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the existence of a set B € Ba(X**,w*) such that X™ \ By is negligible
and for every z** € By, there exists a point y € @w(£2) such that Sz** = Sy,
which implies Tz** = Ty and z3(z**) = zj(y). Hin addition z** & By, then
y = p{z*) and z§(z**) = z4(y), so we have proved xf o Y(z™) = xzj(z**)
for every z** € BoN By. As X =\ {By N By) is wmp-negligible we have fin-
ished. m
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Best constants and agymptotics
of Marcinkiewicz—Zygrmund inequalities

by

ANDREAS DEFANT (Oldenburg) and MARIUS JUNGE (Kiel)

Abstract. We dotermine the set of all triples 1 € p,¢,7 < oo for which the so-
called Marcinkiewice Zygmund ineguelity is satisfied: There exists a constant ¢ > 0 such
that for each bounded linear operator T : Ly{p) — Lp(»), each n € N and functions
- Jn € L‘](nu‘):

(S ( g E'l"fklr)wwflf/) o < el (S (;‘?; [ fi \T) qﬁd#) e

This type of inequality includes ns special cases well-known inequalities of Paley, Marcin-
Kewicn, Zygound, Grothendieck, and Kwapied, If such a Marcinklewicz-Zygmund in-
equality holds for a given triple {p, ¢,r), then we calculate the best constant ¢ > 0 (with
the only exception: Lhe important case L € p < r =2 < g < co); if such an inequality does
not hold, then we give agymptotically optimal estimates for the graduation of these con-
stants in n. Two problems of Gasch and Maligranda from [9] are solved; as a by-product
we obtain best constants of several important inequalities from the theory of summing
operators.

0. Introduction. Fix a triple (p,¢,7) of scalars with 1 < p,¢,7 < oo,
We call—for the purpose of this paper—an inequality of the following type
a Marcinkiewicz Zygmund inequality: There is a constant ¢ > 0 (depending
on p,¢ and » only) such that for each (linear and continuous) operator
T Ly(p) = Ly(v) (o and v arbitrary measures) and arbitrarily many
functions fi, ..., fn € Ly(pu)

Mz (§ (g |Tfk|?;)”/"dw) Ry (§ (g 1,f,¢v)”'”d#)1/q.

By a density and closed graph argument it is equivalent to say that each
operator 7' : L () — Ly(v) allows an é-valued extension, i.e. there is an
operator

T Lol br) — Lp(v, )

1991 Mathematics Subject Classification: Primary 46807, 47810; Secondary 42B25.
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272 A. Defant and M. Junge

guch that
Tr(foe)=Tf®

In 1932 Paley [24] showed that such an inequality holds true for p = ¢ and

r = 2, and—together with Littlewood-~he gave deep applications of this

fact in what is nowadays called “Littlewood--Paley theory” (see e.g. [7]).
For p,q,r € [1, 00] define

for all f € Ly(p), = € &,

kgp(r) =infe € [1, o]
to be the infimum of all ¢ > 0 such that (MZ) holds, and for n € N let
kgf’g('r') € [1,00]

be its finite-dimensional graduation, i.e. with the infimum taken over all
e > 0 which satisfy (MZ) for each T but for only n functions fr. Then
kup(r) < oo means that the triple (p,q,7} satisfies the Marcinkiewicz—
Zygraund inequality (for some constant ¢ > 0).

Motivated by Paley’s result, in 1939 Marcinkiewicz and Zygmund [21]
proved the following:

(1) kzv,p(z) =1
(2) kg p(2) < _szq <oo for 1< p,q< o,
2,1

for 1 < p < o0,

1

(3) kgp(r) < 22 < 00

Cr,1
([21, Thm. 1 and Thm. 3 (9), (10)]); here ca 4 is the gth moment of the
Gauss measure on R, and ¢, 4 the gth moment of the so-called r-stable Lévy
measure on R (see Section 2). Proving his celebrated “théoréme fondamental
de la théorie métrique des produits tensoriels” Grothendieck [11] in 1956
added the important case
(4) koo,1(2) < o0y

see e.g. {5], [6], (15}, and [16] for estimates of the so-called Grothendieck
constant Kg 1= koo 1(2) and ity n-dimensional analogue K ((_«:‘) = ké’;?l(Z).
The aim of this paper is to determine the set of all triples (p,q,r) such
that kg p(r) < 00. More precisely, we calculate kg p,(r) whenever this con-
stant is finite (except for the important case 1 < p < r = 2 < ¢ < 00),
and give the precise asymptotic growth of k§% (r) in terms of n whenever
kep(r) = lim, kg(,?p) (r) = oo; this way we answer several problems of Gasch
and Maligranda who in [9] gave an up-to-date survey of the present topic.

For estimates of kg?;), (2), the so-called complexification constants of operators
in L,-spaces, see [4], [5], [9], [16], and [28].

for 1 < max(p,q) < r < 2
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Our method is to relate the constants k&, ,(r) and kg}?(r) with some
useful invariants from local Banach space theory—e.g. the stable type (g, p}
of £, and £, and certain quotient norms of the identity on £, and £ with
respect to s-integral and s-summing norms. As a by-product we obtain the
pest constants for some useful inequalities from the theory of p-summing
operators due to Kwapiefi [17] and Saphar {27]. The main results are given
in Sections 4-6, whereas Sections 1-3 have a preparatory character.

Most of our notation is standard—we use [5], [6], and [26] as general
references for Banach spaces, operator ideals and tensor products, and [5],
[19], and [26] for all information needed on p-stable random. variables. All
Banach spaces are real (although most of our results can be easily extended
to the complex case). An “operator” means a linear and continuous operator
between Banach spaces.

1. Characterizations of Marcinkiewicz—Zygmund inequalities
via s-integral and s-summing norms. In this section we collect some
abstract formulations of the above inequalities (most of which in a more
general context can be found in [5]).

Denote by 4, the natural norm on Ly(p)@E (1 < p < oo, p an arbitrary
measure and F a Banach space) induced by the embedding of this tensor
product in the space Lp(u, E) of all Bochner p-integrable functions f with
values in .

For 1 < p, ¢ € oo define

ko p(B) 1= sup | T ® idp ¢ Ly(p) @4, B — Ly(v) @4, Bl € (0,00},
the supremum taken over all operators T : Lp(u) — Lp(v) with norm < 1.
It is known (see [5, 20.12]) that this supremaum does not change if it is cnly
taken with respect to two fixed measures pp and vg such that Lg(po) and

Lp(wy) are infinite-dimensional—in particular, with respect to £, and £;.
Obviously, for all n,

ko6 = K (1)
and an eagy density argument yields
g (0r) = higypl(r) = Lim fig p(£7) = lim k(™ (),
Note that whenever ¢ = 1 or p = oc, then for every non-trivial £,
kq,p(E) =1,

since Ay = 7 (the projective norm) and Ag = & (the injective norm). The
constants k, ,(F) are increasing in ¢ and decreasing in p:

kgyn (B) < kg, (E) whenever g1 < g, P2S71
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(see [9, Thm. 1] and [5, Ex. 28.14], and for en elementary direct proof [2§]).
Moreover, we mention the following obvious duality result which will he
used frequently:

kigp(B) = Ky g ().

Recall from [5], [6] or [26] the notion of s-integral and s-summing opera-
tors T : E ~ F between two Banach spaces; here we write i,(T) and m,(T)
for the s-integral and s-summing norm of 7', respectively. The {ollowing quo-
tient formula for kg ,(E) in terms of g-integral and s-gumruing norms will
be useful; its proof is a direct consequence of {5, 29.12 Lemmal, the trace
formula A, ®r, £ ®1, ALy = dy ® g from the proof of 5, 29.12 Corollary),
and the abstract quotient formula from [5, 25.7].

PROFPOSITION. For every Banach space B and 1 < p,q S oo,
kgp(E) = sup g (T'),
the supremum taken over all Banach spaces X and all operators T' 1 B — X
with ’ipl (T) <1

For a modification of this characterization with an interesting geometric
application see also {14]; for example, for Banach lattices I the Propositior
combined with [14, Prop. 1.3] yields that

kyp(E) < K (B) Ky (E),

where K¢ (E) (resp. Ky (E)) denotes the ¢/-convexity (resp. p'~concavity,
constant of E.

In the case p < ¢ there are two important corollaries: the first one is ¢
reformulation of a result of Kwapien [18] (here an immediate consequence
of the Proposition and [18, Corollary 8] (see also [5, 25.9 Corollary])):

CoORQLLARY 1, For every Banach space B and lﬁ 7 0o,
' hip,p(E) = inf || R] - |5]],

where the infimum is taken with respect to all subspaces G of quotients o
Lp{p)'s (= all quotients of subspaces of ...), and all operators B E — G
8: G~ E such that idg = SR. I'n particular, E is isomorplic to o subspac
of & quotient of some Ly(u) ff kpp(E) < o0o0.

For p = 2 this is a well-known result of [20]; an analogue for p < q car
be found in [5, 28.4] and reads as follows:

COROLLARY 2. For every Banach space E and 1 £ p < q < 00,
kqp(E) = inf |R]| - |5,

the infimum token over all factorizations
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ic
E—E - p

lR TS
M/N —Z> /K

where M, N C Ly{p} and L, K T Ly(p) (1 o probability measure) are closed
subspaces satisfying
N <o M C Lyp)
A n 3
K ¢ L < ILy(p).
Note that in the language of Banach operator ideals these two corollaries
read as follows (sce again {5, 28.4]): For 1 < p < q < oo,

Kyp(E) = L,i:\j,?m(idE) )
the norm faken in the injective and surjective hull of the ideal £, o of all

(p, ¢')-factorable operators.
We finish with some remarks which will also be needed later.

Remark. Let F be a Banach space. Then for every 1 < p, g € oq,
kﬂm(E) $ KG k232(E)’ .
and for 1 < p <2< g = o0 even
ka2(B) < kyp(E) € Kg ko 2(E).

The first inequality is a special case of [5, 26.3 Prop. 1], and the second
then follows by monotonicity.

Using Corollary 1 it can be easily seen that ks o(F) for an n-dimensional
space F' is nothing but the Banach~Mazur distance d(E, €3 ); moreover, recall
that (€7, £5) = nl/2-1/"| (see e.g. [5, p. 360)).

2. Stable meagures. For the discussion of Marcinkiewicz—Zygmund
inequalities in the cases 1 < p < ¢ < 2 and 2 € p £ ¢ £ o0 the so-called
stable measures are ossentialy this deep observation was first made in [21].

For 1< r < 2 lot g1k be the unique probability measure on R having as
its Fourier transform the positive definite function el (see e.g. [5, Sec.
24]). It is well known that for 1 < p < r < 2 the pth moment

L/
woim (Jopaie) "

exists; see [26] for the following formula:
r(=2) f(%‘ﬂ)]”’”

r
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Clearly, u} is the Gauss measure (up to normalization), and in this case the
pth moment exists for all 1 < p < oo

r(l:;:ﬂ)} v

Cpp = 2 [______

’ r(3)
The n-fold product u? of ul (sometimes called the r-stable Lévy measure
on R™) has the following fundamental stability property: For cach o € R”,

" » p
erpllerliey = ( S |Z’1kcxki (l,u?) ,

B k=l
where hy : R" — R is the hth projection; for r = 2 this equality holds for
all 1 < p < oc. If p, denotes the countable product measure of u! on RM,
then the above stability property is equivalent to the fact that the mapping

1
Lip n = Ly(pon, RY), L. p(er) o= — i,
P

is a well-defined isometry (hy again the kth projection). Cleaxly, Iy p 1 €3 —
Ly (ua) is a well-defined isometry for all 1 £ p < oo (and not only 1 <p <2).

Recall that for 1 < p < g < 2 a Banach space F is said to be of stable
type (g, p) If there is a constant ¢ 2 0 such that for each set of finitely many

elements z1,...,2, € E,
1/q
S me ) s (X pe)”
in other words,
STqp(F) = ||fgp ®1dp : £ ®a, E = Lp(tqg) @4, Bl < 0.

For 1 £g¢<2and 1 <p < oo a Banach space F is said to have Gauss typ
(g, p) whenever

Cq,p Ren

Tow(E) i= | Izpdg2 : €g ®a, B = Ly(pa) ®a, Bl < oo,

where jg2 1 £y « {3 is the canonical embedding. For our purpose the fol
lowing trivial estimates will be crucial:

Remark. For every Banach space Fand L <p < ¢ <2,
STQ:F(E) S kQ:P(E)!
and for 1 < p,¢ < oo,
Trnin(2,q),0(E) £ Frminga, e (E) S kg p(E).

The class of all Banach spaces which are of stable type (g, p) (vesp. Gaus:
type (g, p)) is actually independent of p: By a result of Hoffmann-Jprgenser

Muorcinkiewice-Zygmund inequalities 277

[13] for 1 < p1 S p2 <g =<2 (resp.g=2and 1 <p; < pop < o) thereis a
constant Cq,p,,ps o> 0 such that for every Banach space E,

( H Z h.'s,-f,k 2 d}“ )1/172 S (:q,;m,pg ( H th.’,ﬁk dﬂ, )1/?1
IR

R
for all n mld T1yee 0 O @ BTt is well known that every Banach space E of
Gauss type ¢ (1 < ¢ < 2) hay stable type s for all s < ¢, and each F with
stable type ¢ had Ganas type ¢ (see e.g. [5, 24.8]). Moreover, we recall that
by a result of Maurey and Pisier [28] the Banach spaces E with stable type
g axe precisely those which do not contain the £ uniformly.

Generalizing the definition of ¢, we define forn e Nand 1 < p<r < 2,

o) o= ( ] il (o))

4]

and recall (see e.g. [1]) that

o) = (n(1+logn))*™;
as usual we use for positive sequences (a,) and (b,) the notation a, = by
whenever the ratio a,/by, is bounded from above and below by positive

constants not depending on n. The following technical lemma will become
esgential:

LEMMA, Forl<p<r<s2omdl<g<rs2,
li'rln cg.?p)/ olP) = 1.

Proof. Clearly, we may assume that 1 <pandg=1. Smce 1< c,(f;,) /e c(”)

for all n, we have to check that

hmcy;}/r, P <L

For the vector-valued random. variable X, t= 3 poq b @ e @ (R, u17t) — £3
we have
) = (B X 7)1,
and (as just meutioned)
12X, = (L 4+ logn))*/".

Define t,, 1= (1 ~ &) || Xn |, where [0, 1] 2 6n ™\ 0 will be determined
later, Then for laxge n,
[ ¢]
E| X |7 = § pt™t (Xl 2 6 dt < 25+ S Pt (1Xall 2 8)

§] iy
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o that it suffices to show that the sequence (6,) can be chosen in such a
way that

‘
Hm e \ ptP " uR (| Xl =€) dt = 0.
gy ) P e 2

Since for each n,w and ¢ with || X, (w)|| 2t > ¢y,
[ Kn(w)ll ~ Bl| Xp|l 2t - BIXn | > but,

we conclude from a result of [10] (see also [19, p. 136, 132]) that for all
t> in,

- A 4 (0]
(1 Xnll 2 8) S (| || Xnll = B[ Xl > 6nf) < T
n 9
where the constant ¢, > 0 depends on r only. Therefore
=] oo
§ ot ur (| Xl 2 ) dt < copnéy” |t d
1% in

1
=crpn§;;’r_ wor

= ) p - —14 p-r
cond" (1 = ) B

= 6;’"71”/’"(1 + log n)®=r1/r
which implies

=]

b S
(E|| X, ])?

ta

P (| Xl 2 t) dt < 67(1 4 logn) ™.

Hence, if &, is (for example) chosen such that 62 = (1 - logn)™"/", then as
desired
1 (=]
—_— -1 ‘ . -
(B[ XA )P {ptP 21X 2 4) db < (1 + logn)?/™1 5 0.

in

3. Characterizations of Marcinkiewicz-Zygmund inequalities
via mixing norms and stable type. For p,q € [1,00] the (g, p)-mizing
norm of an operator T': E — F ig given by

where the supremum is taken over all $: F' — @ with m,(S) < 1. We write
Mgp(E) := Mgp(idg).
The following result from [3] (see also {5, 32.3 Corollary]) shows that

there is an intimate relation between vector-valued extensions of operators
in Ly-spaces and mixing norms.
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LemMA. Let T 1 Ly(p) - Foand S+ B — Ly(v) be operators. Then for
all p,¢,8 € [1,00),

17 ® 5 Ly(n) @2, B = F @y Lyv)l| € My g (T)M ('),
where A stands for the norm on F & Ly(v) defined by
F ®at Ly(v) = Ly (v) @a, Iy yf~Ffoy.

For our investigations of Marcinkiowics Zygmund inequalities in the case
1<p < ¢ <2 (and dually for 2 < p < ¢ € 00) the following estimates will
be the main abstract tools:

PROPOSITION. For cuery Banach space B and 1 <p < g <2,

MV)I'( ﬂl) S ST‘)J’(E) S kqﬂ}(E)’
and if B is on isometric subspace of some Ly(n), then even egquality holds.

In particular (see the preceding section}, for each triple (p, ¢, r) such that

1<p<g<2andpLr <2
Ky p(€5) = STyp(€7) = My,p(fy:)  for alln,
an equality which will be used in the next section.

Proof of Proposition. For the first inequality see [26, p. 292]; this
result seems to be due to Maurey (imoplicitly contained in [22]). The second
inequality was alveady mentioned in the remark of the preceding section.
Let us check that equality holds whenever E is a subspace of some Ly (n):
Fix an operator T : L, () = Ly(v) and look at

- . Tl id@je
Lo(u) ®a, B "2 L) @4, B " Ly(v) ®ay Lp(n),

ig: B e Ly(n) the canonical embedding. Then by Fubini’s theorem id ®7 g
is an isometry, and honce by the Lemma, (8 = q)
1T @idg || = |7 @ fride | € My, (TMyp((Gridz))

Mg Cichp ) = 1Ty p (B).
Taking the suprawmun over all 7' gives kyp(F) € My, (E') as desired. w

4. Best constants for the cases [ <pSg<2and 2<p g <Loo.
In [4] it was shown that for 1€ p =g < 2,

) (,(n)
A:’(Jffp)(z) e iu;f% N ..i?.lﬁ
» An \
('?,q Co,p
and since
1efan G

lim oy =
i) (29,2
Cip '
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(see [26, p. 299]), we obtain

0.4
krfﬁ’(?’) == “:_HL'
Ca,p
For the special case ¢ = 2 this formula was shown in [9, Thin. 3] and [
p. 377], the case ¢ = 2 and p = 1 is due to [21, p. 118] (upper bound) an
[11, p. 52] (lower bound):

ka1 (2) = /7 /2
note that up to duality this is (by the very definition of 2-swnming ope
ators) the so-called Little Grothendieck Theorem (1), The following resu
complements these formulas.

THEOREM. For all triples (p,q,v) which satisfy | < p < ¢ <r =2
l<p<g<r<i,

L/w

kop(r) = .gl‘_ﬁ =
rp

[T(L?‘) P(%ﬁ)]”"[?(gﬁﬂ) (3

M T | e

In particular (see the preceding proposition),
Cp
STp(lr) = Myp(t) = =2,
‘l",]}

where in the case of STy, we assume thet p < q.

2

The upper estimate for k, ,(r) is due to [9, Thm, 3] and based on tk
techniques from [21] (see also {5, 28.4 and Ex. 28.3]), and for TS, ,(¢,) an
My p(€r) to Maurey (see [22, p. 52] and [26, 22.3.6)). It remains to sho
that crqc; ; serves as a lower bound for ky(r).

. Proof of Theorem. In view of the preceding proposition, we proy
that

Cr‘q/f:r,:n S Mq11)(-€-rf) fOr 1 g p S q < T 2-
By a result of [25, §5] (for r = 2 due to Garling [8])
mp(id : £ — £7) = o) [y,
hence
(e} :
e | Crg _ 7pld i O — £7) .
o o) Tl — g < Manlidey)
But then the conclusion follows from the Lemnma in Section 2, and the fac
that Mg, (£%) tends to My ,(£.) as 7 tends to infinity. m

By Ly-local techniques (see e.g. [5, 23.1]) it can be easily seen that £, ca
be replaced by any L,(u)-space, and in the case of ST, and kqp even b
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any (isometric) subspace of a quotient (= quotient of a subspace) of every
Ly(p)-space. Moreover, the proof shows that for all n,

L
G, frg o« k().
Crap c&’fq) P

It would be interesting to know whether or not equality holds (as in the case
of r=2).

Asg a by-product we find that the constants appearing in many important
inequalities of the theory of p-sunining operators are even best possible; for
a whole collection of the inequalities we have in mind see [25]. We give four
examples; the first is an obviony reformulation of what was just proved.

COROLLARY. (1) Let L<p < g <2 Thenforr =2 or2 <7 < g every
g-summing operator T on &, i3 p-summing. More precisely,

sup{mp(T) | 7(T : £, — E) £ 1, E Banach space} = ¢pr g/ Cpr pe

(2) Let 2 € ¢ < oo, Then forr = 2 or 2 < v < q every operator
T : loo — £, 48 g-summing. More precisely,

sup{my (1) | 1Tt oo — &u|| S 1} = cpr e fCm .

(3) (2) holds if Lo s replaced by £y.

@ Letl <pgg<r<2onr=2andl £ pq<oco Then each
aperator T from an arbitrary Banach space B into £, is p-summing whenever
its dual is g-summing. More precisely,

sup{mp(T) | 7o (T : £, — E') £ 1, E Banach space} = crq/Crp-

By using different techniques the qualitative part of these results can be
extended to much larger clagses of spaces (see e.g. [5] or [6]); on the other
hand, the formulas for the norms show that at least in an Ly (u)-setting
stable measures seem to be the appropriate tool if one is interested in best
constants. The upper estimates are again known: (2) and (4) are due to
Kwapient [17], and (3) to Saphar [27] (see also [25, Prop. 4] and [5, 24.6]).

Proof of Corollary. (2)is clear since
Mq’,1 (ﬂi) = 51.1];){?:}1(’1“) l “T tloo = PT‘H < l}

(see c.g. [5, 20.19 or 32.2(3)]). Moreover, by the remarks from Section 1 and
5, 28.5(2)],
kg {r') s L?f:'lf“f(idf?w) - Liﬂm (ids,)

= i (idg, ) = sup{mg(T) | 1T« & — L] <1},

which gives (3), Finally, an argument for (4): In the caseof L <p < g <r <2
use [3, 25.9 Prop., (2)] in order to show that



282 A. Defant and M. Junge

kgp(fr) = LIPS (idg, ) < LSV (idy, ) = sup{my(T) | 7o(T" : £, — E') < 1}.

The other case follows if the latter equality is combined with [26, 22.1.5], u

5. Asymptotics for 1 < p £ ¢ < oo, The following result gives, for
every triple (p,¢,7), 1 < p € ¢ € 0o, the precise asymptotic growth of the

Marcinkiewicz—Zygmund constants kg}) (r} in n.
THEOREM. Let p,q,r € [1,00].
(1) For 1<p<2<g< oo,
k{m (r) s n 122

(2) For1<p<g<2

nt/rte r<q, (a)
pex(01/2-1/r) s (b)
q,p(r) 1, 1<r<oo, g=1, {c)
1, r=gq, p=g, (d)
(1+logn)!/e,  r=g,p<yq. (e)
By duality the resulls in (2) also cover the case 2 < p < ¢ £ o0.
The following immediate consequence answers problem 3 from [9].
COROLLARY. Let 1 <p< g€ o0 and 1 <r < co. Then kyp(f) < 00 zf

and only if the triple (p, q,7) belongs to one of the following siv cases:
*p= q = 7",
sp=qg=1and 1 <r < oo,
ep=g=coand 1 <r < 0,
¢el<p<g<Lland g<r<2,
e2<p<g<mand 2<r < p,
s 1 <n<2<g<coandr=2.
As pointed out in the introduction the “if-part” of this equivalence (up to

duality and nowadays trivial cases) is due to Paley, Marcinkiewicz, Zygmund
and Grothendieck.

Proof of Theorem (1) From the remark made at the end of Sec-

tion 1 we know that k ( ) up to a uniform constant equals the Banach—
Mazur distance between £ and £2:

kaplr) < d(£], £5) = nlt/2=2/m1,
(2) For the proof of (2a) recall the remark in Section 2:
8T (€r) < hyp(fr).
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Since ST,,» (up to constants) equals 8T, .., and
"M < ST ()

(insert the unit vectors ey in the definition), the desired lower bound follows.

Upper bound: For p £ r we follow the proposition of Section 3 and
estimate ST, ,(£) from above. The result is then a consequence of the
following chain of inequalities (using the fact that ST, (&) < ST, (7)),
the stability of the measures i and Holder's inequality): For zi,...,2m
€Ly,

(5=l
(ZH thmk(j)‘ duy )

d,,ug") Y

m

= (S (o))

j=1 ] F=1 k=1
m m
< Cq,rnll‘rulf'fI( Sy |$k(j)|q) Ha
J=al k=]
m
< ey 1/q(Z (z s () )q/’)”‘f - Cq:rnl/r—l/q(z“ﬂk”g:)l/q
k=l  f=l k=1

For r < p we consider the factorization

n _id - pn
g g

N

Eﬂf id e’ll

and obtain, from Corollary 2 of Section 1,
kg p(r) < pp=1/a piir=1/p = pl/e—1/a,

(2b) For r < 2 the result was already stated in the Theorem of Section 4.
Assume that 2 < » < co. Then the upper estimate comes from
B < Kah3(r) = Kon™="
(sec again the remark made at the end of Section 1):
Lower estimate: There is a subspace M of a quotient of some Lg() and
a factorization
s

A

IS/ 11 < 2kg,q(£2)



284 A. Defant and M. Junge

(Kwapien's characterization from Section 1). Moreover, by Pisier’s factor-
ization theorem (see e.g. [5, 31.4]) R factors through a Hilbert space with
control of the norm:

o B M
PN / V- 10] < (Ca(6)Ca ()2 ),
H

where Cy(-) stands for the Gauss cotype 2 constant. Then (...)3/2 can be
estimated by a constant ¢ depending on r and ¢ only (and not on n) (see e.g.
[6, Sections 11 and 13, in particular Corollary 13.18]), and hence as desired
2T = by a(idey) < ISV - U
< SNl < 2ekqqfE7) < 2ekyp(£2).
Since (2c) and (2d) are trivial (see Section 1}, it remains to prove (2e):

According to the Proposition of Section 3 we estimate M, ,(£%). From
Proposition 3 of [2] we know that

My () < 1 + log ”)1/q7rs,1=(id€{;: 2

where ¢ > 0 is a universal constant, 1/¢ +1/3 = 1/p and 7, stands for the
(s, p)-summing norm. Moreover,

Top(iden } = wgr 1 (idgn ) =1
(see e.g. [5, Ex. 11.21 and 24.7] or [6]), which gives
Mo (€5) < (1 + logn)/e.

For the converse of this inequality, see e.g. [26, p. 306] or [2]. This completes
the proof of the Theorem. m

Part (2e) shows that for p < ¢ < 2 and r = ¢ a Marcinkiewicz—Zygmund
inequality “almost” holds: For 1 < p < g < 2 there is a constant ¢ > 0 such
that for all operators T : Ly(pt) — Lp(v) and n functions fi,. .., fu € Ly(p),

7 1 Tl
(F(X2 )™ @)™ < et 4 10gmp a7 (§3° el )
k=1 k=1
and it is not possible to avoid the log-term.
According to what was said in Section 1 this fact can also be formulated

in a discrete way: For 1 < p < g < 2,
sup lA@id: £ ®a, £y — £ ®a, €3]] < (14 logn)'/9,
me
- —£m| <1

an estimate formally stronger than the positive answer to a conjecture of
Rosenthal and Szarek from [2]
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6. The case 1 < ¢ < p < co. Here the results are very much different
from the case 1 < p < ¢ < oo: it tumns out, for example, that kg ,(7) is either
1 or oo.

Note first that (as remarked in Section 1) kg ,(r) = 1 whenever ¢ = 1 or
p = 00; hence we exclude these cases in the following

THEOREM. Let 1 < ¢ £ p < 00. Then kyp(r) < oo if end only if
ruin(g, 2) < r < max(p, 2).
More precisely,
(1) kg p(r) = 1 for min(g,2) < r < max(p,2).
(2) kéﬁ;g (’I‘) = nmmc((),1/r--1/min(q,2),1/’max(p,2)~—1/r) fO’-" all .

This answers Problem 2 of [9]. The special case p = ¢ is due to [12],
and the fact that kqp,(r) = 1 for min(g,2) < r < max(p,2) was stated
independently in [9, Theorem 2] and [5, 26.3, Remark 1]; for the sake of
completeness we give a proof (which is now almost trivial}. Consider the
following three cases:

(a)g<2<p g<r<p

(b)g<p<L2, ¢g=rL2

(c)2<g9<sp, 25r<p
By monotonicity and the results from Section 4,

1 S kgp(r) € brplr) =1
1 S kaP("") S kQaq(T) =1

Finally, (b) implies (¢) by duality. w

for (p,q,7) as in (a),
for (p,q,r) as in (b).

Hence it remains to prove part (2) of the Theorem. We will check the
following three estimates:
(28) kim (r) = nM/m=Yfor g £2<p, T < g,
(2b) kW (r) MM for g < p £ 2, 7 < g,
(2¢) ké’,;,)(?*) =xnt = o < p <2, 2T
the three remaining cases then follow by duality. For the proofs of (2abc)
we will need the following facts which can be found in [26, pp. 312, 313}:
(1) mgr (i« £ — %) = 9 for L<r<g <2
mplid: € — ) <n'/" forl<g g2 <7 oo,
(IT) 4 (id : 8% = £5) =< n™™ for 1<r <2, 1 <p< oo,
ipe(id s 47— £3) = nt/? for l<p<2<r o0
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Let us start with (2a} and (2b): By (2a) of the preceding theorem,
Fap(BR) < kg q(£7) = nt/m71/4,
and by the Proposition from Section 1,
nl/d _ mgid : £ — £7)

=1/ = n
n nl/r .,;p, (id . gq'rf —_ EE‘) = kq,?’(er)-

Finally, the proof of (2¢): Again by the Proposition from Section 1 and
the Theorem from Section 5,

/2 _ nt/" g (id s 8 — 47
T oal/2 T g(id 8 — £B)
Chap(fy) < kgq(fl) = pl/Am1lr,

This completes the proof of the theorem. m
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