66 H. Fetter and B. Gamboa de Buen

As an application we are able to describe the spreading basic sequences
in JT and its spreading models.

Recall that a basic sequence is spreading if it is equivalent to all of its
subsequences. The theory of spreading models can be found in [3].

COROLLARY 7. Let {z;}§2, be a normalized basic sequence in JT. Then
{zi}2, hes a subsequence which is equivalent to either the summing basis
for J or to the unit vector basis of ly. In particular, these fwo spaces are
the only spreading models of JT and every normalized basic sequence in JT
admits a spreading subseguence.

Theorem 5 and the corollary apply to the space (J & J @...};, since the
latter is a subspace of JT'. Thus the above results improve those previously
proved by the authors in [6].
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Estimates of Fourier transforms in Sobolev spaces
by

V. I. KOLYADA (Odessa)

Abstract. We investigate the Fourler transforms of functions in the Sobolev spaces

Wyt It is proved that for any function f € W{v""™™ the Fourier transform f belongs

to the Lorentz space L™/ ™, where r = n{ i1 1/ r;)~ ! & n. Furthermore, we derive from

this result that for any mixed derivative D*f (f € C§°, 8 = (81,... ) 54)) the weighted
norm [|(D° )| gy (w(€) = [€17™) can be estimated by the sum of L -norms of all pure
derivatives of the same order. This gives an answer to a question posed by A. Pelczytiski
and M., Wojciechowski.

‘1. Introduction. For any function f € L'(R™) its Fourier transform is
the function  defined by

fley= | fla)e?>%dz, EER".
R
For the Fourier transform of a function f € LP(R™), 1 < p < 2 (see [13],
Ch. 1), we have the following classical inequalities ([2], Ch. 1):

o the Hausdorff-Young inequality
(1 Pl < ISl 1SPS2 s+ =1
o the Hardy-Littlewood-Paley inequality
@) ({lere-aFeipde)"” el 1<p<2

I L]
It is well known that (2) is not true for p = 1, n % 1;50n the other hand,
by Hardy’s inequality we know that for any f e HYR"),

3) § 8 gt < ol
Rﬂ

Furthermore, the inequality (2) can be strengthened in terms of rearrange-
ments.
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68 V. I Kolyada

Let f be a measurable function on R™ such that Haz: [f(=)] >y} <o
for all y > 0. The nonincreasing rearrangement of f is defined to be the
function f* that is nonincreasing on {0, c0) and equimeasurable with |f(z)|.
We denote by LP7(R™) (1 < p,r < 00) the Lorentz space of all functions f,
measurable on R™, for which

oo dt i/r
g = { Jrrrr £} <oo
0
Note that L?" ¢ LP® for r < s; in particular, L?" C LPP = LP forr <p
(see [1],.p. 217).

Suppose f € LP" (1 < p < 2, 1 < r < co). Then f € L' + I? and,
hence, f is defined. Furthermore (see [6], [7], [12]),

@) Pl e < clflor  (1/p+1/8 =1).
This inequality is an LP"-version of the inequality of Hardy and Littlewood

5 (Veepura)” <cifl, 1<ps2
0

which we obtain by setting r = p. In view of the Hardy-Littlewood inequality
(11], p. 43), (5) gives a refinement of the inequality (2).

Now let 1 < p < oc and 7 € N. The Sobolev space W, consists of
those functions f in LP(R") for which all distributional derivatives D°f
(s = (s1,--.,5s)) of oxder |s| = 81+ ... + 8n < r belong to LP(R").

A. Pelczyniski and M. Wojciechowski [10] obtained the following result
as a consequence of an embedding theorem.

TuEOREM A. Let f € WI(R*) (n > 2, r € N). Then
(6) VI 1gr-mde<e S D fha-

R |&|==r

The periodic analogue of Theorem A was discovered by Bourgain. [4], 5].

Theorem A is equivalent to the following statement: for any derivative
DEf (k = (k1,...,kn), |k| = 7) the following analogue of the Hardy in-
equality (3) holds:

k A
(7) | L("%Q)—idf <e YD flh

Rn |8]=r

It is well known that the LP-norm of any mixed derivative can be es-
timated by the sum of the LP-norms of all non-mixed derivatives of the
same order if and only if 1 < p < oo (see [3]). Nevertheless we prove that
the right-hand side of the inequality (7) can be replaced by the sum of all
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pure derivatives of the same order. This gives an answer to a question posed
in [10].

2, Main results. Let 1 < p < o0 and r1,...,7, € N. We denote by
W™ the anisotropic Sobolev space of all functions f € LP(R™) for
which every distributional partial derivative

D;"f = 8"’f/8m;" e PR (j=1,...,n)
exists. If a function f is defined on R" and &k € N, then we set
k

A5 @) = S0P (§) (o + whe),

v=0
where e; denotes the jth coordinate vector.
The following theorem was proved in [8].
TrroREM B. Let 7q,...,7 € N (n 2 2), r = 037, 1/7) 74 0 <
1-1/p<r/n and

aj=rj{1—~g—(l—%)] (i=1,...,0). |

Then for every function f € Wi (R"),

nooo o " dh n ny
> hresaf (flls 5, < e 107 flh
=10 j=1

This inequality implies the embedding
Wir‘l,...,’!‘n C B;f,...,cxn
into the Besov space (see [3] for the definition).

TunorEM 1. Let f € Wit (R") (n 2 2) and r = n{3 i, 1/r;)7t
< n. Then

(8) “ﬂln/r.l < CZ“D;Jle
j=1

Proof, We estimate f* (t) for fixed ¢ > 0. Let E be the set of measure
t such that

© 1) 2 Fe)
Set s, = r/{nry); then Y g sk = 1. Let
Ay = {6l 2t™/2}, R=1...n

Since |(Uney Ak)¢) = [Mig=1 4%l = t/2", we have |ENUpoq Ak| 2 £/2. Thus
there exists k = k(t) such that [E N A} 2 t/(2n). Let @ = B N'Ag. Next,

for any £ € E.
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let h > 0 and o () = AP (h)f(c). Then B (£) = F(&)o(htx), where
o(u) = (e2™% — 1)"*. Set 7 = ryt~**. We show that for any ¢ € @,

17
(10) - § |o(héx)| dh > 5.
Indeed, we have (for u € R)
|o(u)] = (1 — cos2mu)™ > 1 — rj cos 2mu.

Thus, if [A| > % /2, then

5 lo(MR)|dh > % § (1 = i cos 2mAR) dh
7o 0
71, 8in 2w AT TR 1
=1 A s 1 - >1- =
1 AT L 2| Alr ~ ! T

Now we have, using (9) and (10),

Sdhs oel(y tdem-ﬁ 171 lohee) de = = 1Q|f (t) >
0 0 Q

On the other hand, by the Hausdorfi-Young inequality (1), for any
pe (1,2),

b

b
Ef (t).

r /l‘
[ @1 < @M {180 @F de) " < 1Mol < 2/2ed),
Q Q
Therefore,

FHE) < ett/P g (rt ™),
where
we(8) = Snso““)npdh-
D

By Theorem B, if 1 — 1/p < r/n, then

L =]

- k 1
> [ amer e, O < cZnD”ful, @ = 1 [1~ P’~(1-— —)]
k=1 0 r P
Hence,
o0 no oo W oQ
e p CZ § erimtlie-2y, (o) gt < C’Z { 27 L (2) dz
1] =10 k=10
n oo
<30 { ol dh < BZ |IDR £l
k=10 k=1

The proof is completed.
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Using the Hardy-Littlewood inequality ([1], p. 43), we obtain the follow-
ing
COROLLARY 1. Let f € Witron (n > 2} end r = n(z L)t <.

Then for every nonnegative measumble Junction w(£) on R“ with w*(t) =
/vl (¢ > 0),

(11) | IF(e) (e de < cZuD’"qul

g =1

Remark 1. In the limiting case r = n (n > 2) Theorem 1 states that
for every function f € Wy* ™,

1Fls <0107 £l
=1

Tt is a refinement of the Sobolev theorem, which asserts that in this case
every function f € W™ ~™ is equivalent to a bounded continuous function
on R™ (see [3], Ch. 3).

Remark 2. The following embedding theorem holds.

THEOREM C. Letry,...,mn €N (n>2) andr = n(E;P:l
Then for any function f & Wt

(]
1l fnmryr < CE ”D;Jf”l
=1

l/T'j)_l <.

This theorem was proved in [8] (the case ry = ... = v, = 1 Was con-
sidered in [11)]). If n/(n — r) < 2, then inequality (8) can be derived from
Theorem C and inequality (4).

THEOREM 2. Let £ € Wit ™ (n22) andr =n(35; 4 1/r;)~t. Then

(12) {17 (fj ) de < e IDF fih
j=1

R Je=1
Proof. It is easy to see that in the case r <n the function

w(g) = (}: G

has nonincreasing rearrangement equivalent to h(t) = t7/71. Therefore in
this case Theorem 2 follows from Corollary 1. To consider the general case
we put s; = r/{nr;) (ngl 85 = 1). Let
P, ={£: |&] <2}
Do=P, Dy=P.—Pia

(V:O,l,---),
(vz1).
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Next, D, = U?ﬂ DY ), where
D@ ={¢eD,: 2" V% < |\l 2%} (v 1).
Let
pD(z) = AP (W) f(z) and 69 =r;270.
Reasening as in the proof of Theorem 1, we have

55}')

1 . ~~
o | § Pl g | IR
v 0 pW DU

and for any p € (1,2),

{1891 de < 2770162 -

Dx(zj)
Therefore,
n
| 1w de < 2/ DN | |fle)|a
D =1 pi
n

J=1

where

[
1 .
wi8) = 5\ leilpdh, v 21,
0
m 1

In the same way as in Theore we get
> S 1 ©wE© de < e |07 fllr.
v=1D, j=1

Similarly we estimate the integral
RHGITGES
Do

setting @, = {f |§' = 2—usj} (V = 0513--'): E. =0, -Qu (y 2 1)
Further reasoning is the same as above, and this completes the proof.

' Novs{' consider the isotropic case 1] = .., =r, = r (n 2 2). In this case
inequality (12) assumes the form

(13) VIF©I- g de < S ID7 S|l

R je=1

Estimates of Fourier transformas 73

As opposed to inequality (6), the right-hand side of (13) contains only the
norms of pure derivatives.

Let f € W C W™, For any ¢ = (s1,...,8,) with |s| = 7 we have
(D HNOL = oy IFONTT I&1% < @ayier|Fe)l.
=1

Thus, we obtain
TueoREM 3. Let f € WI(R™)} (n > 2, r € N). Then

5 (@D 4 < o5 0 11
J=1

|g]=r R" |£in

As is well known, the L*-norms of mixed derivatives cannot be estimated
by the sum of the L'-norms of directional derivatives of the same order (see
3], Ch. 3).

Remark 3. Theorems 13 are true for B-valued functions, where B is
a Banach space with non-trivial Fourier type.

In the proofs of Theorems 1-3 we have used only Theorem B and the
Hausdorfi~Young inequality (for some p € (1,2)). One can easily check that
the proof of Theorem B remains valid for B-valued functions for an arbitrary
Banach space B. Thus in order to verify Remark 3 it remains to use the
definition of the non-trivial Fourier type ([9]).
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Amenability and the second dual of a Banach algebra
by

FREDERIC GOURDEAU (Québer)

Abstract. Amenability and the Arens product are studied. Using the Arens product,
derivations from A are extended te derivations from A**. This is used to show directly
that .A** amenable implies A amenable.

1. Introduction and preliminaries. The study of cohomological prop-
erties of A*" in relation to those of A goes back to B. E. Johnson's semi-
nal article [9]. Recently, Ghahramani, Loy and Willis [4] have studied the
amenability and weak amenability of A in relation to the same properties
for A**, with an emphasis on the Banach algebra L'(G). One of their result
is that the amenability of A" implies the amenability of A: this result was
originally proved in [5] by other methods, but has not been published.

In this article, we show how Arens’ construction of a product on the
second dual of a Banach algebra enables us to extend derivations from A
into a bimodule X to derivations from 4™ into A™**, answering a question
raised in [9]. This is then used, along with a criterion for amenability which
does not involve duals, to give a simple proof that .A™ amenable implies A
amenable,

For basic definitions, the reader is referred to [2]. Let A be a Banach
algebra. Then the second dual of A can also be made into a Banach algebra,
using either the Arens product or the reversed Arens product. For clarity
and completeness, we recall precisely a few definitions related to the Arens
product, and regroup properties we shall need in a lemma. The reader who
wishes to return to the original is referred to [1].

Let X, Y and Z be Banach spaces and let m : X x Y — Z be a bounded
bilinear map. Let z € X, 2’ € X* and 3" € X**, where X* is the Banach
space dual of X, with similar notations for ¥ and Z. From m, we can
construct a map m*™* : X* x Y** — Z** in the following manner. For
r€ X,z ¢ X* ¢" € X*, and so on, we have maps:
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