n=1}^\infty \in X\}$ and the spectrum $\{in-1/3: n \in \mathbb{N}\}$. So s(A)=-1/3.

Spectral bound of the generator

33

Next, it is easy to see that $x_0 = (x_0^n)_{n=1}^{\infty}$ with $x_0^n = (e^{-n/2}, \dots, e^{-n/2})$, $n \ge 1$, belongs to $C^{\infty}(A) \cap C^{\infty}(A^*)$. Moreover, we have

$$(T(t)x,x) \ge e^{-t/3} \sum_{n=0}^{\infty} e^{-n} \sum_{k=0}^{n} \frac{t^k}{k!}, \quad t \ge 0.$$

Observe that the series on the right side is uniformly convergent on compact sets in \mathbb{R} . So for $f(t) := e^{-t/3} \sum_{n=0}^{\infty} e^{-n} \sum_{k=0}^{n} t^k / k!$, we have

$$f'(t) = -\frac{1}{3}f(t) + e^{-t/3} \sum_{n=0}^{\infty} e^{-(n+1)} \sum_{k=0}^{n} \frac{t^k}{k!} = (e^{-1} - 1/3)f(t),$$
$$f(0) = \sum_{n=0}^{\infty} e^{-n} = \frac{e}{e-1},$$

hence

$$f(t) = \frac{e}{e-1}e^{(e^{-1}-1/3)t}.$$

Thus, for $x = x^* = x_0$ condition (i) is violated.

Remark 4. Similarly one can show that Proposition 1 is not reversible.

EXAMPLE 2. Consider a diagonal operator A on \mathbb{C}^n with the spectrum $\{\lambda_1,\ldots,\lambda_n\}$ in $\{\lambda\in\mathbb{C}:\operatorname{Re}\lambda<0\}$. Obviously, such an operator has a negative spectral bound but its resolvent $R(\lambda,A)$ defined by

$$R(\lambda, A)x = \left(\frac{1}{\lambda_i - \lambda}x_i\right)_{i=1}^n, \quad x = (x_i)_{i=1}^n \in \mathbb{C}^n,$$

is not integrable in the sense of condition (ii).

Acknowledgments. I would like to thank the referee for his helpful suggestions and remarks, and Prof. J. Zemánek for providing me with the references [10-12].

References

- C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), 783-804.
- [2] —, Asymptotic behaviour of semigroups of operators, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 35–52.
- [3] P. Clément et al., One-Parameter Semigroups, CWI Monograph 5, North-Holland, 1987.
- [4] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.
- [5] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloq. Publ.
 31, Amer. Math. Soc., Providence, R.I., 1957.
- [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

- [7] A. Lebow, Spectral radius of an absolutely continuous operator, Proc. Amer. Math. Soc. 36 (1972), 511-514.
- [8] G. Mil'shteĭn, Extension of semigroups to locally convex spaces, Izv. Vuz. Mat. 2 (1977), 91-95 (in Russian).
- [9] W. Mlak, On a theorem of Lebow, Ann. Polon. Math. 35 (1977), 107-109.
- [10] J. van Neerven, The Asymptotic Behavior of Semigroups of Linear Operators, Oper. Theory Adv. Appl. 88, Birkhäuser, Basel, 1996.
- [11] N. K. Nikol'skiĭ, A Tauberian theorem on the spectral radius, Siberian Math. J. 18 (1977), 1367-1372.
- [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983.
- [13] M. Slemrod, Asymptotic behavior of C₀-semigroups as determined by the spectrum of the generator, Indiana Univ. Math. J. 25 (1976), 783-792.
- [14] G. Weiss, Weak L^p-stability of a linear semigroup on a Hilbert space implies exponential stability, J. Differential Equations 76 (1988), 269-285.
- [15] —, Weakly l^p-stable operators are power stable, Internat. J. Systems Sci. 20 (1989), 2323-2328.
- [16] —, The resolvent growth assumption for semigroups in Hilbert space, J. Math. Anal. Appl. 145 (1990), 154-171.
- [17] V. Wrobel, Stability and spectra of C₀-semigroups, Math. Ann. 285 (1989), 201-219.
- [18] P. Yao and P. Feng, A characteristic condition for the exponential stability of C₀-semigroups, Chinese Sci. Bull. 39 (1994), 534-537.
- [19] J. Zabczyk, A note on C₀-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 895-898.

Department of Mathematics
Taras Shevchenko Kiev University
64 Vladimirskaya St.
252601 Kiev, Ukraine
E-mail: tomilov@math.carrier.kiev.ua

Received November 10, 1995 Revised version January 6, 1997 (3570)