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Tauberian operators on Lj () spaces
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MANUEL GONZALEZ (Santander) and
ANTONIO MARTINEZ-ABEJON (Oviedo)

Abstract. We characterize tauberian operators T' : Ly {u) — V¥ in terms of the im-
ages of digjoint sequences and in terms of the image of the dyadic tree in L1[0,1]. As
applications, we show that the class of tauberian operators is stable under small norm
perturbations and that its perturbation class coincides with the class of all weakly pre-
compact operators. Moreover, we prove that the second conjugate of a tanberian operator
T Ly{p) — Y is also tauberian, and the induced operator T': Ly (p)*™* /Ly (1) —~ ¥Y**/Y
is an lsomorphism into. Also, we show that Ly (1) embeds isomorphically into the quotient
of Ly (p) by any of its reflexive subspaces.

1. Introduction. Tauberian operators were introduced by Kalton and
Wilansky [14] to solve a summability problem. Since then, they have found
many applications in Banach space theory: preservation of isomorphic prop-
erties [20], equivalence between the Radon-Nikodym property and the
Krein-Milman property [24], and factorization of operators [3], for exam-
ple. Given Banach spaces X and Y, an operator T : X — Y is said to be
tauberian if T**~1(¥'} C X, where T** : X** — ¥™*" is the second conjugate
of T. The class of tauberian operators presents some deficiencies: it is not
open in the class of all operators, and has bad behaviour under duality. These
deficiencies led Tacon [25] to introduce a smaller class, the supertauberian
operators.

In this paper we give some characterizations for tauberian operators from
Li(p) into a Banach space, and derive some consequences,

We asswmne that u is a non-purely atomic, finite measure in order to
simplify the exposition. For » a purely atomic measure, our results are valid
but trivial, because in this case [y (v} has the Schur property: weakly con-
vergent sequences are convergent; hence it contains no infinite-dimensional
reflexive subspaces. Therefore, by [9, Theorem 4.2] any tauberian operator
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T:Li(v) =Y isupper semi-Fredholmy; i.e., it has finite-dimensional kernel
and closed range.

In Section 2, we characterize the tauberian operators T’ : Ly{u) — Y as
those operators T' such that liminf, T fn|| > O for every disjoint normal-
ized sequence (f,) in Ly (n); or equivalently, the kernel N(T**) of the second
conjugate of T coincides with N(T'). As a consequence, we prove that Ly (u)
is contained isomorphically in every quotient of Ly (u) by any of its reflexive
subspaces, and that the class of all tauberian operators from L 1(p) into ¥
is open. We give several examples of operators in this class, and show that
every tauberian operator T : Ly (p) — ¥ is supertauberian (i.e., any ultra-
power T, of T is tauberian) and its second conjugate T is also tauberian.
Moreover, we prove that the operator T i Ly(p)**/Li(p) — Y**/¥ given
by T(z** + L1(y)) := T**(z**) + Y is an isomorphism into. Another proof
of this fact may be obtained in a more general way which requires the use
of supertauberian operators and a class of operators recently introduced by
H. Rosenthal [23], the strongly tauberian operators.

In the case where the measure space ({2, %, #) has no atoms, we prove
that for every tauberian operator T : Ly(p) — Y we can find a finite parti-
tion {£21,..., 2} of 2 so that the restrictions of T' to the subspaces L1 ()
of functions supported in {2; are isomorphisms (into). Finally in this section,
we show that T : L1[0, 1] — Y is tauberian if and only if for every sequence
(fn) contained in the dyadic tree of L1[0, 1] and equivalent to the unit vec-
tor basis of £1, (T fr)n>k 18 also equivalent to the unit vector basis of £; for
some k.

In Section 3 we identify the perturbation class for the tauberian operators
acting on L;(x). We show that an operator K : Li(u) — Y is weakly
precompact if and only i T+ K is tauberian for every tauberian operator
T: Ll ([_L) — Y,

We use standard notations: X and ¥ are Banach spaces, Bx the closed
unit ball of X, Sx the unit sphere of X, B(X,Y) the class of bounded linear
operators from X into ¥, X* the dual of X, T™ : Y™ -+ X™* the conjugate
operator of T' € B(X,Y), and R(T) and N(T) the range and kemel of T.
We identify X with a subspace of X**. If A C X, then A" i the weak-star
closure of 4 in X**. We denote the set of all positive integers by N, and the
get of all real numbers by R,

Let (42, Z, u) be a finite measure space. A set A € ¥ is said to be an atom
if u(A) # 0 and for every M € X, either u(ANM) = 0 or (AN M) = p(A).
We say that A € X is non-purely atomic if it is not a union of atoms.
Henceforth we assume that y is non-purely atomic; i.c., £2 is non-purely
atomic. We denote by ¥ 4 the characteristic function of 4 € X. For a function
f102 - R, we write D(f)} := {z € 2: f(z) # 0}. A sequence (fn) € L1{n)
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is said to be digjoint if fi(z): fm(z) =0 a.e. for k # m. Observe that given
a disjoint sequence (fn) C L1(p), we have lim, p4(D(f,)) =

2. Characterizing tauberian operators on L;(u). The following
technical lemma was obtained by Kadec and Pelczyriski [13] for Ly[0, 1].
Their proof is essentially valid for all L;(u) spaces, with p a finite measure,

Lemuma 1o Let (fr) be a bounded sequence in Li(p). Then there exists
o subsequence (fn,) C (fu) ond sequences (yx), (k) in Li(u) such that
Fre = Uik + 2ry (25) 48 weakly convergent, and (y) is disjoint.

Recall that an operator T' € B(X,Y) is tauberian [14] if T*~1(Y) C X,
or equivalently [14, Theorem 3.2], if any bounded sequence (z,) C X admits
a weakly convergent subsequence (zn,) whenever (Tz,) is weakly conver-
gent. We denote the clags of all tauberian operators from X into Y by
T(X,Y).

Next we characterize tauberian operators on Lj(u) in terms of their
action over digjoint sequences.

THEOREM 2. For T' € B(L1{u),Y), the following statements are equive-
lent:

(1) T' is tauberian;
(2) N(T) = N(T™");

(3) liminf, |TF.| > O for every normalized disjoint sequence (fn) in
Ln(p);

(4) there exists v > 0 such that liminf, | T fo|| > r for every normalized
disjoint sequence (fn) in Li(p).

Proof. (1)=
operator.

(2)=>(3). Let (f) be a normalized disjoint sequence in Ly (u) and assume
that limy, [|[T'fs]] = 0. Since ( f,b) is equivalent to the unit vector basis of £y,

there exists a vector z € {fn} \ Ly (p) such that T**z = 0, which proves
that N (27 # N(T™).

(3)=>(4). We may assume that ||T]] = 1. Suppose that (4) is false.
Then for every positive integer k there exists a normalized disjoint sequence
(F8)n © Ly(u) such that |TfF| < 1/k. We will find a disjoint sequence
(Ffn) € L1(p) such that 1/2 < ||fo]] € Yand |T/u] < 2/n for all n, and the
proof will be domne.

First we take g =

(2). This follows directly from the definition of tauberian

fl. Since limks DU lg1| dp = 0, we can select kg
satisfying { D) lg1}du < 1/2%, and we take gz 1= fh At the nth stage we

apply the argumcm to the functions |g1],...,|gn-1|. In this way we obtain
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a normalized sequence (gn) C L1(p) such that [Tg,|| < 1/n for all n, and
§p(ge) 19n dis < 1727 for k > n.

Now, defining Ay, 1= D(gn) \ Upzn+1 D(ga); it is encugh to take £, :=
On XA, In fact, clearly (f,) is disjoint. Moreover,

o0 o
lfal 21— 5§ dgnlduz1- 37 2% 2170
k=n-+1D(gn) ezl
and
S 1 w2
175l < ITgnll + 1T 32§ lguldu< =427 <~
k=n-1 D(ga)

(4)=(1). Suppose T is not tauberian. Then we can find a sequence (g,)
in By, without weakly convergent subsequences and such that (T'g,) is
weakly convergent. By Lemma 1, there is a subsequence (g,,) C (g,) and
sequences (ug), (vg) in Ly (p) such that (vy) is weakly convergent, (uy) is
disjoint and gn, = uj + vx. Note that liminf, ||u,| > 0. Since vgg — vap—;
and T{gny, — 9ng,_,) are weakly null, there is an increasing sequence of
positive integers k1 < ko < ... and a sequence of real numbers o, > 0
with Ef;jgi +1 0 = 1 such that taking @, = Zf_‘jull i (Yng; = Ong;..,) and

Zy 1= Ef;;; 410 (vg — vgg-1) we obtain lmy, [T, = 0 and lim, |2,
= 0. Obviously, the sequence ¥, = Ef;,'c;il (g — Ugs-1) is disjoint,
liminfy, |lgn|] > 0 and limy, | Ty, |} = 0. In this way we obtain a normalized
disjoint sequence fy, := ||yn|| " yn satisfying lm, |Tf,.] = 0, in contradic-

tion with (4). w
Remark. Condition (2) is not enough in general for an operator T' €
B(X,Y) to be tauberian, as is shown by L: ¢y 2 (z,) ~ (n/n) € £y

Let us see some consequences of Theorem 2. Given ' : Ly (u) — ¥ we
set

Br = inf {limn inf ||| ¢ (fn) € L1 () normalized and disjoint}.

COROLLARY 3. The class T(Ly(u),Y) of tauberian operators is open in
B(Li(p),Y).

Proof If T': Ly(u) — Y is tauberian, then by Theorem 2(4) we have
Br > 0. Let S : Ly(u) — ¥ be an operator such that ||T' — 8|| = a < fr.
Then, for each normalized and disjoint sequence (fu) © Iy(je), we have
liminf, |Sf.|| 2 7 — @ > 0, whick implies § i tauberian, according to
Theorem 2. m

Note that the class 7'(X,Y) is not open in general [1], [25].
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Given a measurable subset C' C 2, we denote by L;(C) the subspace of
Ly () which consists of all functions f with D(f) c C.

COROLLARY 4. Let T' € B(L1(u),Y) be a tauberian operator. For every
non-purely atomic measurable set A C 2 with p(A) > 0 there is a non-
purely atomic subset C C A with §4(C) > 0 so that the restriction T| £1(0)
is an isomorphism.

Proof. Assume the result is false, and let (C,)n be a sequence of disjoint
non-purely atomic measurable subsets of 4 with ¢(Cy) > 0 for every n € N.
Since T restricted to Ly(Ch) 14 not an isomorphism, there is a function
fn € Ln(Cy) such that ||fu]l = 1 and ||T#,) < 1/n, in contradiction with
Theorem 2(3). m -

If a measurable subset C' with u(C) > 0 is non-purely atomic then Ly (C)
is tsomorphic to Ly(s). This allows us to give the next result.

CorOLLARY 5. The class T(Ly(u),Y) is non-empty if and only if ¥
contains a subspace isomorphic to Ly(u). In particular, if M is a reflezive
subspace of Ly(u} then Li(p)/M contains o subspace isomorphic to Ly ().

Now we present some examples of tauberian operators on L (u).

EXAMPLES. (a) Operators with reflexive kernel and closed range are
tauberian [14]. Hence, for every reflexive subspace R of Ly (i), the quotient
map € : Ly (u) - Ly (u)/R is tauberian. In fact, we have fg = 1.

Indeed, take 0 < ¢ < 1, and let (f,) be a normalized disjoint se-
quence in Ly(u). Since R is reflexive, the set 3Bp is equiintegrable [2, Pro-
position V.2.2]. So there exists § > 0 such that §4l0ldu < e for every
g € 3B and every measurable set A with p(A) < 8. Take ng € N such that
p(D(fn)) < 6 for all n > ng. Then for every g € 3Bg we have

Ifa=glz § Ifaldp— | lgldu>1-¢
LD(fn) D(fn)
for all n > ng. Note that ||QF.| = inf {||fn — g|| : ¢ € 3Br} < 1. So we have
limp |Q@fu| = 1, hence B = L.

The space Ly1[0,1] contains a large list of reflexive subspaces. For in-
stance, the closed space generated by the Rademacher functions on [0, 1],
which are given by r,(t) = sgonsin2™at for n € N, is isomorphic to £»
(see [16, Theorem 2.b.3]). Also, it is known [17, Theorem 2.£.3] that for
1 <r < 2 there exists a closed subspace of L; [0, 1] isomorphic to L.[0, 1.

(b) Let T € B(X,Y) be a tauberian operator. If K € B(X,Y) is weakly
compact then it is easy to check that T' + K is also tauberian. Moreover,
in Section 3 we will see that, in the case X = Lj(u), the class of tauberian
operators iy stable under weakly precompact perturbations.



204 M. Gonzdlez and A. Martinez-Abején

(c) I T € B(L1(p), Y) is tauberian and § € B(Ly(p),Y) satisfies || <
Br, then the proof of Corollary 3 shows us that T°+ S is tauberian.

Corollary 4 can be greatly improved using the following characterization
of tauberian operators on Ly ().

THEOREM 6. For T € B{Li(u),Y), the following stalements are equiva-
lent:

(1) T is tauberian;

(2) for every normalized sequence (fn)} in Ly (u) such thot lim,, 1{D(fu))
=0 we have liminf, |Tfn] > 0;

(3) there emists r > 0 such that for every normalized vector f & Ly ()
with u{(D(f)) <r we have |Tf| > r.

Proof. (1)=(2). A normalized sequence (f,) in Ly () with lim,, u(D( fu))
= 0 has no equiintegrable subsequences; hence it has no weakly convergent
subsequences.

(2)=(3). If (3) fails, then we can select a normalized sequence (f,) so
that u(D(fn)) <n™' and |Tf.| < n~*; hence (2) fails.

(3)=>(1). Assume T' is not tauberian. By Theorem 2 we can select a nor-
malized disjoint sequence {f,) so that lim, [[T'f, )] = 0. Since lim, w(D(f)
=0, (8) fails. w

COlROLLARY 7. Assume that the measure space (12,2, 1) has no atoms,
Then for every T € T(Ly(1),Y) we can find a finite partition {(, ..., 2}
of (2 so that the restrictions T Ly(12;) ore isomorphisms (into).

Proof. This follows from statement (3) in the previous theorem: since
{2 has finite measure and contains no atoms, we can find a finite partition
of {2 into measurable subsets of measure smaller than r. w

Recall that an operator T' € B(X,Y) is said to be supertauberian if for
every 0 <& < 1 there exists a positive integer # € N for which there are no
families {z1,...,2,} C Sx, {f1,..., fa} C Sy satisfying fu(z,) > € for
lsk<m<n, fylom)=0for 1 < m <k g nand |Tuy < 1/k for k=
1,...,n. These operators, introduced by Tacon [25], can be characterized in
terms of ultrapowers: T is supertauberian if and ouly if every ultrapower
Tu of T is tauberian [8, Theorem 9]. Clearly, supertauberian operators are
tauberian. We refer to [18] for a detailed study of supertauberian operators.

- PgOPOSITION 8. An operator T € B(L, (), Y} 4s tauberian if and only
if T is supertauberian,

. Proof Thisis a c.onsequence of two non-trivial facts: (1) every reflex-
ive subspace of L;(u) is superreflexive 21], and (2) for a Banach space X
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whose reflexive subspaces are superreflexive, we know that T' € B(X,Y) is
tauberian if and only if it is supertauberian [8, Theorem 17]. »

The class of tauberian operators 7(X,Y) has bad behaviour under du-
ality: there exists a tauberian operator T whose second conjugate T™* is
not tauberian [1, Proposition 5]. However, supertauberian operators behave
better. We denote the nth conjugate of T' by T for n > 2.

COROLLARY 9. If T € B(L1(u},Y) is tauberian then TP is tauberian
for all n & N,

Proof. If T is supertauberian then T°™* is supertauberian [26, Theo-
rem 1), w

Corollary § can also be derived from Proposition 8, because the class of
supertauberian operators in B(X,Y") is open [8, Proposition 13].
Given an operator T' € B(X,Y), we denote by

T X)X = Y™V

the induced operator defined by T(z™ + X) := T**(z**) + Y for every
r* € X**. Note that T is tauberlan if and only if T is injective. H. Rosen-
thal [23] has recently studied the operators " € B(X,Y) for which T is
an isomorphism into, calling them strongly tauberian operators. Qbviously,
strongly tauberian operators are tauberian. Moreover, Rosenthal [23] proves
that supertauberian operators are strongly tauberian. Thus, if every reflex-
ive subspace of X is superreflexive then, reasoning as in Proposition 8, we
see that every tauberian operator T' € B(X,Y") is supertauberian, therefore,
it is strongly tauberian. The above argument can be applied to tauberian
operators on L1(u), but this particular case admits a direct proof without
using general principles, which is given in the next proposition. The main
ingredients of the proof are the result of Kadec and Pelczyriski given in
Lemma 1 and a refinement of an argument of James [11, 12] used in his
sequential characterization of non-reflexive spaces (see also [19]). First we
need a technical lemma.

Lemma 10 22]. If T € B(X,Y), z € int Bxw and y € Y satisfy
[T* 2 —y|| <&, then z €L , where L= {x € Bx : [|Tz —y|| <e&}.

Proof Assume that the result fails end L # @. The Hahn—Banach
Theorem gives f € X* and a < b =: |2(f)| such that | f(z)| L aforallz € L.
Therefore, if we define W = {z € X : ||lzf| < 1 and %‘1(a +8) < {f(=)|},
then z € W and WN L = 0. Thus, T™**z ET(T’V_)W and [|Tw —yj| > €
for all w € W. By the Hahn-Banach Theorem, there is g € Sy» *such
that & < |g(Tw — y)! for all w € W. But Tz —y € (T(W) —y) 50
|T** 2 —y|| = |g(T**2 — y)| 2 &, a contradiction.
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For the case L = 0, taking W := {z € X : ||z]| < 1}, and applying a
similar argument to the above, we get contradiction. m

PROPOSITION 11. An operator T & B(Ly(p),Y') is fauberian if and only
if the induced operator T : Ly (p}** /L1 (i) — Y™** /Y is an isomorphism into,

Proof. The “if” part is trivial. For the converse, assume that T ¢
B(L1(u),Y) is tauberian. It follows from Theorem 2 that there is a real
number r > 0 such that for every normalized disjoint sequence (f,,) C L),
we have

(1) lim inf 1Tl > .

Assume that T is not an isomorphism. Then we can find o™ € L (p)**
such that ||z** + Ly (u)]| = 1 and || T(z** + L1 (u))|| < r/4. We select a vector
y €Y so that || T**(z**) +y|| < r/4 and a number & such that 6/7 < ¢ < 1.

We are going to obtain normalized sequences (g}, C Li(p), (fuln C
Lyi(p)* such that fi(g;) > & fori < j, filg;) =0for j < iand 1T {gn) +y|| <
r/4 for all n. First, take fi € Styu)+ so that **(f)) > e. By Lerama 10
there is g1 € Sr,(,) such that fi(g1) > e and |T(g1) + y|| < r/4. Suppose
we alrc?ady have families {gr)pot C Srytu) (j’k)g;% C 51, ¢u)~ satisfying the
conditions

filg;y>e #1<i<j<n~1,
filgi)=0 #1<j<ign~1,
e (fe)>e fork=1,...,n-1,

[T(gr) + 9l <r/4 fork=1,...,n—1.

Since the quotient Ly(uY* (g1, .., gn—1) is isSometric to (g1, gnr) D)%,
Wf* can take f, € Sp,. so that fo(gr) = 0 for k = 1,...,n 1 and
z**(fn) > €. By Lemma 10, there is gn € Sp,(u such that fr(g,) > ¢ for
k=1,...,nand |T(gn) + y|| < r/4. We have just proved the existence of
the required normalized sequences (g,) C Ly () and (fu) € Ly(u)*.

.By. Lemm'a.l, the sequence (g, ) contains a subsequence (@my, )& which
splits into a disjoint sequence (ue)r and a wenkly convergent sequence (Ve )a:

Oy = Uk - U
Now we can select an increasing sequence of positive integers &y < ko < ...
and a sequence of real gumbers o, > 0 with 320 1@ = 1 for all n,
6o Ny, =1~ "

Suq]i _thaif the sequence z, := Zf;};l +1 ¥v; Is norm convergent. Let ng be a
positive integer such that ||z, — zm"" < &/8 and ||T(2y ~ #m)]|| < r/4 for all
n,m Z .
. . kn
Take t;le -dlsmlnt sequence yy, = Ei=.tl+1 oy, and the sequences z, 1=
Yn + Zn; fin := fr, .. Note that hi(z;) > € for i < j and hi(z;) = 0 for
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4 < i, hence {|@n — Tyl > £ when n # m. Thus, for n > ng, we have
(2) ly2n = yonrill 2 220 = Tantall ~ [22n ~ 22n41]l > (7/8)e.

On the other hand, ||T'(gn)+ ¥l < /4 implies that |T(zan — Zan+1)] < 7/2.
So, for n > ny, we have

1T (y2n = Yan+) || £ T (@20 = 221} || + 1T (220 = 2z2nr1)|| < (3/4)r
By inequality (2), we have Ap = |[yon — yans1l]™t < 8(7e)~" < 4/3. Write
Wn = An(¥on — Yon41). Thus we have obtained a normalized disjoint se-
quence (wy) satisfying {|T(wy)|| < r, in contradiction with inequality (1). m

Remark. We have already proved in Corollary 9 that if T € B(Ly(u),Y)
is tauberian then T™** ig tauberian. We used there supertauberian operators
but, after Proposition 11, it is possible to give a direct proof of this fact.
Actually, if T € B(X,Y) is strongly tauberian then T** is alsc strongly
tauberian. The proof, given in [23], is essentially as follows:

T e B(X,Y) is a strongly tauberian operator, then T:X*/X —
Y**/Y is an isomorphism. But for any Banach space X, we can identify
canonically (X**/X)* with X*/X**, and T** with Twe o X4 /X%
Y& [y ** Therefore, T* is an isomorphism, and consequently, T** is
strongly tauberian. Repeating the process, we conclude that T%™* is strongly
tauberian for all n € N.

Finally in this section we characterize tauberian operators 7' : Ly (u) —Y
by their action over the dyadic tree of Ly (u). Our proofs can be adapted to
any separable Iy(u) space with u a purely non-atomic finite measure, but
in this case Ly (u) is isomorphic to Lq[0,1].

The dyadic tree on L1[0, 1] consists of the functions

Xh = 2"%((h—1)/2m p/2m), P =0,1,2,... 1<k <27
The intervals ((k — 1)/2",k/2™) are called dyadic. Any operator T' €
B(L[0,1],¥) is determined by the image of the dyadic tree: If for every
f € L1[0,1] we define

2n 1
Po(f) =Y 27" (§xif da) k.
k=1 0

then || f — P, f|l tends to 0 as n tends to infinity. In particular, the dyadic
tree generates a dense subspace of Iy [0, 1]. Moreover, we have

2" 1
i 1 - 7
Tf:=lmY "2 ”(Sx}}_fdm)Txk.
k=1 0
We refer to [5) for the details, We need the following elementary lemma.
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LemMMa 12. If T € T(X,Y) and (z,) 4s o sequence in X equivalent to the
unit vector basis of £y, then there exists an ng € N such that the restriction
of T to the linear closed span of {zn : n > ng} is an isomorphism.

Proof. By [9, Theorem 4.2], the restriction of T to the closed space
generated by {z, : n € N} is upper semi-Fredholm, and then the result
follows. w

Recall that the set of all simple functions is dense in L;{0, 1].

THEOREM 13. An operator T € B(L1[0,1],Y) is tauberian if and only if
for every sequence {x,) in the dyadic tree of L1[0, 1] equivalent to the unit
vector basis of £y, there exists ng € N such that (Txn)non, 48 equivalent to
the unit vector basis of £y.

- Proof. Let T € B(L1[0,1],¥") be a tauberian operator and let () be
a sequence contained in the dyadic tree in L1[0,1] and equivalent to the
unit vector basis of £1. By Lemma 12, there is a positive integer ng such
that the restriction of T to the subspace generated by {z, : n = ng} is an
isomorphism. -

Assume now that T is not tauberian. By Theorem 2 there is a disjoint
normalized sequence {f,) C L;[0, 1] such that lim,, | Tf,| = 0, and we may
suppose that every f, is a simple function. For each measurable set A and
€ > 0 there are disjoint dyadic intervals Iy,..., I, such that u({(Up, &)
A A) < g, where A stands for the symmetric difference. It follows that for
every fn there are two positive integers k,, my, with &y < kg < ..., a finite
collection of disjoint dyadic intervals IF, ... s dm,, of length 2% and scalars
B¢y, B, such that if

LALT
Gn == sznﬁg’t){f{‘
1=1
then [|fo — gn| < 1/, ||gn]l = 1 and w(D(fn) & D(gy)) < 1/n for all n € N,
Thus limy, || Tgn|| = 0. Passing to a subsequence if necessary, we can assume
that p(D(gn+1)) < (1/8)27% for all n. Therefore the sets

o0
A'n, \== U

Mg

U#

ke=nd1 l=]
satisfy
5] 1 1
~ky— "‘kr'ra
(3) S A S D 32 g 22
pe=ms1 .

and taking J" := I\ A, for I =1,...,m,, we obtain u(JP) > (3/4)27F.
We show that the sequence 2’°1x1—11,...,2’“1xf1 s 2%, 2% i

Ty

is equivalent to the unit vector basis of £1. Given a sequence ({(af)77)n of
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scalars we have
00 Map oC  Mn 1 4 o0 g 1 .
> > lafl = > Z laf| | 2%y g dp < 3 > lapl§ 2ty duy
nm=l el nesl lm=l 0 n=1 =1 0

and as the functions xs» are by construction disjointly supported for all
and 1, we have

4 oo Win, 1
: d oy
EZZWHSQ xap dp
n=l =1 0
4 1 oo Mg,
. 55 1 3% 2alxgr|dp
0 n=1l=]
4 L oo mMn 4 1 oo mp
< —3 I Z Zk“a”szn dp + 3 S ‘ Z 2kn ol a, | dp.
3 0 n=l1l=] 0 n=1i=1
Now, it follows from (3) that
4 1 oo my 1 oo Ma
1o 2arxadu <3 20 Y lafl,
0 n=li=1 n=l I=1
and we obtain
1 o0 Min 1 o0 mgp o0 Min
SN iar < §| 303 2Py | di < 303 lof
2 nw=l l=] 0 n=ll=l n=l1 =1

We have just shown that the sequence ((2%nx1n )12 )n contained in the
dyadic tree of L1[0, 1] is equivalent to the unit vector basis of £;. However,
as every Tg, is an absolutely convex combination taken in {T'2Fn XIps-
...,TQkHXImn} and limy, |[T'g,| = 0, we see that ((Tzk”.xfr)?;*g)@nu is not
equivalent to the unit vector basis of £y, and the proof is finished. w

3. The perturbation class of 7(Li{),Y"). For a Banach space A and
a subset § ¢ A, Lebow and Schechter [15] define the perturbation class of
S in A as follows:
P(S):={acAd:a+seSforall s& S}t

We say that C C A is an admissible class for S if O C P(8). Here we study
the perturbation clags of 7(Ly(g),Y) in B(L1(p), Y).

Tt is not difficult to see that the class WCo(X,Y) of all weakly com-
pact operators is an admissible class for 7(X,Y) (cf. [25]). Moreover, a
broader admissible class for 7(X,Y) can be introduced as follows. An oper-
ator T' € B(X,Y) is said to be R-sirictly singular if for any operator L into
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X such that TL is tauberian, L is weakly compact [7]. The perturbation
class P{T(X,Y)) is not well known in general. However, for X = L;(u), we
find that P(T(L1(u),Y)) coincides with the class Ro(L;(p), Y) of all weakly
precompact operators. Recall that T € B(X,Y) is said to be a weakly pre-
compact operator if for every bounded sequence (zy,) C X, (Tz,) containg
a weakly Cauchy subsequence.

The following result makes sense only in the case when T(Ly (), Y) is
non-empty; equivalently, ¥ contains a subspace isomorphic to Ly(u), as a
consequence of Corollary 5.

PROPOSITION 14. Let Y be a Banach space such that T{Li(x),Y) # §.
An operator K € B(Ly{(n),Y) is weakly precompact if and only +f for every
T eT(Li(p),Y), the operator T + K is tauberian.

Proof. Let '€ B(L1{u),Y) be a tauberian operator and assume that
T+K is not tauberian. By Theorem 2, there is a normalized disjoint sequence
(@) C Ly(p) such that lim, ||(T" + K)z,|| = 0. Since () is equivalent to
the unit vector basis of /1, by Lemma 12 thereis ng € N such that (Tz,)32.,
is also equivalent to the unit vector basis of £1. As limy, (T"+ K)z, =0, a
perturbation argument for basic sequences [16, Proposition 1.a.9] allows us
to conclude that (K2, ) has a subsequence equivalent to the unit vector basis
of £1, and so K is not weakly precompact.

For the converse, let K € B(L1(u},Y) and suppose K is not weakly
precompact. Thus, by Rosenthal’s £;-theorem [4, p. 201], there is a bounded
sequence (gn) C Ly (1) such that (Kg,,) is equivalent to the unit vector basis
of £1. Applying the Kadec—Petczyriski Lemma (Lemma 1) as in the proof of
(4)=(1) in Theorem 2, we may assume that (g,) is a normalized disjoint
sequence, and so the subspace M generated by (g,,) is isomorphic to £ and
complemented in Ly(u). Write Ly(y) = M & H and M := K(M). Note
that K|p is an isomorphism, and H is isomorphic to Li(u) because L {u)
is primary [6).

Our goal is to obtain a tauberian operator T' € B(Ly (), Y} for which
the kernel N(T + K} is not reflexive, which leads to K ¢ P(T(Ly(u),Y)).

By hypothesis Y contains a closed subspace L isomorphic to Ly (). One
of the following cases should happen: (a) M+ L is closed and M N L is
finite-dimensional; (b) M N L is infinite-dimensional; (¢) M -- L is not closed
and M N L is finite-dimensional.

(a) Passing to a finite-codimensional subspace, we can take M N L = {0}.
Since there is an isomorphism U’ : H — L, we have an isomorphism T :
Li(p) = M@ H - M@&L CY given by T(z,y) := —Kz + Uy. Then
T € B(L:(u),Y) is tauberian and N(T + K) is not reflexive because it
contains M, which is isomorphic to £;.
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(b) Since M is isomorphic to 41, we see that M N L is non-reflexive.
Applying again the Kadec-Pelezyiski Lemma, we can find a subspace Ny C
M 0 L isomorphic to £; and complemented in L. Now, putting M; =
(K|am) "1 (Ny), we find that M) is complemented in L1(u). So we can find
closed subspaces E C L and H C L;i(u) such that Li(p) = My @ H and
I = Ny @ E. Since Ly(u) is primary, E and H are isomorphic to Li(p).
Therefore, taking a bijective isomorphism V' : H — E, we can define a
tauberian operator T': Ly (p) = Mi@®H — N1 G E by T(z,y) == —Ka+Vy.
Note that N(T + K) is not reflexive because M; is contained in it.

(c) As in case (a) we can assume MnL=4{0} Let2: M — Li{u) be
the natural embedding, and consider the quotient operator ¢ : ¥ — Y/L.
Since M 4 L is not closed, the operator go K o1 is not upper semi-Fredholm,
and so there is a nuclear operator Ky : M — Y/L such that the kernel
N{go K o+ + K1) is infinite-dimensional [15, Lemma 4.3]. Note that K3 can
be written as Ky = ¢ o Ky, where Ko : M — Y is a nuclear operator. Take
the compact operator Q : M @ H — Y given by Q(z,y) = Ka(x). Then
MnNN{go(K+Q)) is infinite-dimensional, which implies that (K +Q){M)NL
is also infinite-dimensional. Repeating the argument of part (b) we obtain a
tauberian operator T : Li(p) — Y such that N(T -+ K + Q) is not reflexive.
Since T 4 Q is tauberian, the proof is finished. w :

Remark. Insome cases Ro(X,Y) is not an admissible class for 7(X,Y).
For instance, let J denote the classical quasireflexive James space, and let
co be the space of all null sequences. The natural inclusion 2 € B(J,¢co) is
tauberian [7] and weakly precompact, but the null operator 0 € B(J, ¢co) is
not tauberian.

Herman {10] calls an operator T’ € B(X,Y) almost weakly compact if
given a closed subspace H C X such that 7|y is an -isomorphism, H is
reflexive.

PROPOSITION 15. For an operator T € B(Ly (1), Y), the following state-
ments are equivalent:

(1) T is weakly precompact;
(2) T is R-strictly singular;
(3) T is almost weakly compoct.

Proof (1)=(2). Suppose T is weakly precompact, and let L €
B(Z,Ly(1)) be an operator such that TL is tauberian. Since the class of
weakly precompact operators is an operator ideal, T'L is weakly precompact
as well. Moreover, for every compact operator K € B(Z,Y), N(TL + K)
is reflexive. Thus, by [9, Theorem 2] we see that Z contains no copy of 4,
and since L1 (u) is weakly sequentially complete, the operator L is weakly
compact.
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(2)=>(3). If T|g is an isomorphism, by hypothesis the embedding
v: H — Li(y) is weakly compact. Hence H is reflexive,

(8)=-(1). If T is not weakly precompact, applying Rosenthal’s £;-theorem
[4, p. 201}, we obtain a sequence (f.) C L;(p) equivalent to the unit vector
basis of #; such that the restriction of 7" to the closed linear span of (f,} is
an isomorphism. m

References

[1] T.Alvaresand M. Gonzélesz, Some examples of tauberian operators, Proc. Amer.
Math. Soc. 111 (1991), 1023-1027.

[2] B.Beauzamy, Introduction to Banach Spaces and their Geometry, North-Holland
Math, Stud. 68, North-Holland, 1985,

[3] W.J. Davis, T. Figiel, W. B. Johnson and A. Petcayiiski, Factoring weakly
compact operators, J. Funct. Anal. 17 (1974), 311327,

[4] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984,

[5] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math, Soc.,
1977.

[6] P. Bnflo and T. W. Starbird, Subspaces of L* containing L', Studia Math. 65
(1979), 203-225.

[7] M. Gonzdles, Properties and applications of tonberian operators, Extracta Math.
5 (1990), 91-107.

[8] M. Gonzdlez and A. Martinez-Abején, Supertaudberian operators and perfur-
bations, Arch. Math. (Basel) 64 (1995), 423-433.

[9] M. Gonzdlez and V. M, Onieva, Characterizations of tauberian operators and
other semigroups of operators, Proc. Amer. Math. Soc. 108 (1990), 399405,

[10] R.H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math.
Soc. 132 (1968), 377-386.

[11] R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 205~216.

[12] —, Weak compaciness and reflevivity, Tsrael J. Math. 2 (1964), 101-119,

[13] M. L Kadec and A. Pelczydski, Bases, locunary sequences and complemented
subspaces in Lp, Studia Math. 21 (1962}, 161-176.

[14] N.Kaltonand A, Wilansky, Tauberian operators on Banach spaves, Proc. Amer.
Math, Soc. 57 (1976), 251255,

[15] A. Lebow and M. Schechter, Semigroups of operators and measures of noncom-
pactness, J. Funct. Anal. 7 (1971), 1-26.

f16] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces 1. Sequence Spaces,
Springer, 1977,

[17] —, —, Classical Banach Spaces II. Function Spaces, Springer, 1979,

[18] A. Marsinez-Abején, Semigrupes de operadores y ultrapotencias, Ph.D. thess,
Universidad de Cantabria, 1594.

[19] D.P. Milman and V. D, Milman, The geometry of nested fomilies with empty
intersection. The structure of the unit sphere of a non-reflexive space, Mat. Sb. 66
(1965), 109-118 (in Russian); English transl.: Amer. Math. Soc. Transl. 85 (1969).

[20] R. Neidinger and H. P. Rosenthal, Norm-attainment of linear functionals on

subspaces end characterizntions of tauberian operators, Pacific J. Math. 118 (1985),
215-228.

icm

Tauberien operators on Li(p) spaces 303

[21] H.P.Rosenthal, On subspaces of Ly, Ann. of Math. 97 (1973), 344-373. ‘

[22] -, Double dual types and the Maurey charecterization of Banach spaces contain-
ing £1, in: Texas Functional Analysis Seminar 1983-1084 (Austin, Tex.), Longhorn
Notes, The Univ. of Texas Press, Austin, Tex., 1084, 1-37.

[23] —, On wide-(s} sequences and their applications to certain classes of operators,
preprint. . }

[24] W. Schachermayer, For a Banach spuce isomorphic to s square the Radon-
Nikodijm and the Krein-Milman property are equivalent, Studia Math. 81 (1985),
329-339.

[25] D. G. Tacon, Generalized serni-Fredholm transformations, J. Austral. Math. Soc.
Ser. A 34 {1983), 60-70.

[26] —, Generalized Predholm iransformations, ibid. 37 (1984), 89-97.

Departamento de Matemdticas
Facultad de Ciencias
Universidad de Oviedo

E-33007 Oviedo, Spain

E-mail: ama@pinon.ceu.uniovi.es

Departamento de Matematicas
Facultad de Ciencias

Universidad de Cantabria

E-39071 Santander, Spain

FE-mail: gonzalem@ccaix3.unican.es .-

Received December 2, 1996 {3787)

Revised version May 12, 1997



