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Hardy type inequalities
for two-parameter Vilenkin—Fourier coefficients

by

PETER SIMON and FERENC WEISZ {Budapest)

Abstract. Our main result is a Hardy type inequality with respect to the two-
parameter Vilenkin system

oc 00 N 5 l/p
(+) (ZZif(k,j)ip(kj)””) <Cllflm. (/2<p<2)

k=1 j=1

where f belongs to the Mardy space HE,(Gm x Gs) defined by means of a maximal
function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f
form a menotone sequence. We show that the converse of (+) also holds for all p > 0
under the monotenicity assumption.

1. Introduction. The Hardy inequality, i.e. the estimate of type (*) for
p =1 was proved in trigonometric Fourier analysis by Hardy and Littlewood
[9] and Coifman and Weiss [6]. The analogous statement for one-parameter
Vilenkin systems of bounded type is due to Ladhawala [10] and Chao [5].
For systems of unbounded type Fridli and Simon [7} showed the inequality
in the case p = 1. Their result was later generalized to 1/2 < p < 2 by Simon
and Weisz [16]. In the two-parameter case Weisz [19], [20] proved that (x)
holds without any condition on the system, but with HE,(Grm X Gs) replaced
by the Hardy space defined by the conditional quadratic variation.

For a two-parameter Vilenkin system we define a sequence of g-algebras
and consider the martingales with respect to this sequence. We introduce
the Hardy spaces HE(Gm x G,), HY (G x Gs) and HE(Gr x G5) (0 <
P < o0) which contain all martingales f for which the LP norms of the
maximal functions f*, f* and of the conditional quadratic variation &(f)
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232 P. Simon and F. Weisz

are bounded, respectively. In the one-parameter case the space HY.(G,,) and
the maximal function f** were introduced and investigated by Simon [15].

First we establish the results that will be used later. In this connection
we refer to the books by Schipp, Wade, Simon and P4l [14] and Weisz [20]
(see also Simon and Weisz [16]).

In Section 3 we give the relation between the three martingale Hardy
spaces and the atomic decomposition of HE. (G x G,) and HE(G,, x Q).
A result about the boundedness of an operator from HF to L* is also for-
mulated.

The main results are cbtained in Section 4. The inequality (*) will be
shown for an arbitrary two-parameter Vilenkin system. The analogous state-
ment for BMO-spaces is proved by the known duality argument. The basic
idea of our investigations for 0 < p < 1 is the atomic description of the Hardy
spaces, We prove that it is enough to verify the so-called strong bounded-
ness of the left side in () for rectangle p-atoms. For 1 < p < 2 we get the
inequality by interpolation. Next (%) is extended to p > 2 and to functions
having monotone Vilenkin-Fourier coefficients, i.e. assuming that the real
and imaginary parts of the Vilenkin-Fourier coefficients are non-increasing.
Finally, under the same conditions we give a converse-like version of (%) for
Vilenkin systems under certain growth conditions on the sequences m and s.

2. Preliminaries and notations. First of all we introduce the most
important definitions and notations for two-parameter Vilenkin systems.

Let m = (mg,m1,...,mk,...) be a sequence of natural numbers with
me 22 (k€ Nu={0,1,...}). For all k € N we denote by Z,,, the myth
discrete cyclic group represented by {0,1,...,my — 1}. The complete direct
product G, of the Zp,, ’s is a compact Abelian group with a normalized Haar
measure. The elements of Gy, are sequences of the form (0, %1y vy Thy - )y
where zy € Zp, for every k& € N and the topology of G, is completely
determined by the simple intervals, i.e. by the sets

In(0) := {{z0,21, ..., 2k, ..) €EGp:2; =0 (j=0,...,n~ 1)}
(0#neN, Ii(0) = Gn). Let In(z) 1=z + I,(0) (n € N) and
In(z, k) o= {(yo, 0, .. .) € In(®) t yn, = k}
(¢ € G, k€ Zn,, neN).
The concept of intervals in Gy, was introduced in Simon and Weisz [16]

(see also Simon [15)) as follows. T Z ={n e N: k<n < ty (k,t e Nk <t)

Is a set of indices and [or] denotes the integer part of a real number o then
let

do(Z):={neN:k<n<[(k+1t)/2]},
di(T) ;= {neN:[(k+1)/2 <n <t}
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Every set of the form

U=dy (duy_ (.. du, (Z0,) .. ),
where u; = Qor 1,4 =1,...,k, is said to be a dyadic subset of Z - Let Ny,
denote the smallest integer for which there exists a sequence u1,...,uy, of
0’s and 1’s such that the dyadic set du,, (duy,__ (.- du, (Zm, ) .- .)) has only
one element. Actually, N,, = [log, my]. We define a sequence of o-algebras
as follows:

FQi=Fo = o({In(@) 1 2 € G}
and
(1) Fk.= CF({I: U

L€y (Gup_y (reduag By )o))

Io(2z,0):

u,-=00r1,1§i§k}),

where n € N, 0 < k& < N, — 1 and o(H) denotes the o-algebra generated
by an arbitrary set system H. Set F,! = :r_“l"l_l, FiNn 1= Fpi1 and
F,:Tl = Foq = Fy.

The atoms of the o-algebras FF (n € N, 0 < k € N, — 1) are called
intervals. It is clear that every interval I is of the form

I= U I(z,1),
teu

where I{ is a dyadic subset of Z,, (n € N). The measure |I| of the interval
I is evidently v ﬁl, where v denotes the cardinality of I{ and

T
Mn+1 = H T)’Lj.
=0

Of course, Iy(y) is an interval for all y € G, k¥ € N. For each interval I
there is a unique sequence I, ..., I" of intervals (for some v € N) such that
I* ¢ Fl implies I**1 ¢ Fi-1 (ne N, 0< 1< N,, — 1) and, moreover,

() Gu=I">I"15... 2=

(2) 1 I} 3
o1 <3
(i) 1S [T5F1] = §
Also,
1l .3
Ltz
®) Ty

for two intervals / and I’ with J € F¥and I' € F* 1 (ne N, 0 <k <
Np—1).
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Now let another sequence s = (sg, §1,. - -, 8k, - - .) of natural numbers be
given with the same properties as m, i.e. 85 = 2 (k € N), and consider
the group G. Then all the above objects can also be defined in Gy; in
particular, the simple intervals and the c-algebras (1), for which we will use
the notation J,(y) and g% (n € N, —1 < k < {log, 8»], ¥ € G,), respectively.

The direct product G := G, % G, 1s then also a compact Abelian group
with a normalized Haar measure.

Let (4,u),({l,v) be admissible indices, i.e. (j,u),(l,v) € N? and v <
logym;] — 1, v < {logg s1] — 1), and

Fhr = o(Fi % GP).

U

The sequence F == (7—"! + is non-decreasing, more exactly, Fl v C ]—"f“ if

3<3,Z<l andlfg—j orlﬂlthenu<uorfu<'u respectwely
The conditional expectation operator relative to LY is denoted by E;Z
We are going to consider martingales with respect to F. An integrable

sequence f = ( f;’:i) is said to be a martingale if

(i) f;z is FI ”Hmeasurable for all admissible indices (4, u), (I,v) € N%;

(it} E”’( f“’) = f;% for all admissible indices (j,u),{,v) € N? and

(},ﬂ),(l,fu} € N2 such thatg <5, 1<7 and ifj=7orl =] then u < @ or
v < 7, respectively.

Furthermore, let Fpp = n:g and frp = fn i (k€ N). We will
assume that fn,o0 = fon = 0 (n € N). Of course, the theorems to be proved
later hold without this condition.

The atoms of the o-algebras Fj:z (resp. F;,) are called rectangles (resp.
simple rectangles}. Note that the sequence F is regular (for the definition
see Weisz [20]).

It is well known [14] that the characters of Gy, form a complete orthonor-
mal system in L} (Gy,) (the so-called Vilenkin system). If

2wy,

rn(2) 1= exp —
T

(n e N o= (2021,...) € Gm, t 1= +/—1), then r,’s and their finite
products are evidently characters. These products can be ordered in Paley’s
sense, which means the following enumeration. We write each n € N uniquely

in the form
o0
n= Z nkMk,
k=0

where My = 1, My (k > 1) are defined above and ny € Z,,, (k € N).
It can easily be seen that the characters of G,, are nothing else but the
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functions

o0
7, = Hr}:'“.

If we replace Gy, by Gy, then we wnte 0; instead of r, and &; instead
of ¥, respectively. So
27rz'yj
) 3
(¥ = (yo,%1,---) € Gs), Hk 00k, where j € N, j = Y02 5Py
(jk € Z3k) and Fy =1, Pjg = Hl =0 51 (k > 1)

The two-parameter Vilenkin system is defined to consist of the Kronecker
products of the functions ¥; and Py, i.e. for (5, k) & N? let

¥n(2,y) = E(z)P(y)  ((z,9) € G).
The Fourier coefﬁcienti of a function f € L'(G) with respect to the system
(¥, ) are denoted by f(4, k), i.e.
FG.R) = e (Gik) € W),

(The bar stands here for complex conjugation.) This definition can be ex-
tended to martingales in the usual way (see Weisz [20]).

Cp > 0 will denote a constant depending only on p, although not always
the same in different occurrences.

0;(y) == exp

3. Martingale Hardy spaces. The Hardy spaces HL.(G) and HE(G)
(0 < p < o) will be defined by the maximal functions f** and f* of the

martingale f = (fl-'” (), (Lv) € N2, w < [log, my]~ 1), v < [log, 5] — 1):

Frs

f** s Sup I l'l} f:k e

Frulyv

Furthermore, let o(f) (the conditional quadratic variation of f) be de-
fined by

o(f} = (ZEn—lk Ufnke = fretge = Fagp—1 + fao1k- 1|)

n,kEN
We remark that in case f € L'(G) the maximal functions f** and f* can
also be given by
£ (@) = sup(11]- 7))~ 1] s rey wsupMsz| N
IxJ Te ()X i (y)

where (z,y) € G and the first supremum is taken over all intervals I C G,
and J C G, such that (z,y) € I x J.



236 P. Simon and F. Weisz

Denote by HE.(G), HE(G), HE(G) the spaces of martingales for which
I£llmz, == §F* 0 <00, Wfllaz = [1Fllp <00y |[Fllmz = llo(f)llp < oo,

respectively.

Tt is well known that the atomic characterization plays an important role
in the theory of Hardy spaces. For such a description of HE,(G) (0 < p < 1)
we give first the concept of atoms. Namely, a function ¢ € LY(G) is a p-
atom if

(i) supp a C F for an open set F' C G;
(i) llallz < |F|*?~*/?, where |F| is the Haar measure of F;
(iii) @ can be further decomposed into the sum a = 3 ar satisfying
() suppag C R for a rectangle R C F;
(6) for all R and (z,y) € G, {5_ ar(s,y)do = {g_ar(,y)dy = 0;
() (Trllarl3)!? < [P,

If the rectangles R are all simple then a is said to be a simple p-atom.
Furthermore, if a € L*(G) satisfies (i} with a rectangle F (resp. with a
simple rectangle F), (ii) and (3} then a is called a rectangle p-atom (resp.
a simple rectangle p-atom).

Now, we can give the atomic characterization of HE.(G) as follows.

THEOREM 1 (Weisz [18]). A martingale f = (j"jl,’::, (4, u), ([,v) € N*,u <
logymy] —1, v < [logy s1] ~ 1) s in HRW(G) (0 < p £ 1) if and only if there
exist ¢ sequence (o, k € N) of p-atoms and a sequence (px, k € N) of real
numbers such that ¥ po o |pk|P < oo and

cO
) > Byt = £

k=0
for all (4,%),(l,v) € N%, u < [logy ms] — 1,v < [logy s1] — L. Moreover, the
following equivalence of norms holds:

[» o]
/
17, ~ 0 (S let?) ™,
k=0

where the infimum is token over all decompositions of f of the form (4).
If we replace HL.(G) by HE(G) and the p-atoms by simple p-atoms, then
the same theorem holds with the restriction l =v = 0.

The Hardy spaces HY(G), HE(G) and HP(G) are proper subspaces of
LY(@). Furthermore, the following theorem holds,

THEOREM 2. We have HE,(G) ~ HE(G) ~ LP(G) for 1 < p < oo and

(B - I fllae < N fllaz, < Collfllr (0<p<2),
Ifllze < Collflar ~ [ fllae, (2<p< o).
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If m (or s) is unbounded, then the converse inequalities are not true. Fur-
thermore, if m,s are bounded then HY,(G) ~ HE(G) ~ HE(G) for all
0 < p < co, where ~ denotes equivalence of spaces and norms.

Observe that the second inequality of (5) follows from Theorem 1 and
from the fact that every simple p-atom is a p-atom. The other inequalities
are known or trivial (see Brossard [1], [2], Cairoli [4], Métraux [11] or Weisz
[20]).

For each interval I C G, the interval I (r € N) is defined in (2) (for

r > v let I" 1= Gp). For an interval J C Gy, J™ (r € N) can be defined
analogously. If R := I x J is a rectangle then set RB™ = ]" x J".

Let §2 be an arbitrary non-empty set and A be a o-algebra on it. For
each interval I we define I € A such that I C I, implies I ¢ T,. For a
rectangle R =1 x Jlet R=1Ix J. If F C G is open then set

F .= U R.
RCF

It is clear that, for open sets, Fy C F, implies Fy C Fa. We consider
the measure space (2%, (A x A),7) and the corresponding real LP(022) ;=
LP(2%,6(A x A),n) space.

Although HY,.(G) cannot be decomposed into rectangle p-atoms (see
Weisz [20]), the following theorem holds.

THEOREM 3. Suppose that 0 < p < 1 and an operator T' which maps the
set of martingales into the collection of o(A x A)-measurable functions is
sublinear. Furthermore, assume that with a constant C > 0,

(6) n(F) < C|F|

and assume that there exists § > 0 such that for every rectangle p-atom a
supported on the rectangle R and for every r € N one has

) \ [TalPdy < G270
\RF
If T is bounded from L*(G) to L?(02%) then
1T flleoiany £ Collfllaz,  (f € HL(G))-
We omit the proof because it is similar to that of Theorem 1 in Weisz [22].

Sor all open sets F C G,

4. Hardy type inequalities. First we prove a Hardy type inequality
for the space HE(G) (1/2 < p < 2). This is the two-dimensional analogue
of the inequality

o | 1/p
(X 5E) " <ol

k=1
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proved by Simon and Weisz [16]. (See also Hardy and Littlewood [9] and
Coifman and Weiss [6] in the classical case for trigonometric Fourier coeffi-
cients, and Ladhawala [10], Chao [5] and Fridli and Simon [7] for Vilenkin
systems.) The inequality just mentioned was proved by Weisz {19], [20] in
the two-parameter case, but for H2(G) instead of HL(G) (0 < p < 2). In
view of Theorem 2, the next theorem generalizes this result. Furthermore,
we point out that Theorem 4 holds also for LP(G) (1 < p £ 2), which was
not contained in Weisz’s theorem if #n or s is unbounded.

THEOREM 4, Suppose that 1/2 < p < 2. Then there exists a consiant
Cp > 0 such that

o0 o "\k,' -l 1/p
(LX) " <y

k=1 =1

for all f € HE(G).

P
H,,

Proof. Suppose that 1/2 < p < 1. We are going to apply Theorem 3.
Set (2 := P := N\ {0} and let us introduce on I? the measure n(n,m) :=
1/(n*m?). If

TF(nk) :=nkf{n, k) (n,keP),
then it follows by Parseval’s formula that T is bounded from L3(G) to
LE(E2).

For an interval I let I be the set {k € P: k > |I|~%}. Obviously, I C L.
implies I ¢ I,.

First we prove condition (6) with C' = 12. Let F C G be an open set. It
is easy to see that there exist finitely many rectangles Ry = I x Jp C F,

k=1,...,K (K € N), such that |Ji| strictly decreases and |Ij| strictly
increases and

K
F=|JRs
k=1
The inequality
-1
1 2 2
Sl g >
BEnT (n21)
k=n
implies that
K
1 - 1 1
M) =5 Tl < 1Rl (E] = Tseal)
(nEF h=1
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where [Ip] := 0. We will show that
K

(8) Z | Tkl | ~ |Ze—a) < 6]F).

k=1
Let H) and Hj be two disjoint non-empty subsets of P for which {1,...,K}
= Hy U Hy. For each k € H; (i = 1,2) define
kg, =max{l € H; U{0} : 1< k}.
Observe that

Fie
D] = Temal) = 37 1T = eal) + 32 1701 (1 0] = [Zea])
k=1 kEH keH,
< D0 Ml = 15, D+ 7 Ml = 17, 1)
ke H, kEH ?

because |/,| is increasing. It is clear that if we consider the lengths of the
atoms of a fixed o-algebra G, then we get one or two numbers. So, by the
preceding inequality we can suppose that there are no two different intervals
Jr and J; (1 < k,¢ < K) which are atoms of the same o-algebra G In the
same way, we can also assume that if Ji is an atom of ¢!~1, then Jyy1 is
not an atom of G}, and of G421, Under these conditions we show that

K

PEAIGAR AR R

k=1
which proves (6). Let A := Ule Ryi. Then A C F and, of course, |A| < |F|.
Hence it is enough to prove that

X
(9) D 1l Tel = 1) < 14].
k=1
Choose sets B} and D} (i=1,2;k =1,..., K) such that |B}| = |D}| = [I|
and |B| = |DZ| = |Ji|. We also assume that, for a fixed 4, two different

B, sets are always disjoint or one contains the other. We suppose the same
for the sets Di. Set By := B} x B2, Dy := Di x D2, B := |JX., B; and
D= U,{;l Dy, Moreover, suppose that the intersection of two arbitrary sets
By, and By, is non-empty. Then it can easily be verified that

K

SOl = Feal) = 1B1.

k=1
By induction on K we shall see that I has minimal measure if and only if
the intersection of arbitrary two sets Dy, and Dy, is non-empty. For K = 1
or K = 2 it is trivial. Let 1 € [ < K be the minimal index for which
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Diy1 N Dy = 0. If there is no such index then the intersection of arbitrary
two sets Dy, and Dy, is non-empty. Notice that

-1 -1
‘Dp, - U Dkl = lBI — U Bk’.
k=1 k=1
Since Dj41 and Dj are disjoint and, by (3},

K
E |D2| = Z EARS Z( ) 1] < |1l = 1DFa | = B,

k=42 k=142

we can conclude that

and consequently, |D| > |B|. Thus we have shown (9) and so the proof of
the condition (6) is complete.

Now we have to check the inequality (7). To this end let a, be an arbltrary
rectangle p-atom such that suppa C R = Ix J, |I| = aM ol =8 iR
0<a<my, <8< s, (see the definition of p-atoms). Then

P\E = (B\T) x JyU((P\T") x (P\ ]))
U(Tx @\THU(P\T) % P\ T,

In the proof of (7) we integrate over these four sets. We begin with the first
one:

| [mepan= 3 S kP
(P\TF)x T kS| Ir|=t >] ]~
First observe that by the definition of the rectangle atom,
a(k,i) = S S a(z, )W (z,y) dedy = 0
IJ

if either ¥y, is constant on I or @; is constant on J. This is so if k < M, or
I < Py. Purthermore, for k& = jM, +uvandl=tP, +v {j=1,...,mp— 1,
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w=0,..., My -1, ¢=1,...,
ik, )l = | § § alz, )

:
-

Observe that, by (2), |I"|~!

sw—Llu=0,...,Py — 1) we get

2 (@) ()5 (1) B (y) do dy|

alj M, tP, )|

G ey o

alz,y)r 7 (z gwt(y)dmdy}

< (3/5)7|1)71. Hence

2, X

My <kS|T|=1 [>]7)-1

P D I UL

Mo <kS(3/5)71)=1 1>[7]-1

| |TalPdn <
(PIYxT

Ak, )P (k)P~

mi™ a1
<N S M o DM+ v
=1 wv=0 I>)J|-1
SL“ Mn_]-
= Z Z Z A M, DIP (G My + v)P21P2
=l w=0 »[J—1
mir)
SMEED PN Ja(i M, P2,
j=1 I>|J|-1

where m” = [(8/5)" /(| I|Mp)]. I § =1,...,m% and I > |J|=L, then for
all ¢ € Zy,,, it follows (see (3) in the definition of the p-atom) that

a3, 01 = [ oo (0)Bils) |

17

‘ ‘ (Sa(m,y)(e_%ij‘”“/m” — e"zﬂjc/m") dm)@(y) dx dy’p
5T

(S Icm27rij:cn/mn _ e—zwijc/mn| R ‘ Sa(m;y)agl(y) dyl d.’).’,‘)p
I J

< Cpj? 'rrz.'n"p(s [ c|l S alz, v)&i(y) dy} dm)p.
I J

It can evidently be assumed that |z, — ¢| < [I|Mp41 = ¢, and thus

@M, DF < Cyg?mz? (111Mnsa | [ e, y)Buly) dy | das)”
I J

= Cy(3l 1137 (]| [ alar ) Puly) ] o)
I J
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From this we get

| |Taf?dn
(P\I7)x T
m(r)
<Gy Z ME~ IZ 1P =2 (5 M |I))? (S’Samw Y8, () dy‘d:n)
1>[J]-1 j=1 Fa
mr)
= CIpMPt T S p2y =2 {| § a(a, 9)Buly) dy| da)"
I>|7]-t =1 Fa

< CollP (M Y #2(§ | (e, )Bily) dy| d)
I>]7|—t IJ

We denote the last sum by 5. Applying Hélder’s inequality we obtain

s<( S )T S (e umma]a))

1> SSFIRITN

< OP|J|1_p/2( Z

(S ’ Sa(m,y)?él(y) dy‘ dm)z)p/g.
=i rJ

Again by Hélder’s and Parseval’s inequalities and by (ii} this yields

— »/
s<Glt (Y Y |§olwo®a) d ds)"
PO AT

p/2
< ColIP2 12 ( [ oo, )P dedy) " < GylTPY,
IJ

Summarizing the above estimations we conclude that
(10) V ITalP dp < Co(ITMpm{))2e
(B\I"YxT
< Cp(3/5)"P 1 < 0270
if0 <6< (2p—1)logy5/3.
The integral over (P \ I7)
Vo |TalPdn<
P\ % (PA)

) % (P\ J) can be estimated as follows:

>, Sk, P (Rn)P-?

k< (3/8)7|1]- % 1<| g~

Py ,
- [G(i My + v, t Py + 2)|P
= Z Z Z Z (JMn +Z)2—p(tpw -+ z)2—13

j=l w0 $<(|J]Pu)=t 220
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mir
SMRPL PN N R G(M,, iR P

j=1 8| 7| P )2

Forall c € Zp,, and d € Z, we get

@M, P = | [ a
IJ

y)( —2mifon fmy e—27rijc/mn)

X (e—2n’iww/am _ eﬁﬁwitd/sw)dm d.’y)}p

< Cp(s { la(z,y)| ftien — el Jyw — d] dz dy) :

IJ MnSw

Let ¢,d be selected such that |z, — ¢| < |I|Mp4; and I’yw —d| < |JIP,

w41
Then

B3 Mo, tPu}P < C, (FE1T] - |J| My Py )P (S S {a(m,y)!d:cdy)p

(Mnsw)? IJ
< Cp(gtlI] - | 7| Mp Py )P (I - | F|VP/2 0B
< Cp(itMaPu)e()1] - 7))
This implies that
(11) | |TaPdy
(BATT) % (F\J)
ms:')
SG(I]- VM PPy g0 Y e
J=1 (| Py )t

< Cp(11) - M| M P )Y () (|71 Py) 1) P
S Cp(3/5)r(2p_1) S sz—M’

whenever 0 < § < (2p — 1) log, 5/3.

The integral over the third and fourth sets can be estimated analogously.
Taking into account (10) and (11) we have thus proved condition (7} as well
as the theorem for 1/2 < p < 1. For 1 < p < 2 we get the theorem by
interpolation (seec Welsz [19], [20]). =

We can also formulate the dual inequalities to Thecrem 4. With the help
of stopping times the BMO(G) space is defined in Weisz [20] and it is proved
there that the dual of H2,(G) is BMO(G). By the usual duality argument
(cf. Weisz [21]) we can verify
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COROLLARY 1. If nk|an k| (n,k = 1} are uniformly bounded real numbers

then
” Z U kW k

n=l k=1
where C > 0 is a constant.

1 < C sup nklansl,
BMO n,k>1

Again by the duality argument we get (cf. Weisz [20], Theorem 6.10, and
also Simon and Weisz [16])

COROLLARY 2. If2 € g < oc and (an ki n, k 2 1) is o sequence of complex
numbers such thal

then

S 20 S5 )

n=1 k=1 nel k=1
Theorem 4 can be extended to p > 2 under suitable conditions, e.g. if the
Vilenkin-Fourier coefficients are partially non-increasing. We will say that
the sequence f(j,k) (j, k € N) is partially non-increasing if
Re(Fl5, k) = FG + L) = FG R+ 1)+ FU + LE+1) 20,
Im(f(5, k) = FG +1.k) = Fla b+ D)+ FG+LE+1)) 20

(7,k € N). The proof is similar to that of Theorem 3 of [16], and therefore
it will be omitted.

THEOREM 5. Let 2 < p < o0 and X, = max{Mu_1,Mn}, o =
max{sn-1,8.} (N €N, m_1:=mg, s_1 = s9). Then

Mpt1—1 Pjp1-1 ke, D) 1/
(3 Y s Py HEDPY < sty

n=0 F=0

for all functions f € LP(G) hmring part@;a.’,lfy non~incredsing Vilenkin-Fourier
coefficients.

We remark that Theorem I remains true also for f having A-blocwise
monotone Vilenkin-Fourier coefficients (for the details see Simon and Weisz
[16]). Furthermore, if m and p are bounded, then Theorem 5 leads to

(S S RPE) " < Gyl
§=0 k=0
which was verified by Weisz [19].
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A converse-like version of Theorem 4 is known for one-parameter
Vilenkin systems under certain conditions on the sequence m (in partic-
ular also for some unbounded m’s). Now we give the analogue of this result
for two-parameter Vilenkin systems. Let ¢ : [0,00) ~+ [0,00) be a non-
decreasing function such that for all 4 > 0 the growth condition

e(=)

limsup —* < 00
— o0 eHE

holcls For example, a simple calculation shows that the functions p(z) :=
(0 < é < 1) and o(x) == 2° (o > 0) satisfy this condition. Notice that if

(12> mn =0(p(n)), 5. =0(p(n)) (n-— oo),
then it is not hard to see that the estimates
p S CukH,  SCOURY (R=1,2,..)

are valid for mdlces satisfying M,,,, Sk<My41(keN and P, <k <
Py, +1 (k € N), respectively (see Simon and Weisz [16]).

The proof of the following theorem can be performed in a similar way
to the one-dimensional case (see Simon and Weisz [16] and also Weisz [20]),
and thus again we leave out the details.

THEOREM 6. Assume that the sequences m, s satisfy the growth condition

(12). Then for allp > 0 and 0 < v < 1 there exists a constant Cp, > 0
depending only on p and v such that

1/p

3, k)P

n,l =1k

for all f € LP(Q@) having partially non-increasing Vilenkin-Fourier coeffi-
cients.
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Quelques remarques sur les facteurs
des systémes dynamiques gaussiens

par

A IWANIK (Wroclaw), M. LEMANCZYK (Torud),
T. pE 1A RUE (Rouen) et J. DB SAM LAZAROQO (Rouen)

Abstract. We study the factors of Ganssian dynamical systems which are generated
by functions depending only on a finite number of coordinates. As an application, we
show that for Gaussian automorphisms with simple spectrum, the partition {{Xp 2 0),
(Xo > 0)} is generating. B

Introduction. On se place dans le cadre d'un systéme dynamique
(2,4, 4, T), que 'on suppose gaussien : il existe un processus gaussien réel
centré (Xp)pez qui engendre &, avec X, = Xo o T pour tout entier p. La
loi d’un tel processus, et donc toutes les propriétés du systéme dynamique
qu’il engendre, est entiérement déterminée par la donnée de ses covariances,
qui s’écrivent

(1) (Xp, Xo)p2(uy = B[Xp X = S eflp=a) do(t),
[—'7":7"]

ol o est une mesure finie symétrique sur [—w, 7], appelée mesure spectrale du
systéeme. Un tel systéme est construit canoniquement en prenant 2 = R%, X,
étant la projection sur la pidme coordonnée, T le décalage des coordonnées
et u la probabilité sur R? qui donne au processus (X,) la loi voulue. On
pourra toujours supposer dans la guite que le modele utilisé est celui-ci. On
suppose aussi le systeme ergodique, ce qui égquivant a

vt e [-m 7], o{{t}) =0
Pour une présentation détaillée de ces systémes, on peut par exemple con-
sulter [1].

On s’intéresse ici aux facteurs d’'un tel systéme, c'est-d-dire aux sous-
tribug # de & qui sont T-invariantes. Rappelons que chaque facteur # de
T définit un systéme dynamique noté Tg sur espace 2, obtem: & partir
de {2 en identifiant les points w et w’ tels que VF € F, 1p{w) = 1p(w').
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