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The Minlos lemma for positive-definite
functions on additive subgroups of R™

by

W. BANASZCZYK (Lo6dd)

Abstract. Let H be a real Hilbert space. It is well known that a positive-definite
function ¢ on H is the Fourier transform of a Radon measure on the dual space if (and
only if)  is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G
be an additive subgroup of H and let GSC (resp. G} be the character group endowed
with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It
is proved that if a positive-definite function ¢ on & is continuous in the Gross topology,
then ¢ is the Fourier transform of a Radon measure g on G’Qc; if ¢ is continuous in the
Sazonov topology, 4 can be extended to a Radon measure on GQ

1. Introduction. Every continuous positive-definite function on an LCA
group G is the Fourier transform of a (unique) Raden measure on the char-
acter group (*. This fact, known as the Bochner theorem, has been gener-
alized to certain abelian topological groups which are not locally compact;
a brief survey can be found in [1, Sec. 11], see also Remark 1.5. In particular,
R. A. Minlos [7] proved that the Bochner theorem remains valid if & is a
nuclear locally convex space. In what follows, D is an n-dimensional ellip-
soid in R™ with centre at 0 and principal semiaxes of lengths A1,..., An. By
@ -y we denote the euclidean inner product of vectors 2,y € R”. The proof
of the Minlos theorem is based on the following fact (see Lemma 4.1 in [11,
Ch. VI)):

Lemma 1.1 (R. A. Minlos). Let pu be a probability measure on R* and
the characteristic functional of

Alz) = | eV dp(y),
e

xeR".
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14 W. Banaszczyk

Let € and r be arbitrary positive numbers. If |1 —fi(z)| < € for each z € D,
then

n
u{y eR 1y-y>rh) < 3(s+2r-1ZA;2).
k=1

Actually, the following fact is true:

LEMMA 1.2. Let u, i and € be as in Lemme 1.1. Let Bl be the unit
cube in R® given by |zx| < 1 fork=1,...,n. If Refi(z) > 1 —¢ for each
z € B, then

p{y e R 1y -y >1}) < Te.

The proof can easily be obtained by standard methods. We omit the
details because we shall not use this result below.

Let X be a Hausdorff topological space. The family of Borel subsets of
X is denoted by B(X). A positive finite Borel measure u on X is called a
Radon measure if

w(A) = ;gaﬂ(z), A€ B(X),

the supremum. being taken over all compact subsets of A.

Let G be an abelian topological group. By a character of G we mean
a homomorphism of & into the multiplicative group of complex numbers
with modulus 1. The group of all continuous characters of G is denoted by
G*. Let 7 be a topology on G* such that the mappings x — x(¢9), g € G,
are continuous, and let i be a finite positive Borel measure on (G", 7). The
Fourier transform fi of ¢ is given by

Blo)= | x(e)du(x), g€G.
G/\

Let & be a family of subsets of G such that SUT € & whenever S, T € G.
The family of sets of the form

{x€eG":|1-x(9)| < e for each g € S}

where § € G and £ > 0, forms a base of neighbourhoods of zero for a unique
group topology on G*, called the tepology of uniform convergence on the
sets § € G. By G}, G2 and G}, we denote, respectively, the group Gh
endowed. with the topology of uniform convergence on finite, compact and
precompact subsets of G. If G ig an additive subgroup of a Hilbert space
H, then G{} denotes the group G endowed with the topology of uniform
convergence on bounded subsets of G. If G is closed in H, then G = G5,
but, in general, Gp, # G{.
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By B} we denote the euclidean unit ball in R®. If K is an additive
subgroup of B™, then we write

Zx ={x € K" :Rex(z) > 0 for each z € KN 3Bz}
Notice that Zg is a closed subset of Kl’,\.
It was proved in [1, Sec. 12] that the Bochner theorem remains valid
for an arbitrary additive subgroup of a nuclear locally convex space (cf.

Remark 1.5 below). The proof was based on the following fact (Lemma
(12.2) of [1]):

LEMMa 1.3. Let K be an additive subgroup of R™ and p o Berel proba-
bility measure on K such that Rei(z) > 1—¢ for eachz € KND. Assume
that

- 1
1 -2 1
(1) 2N <
Then u(K"\ Zg) < 2e.

It was clear from the very beginning that the condition (1.1) was too
strong. The aim of this paper is to prove the following analogue of Lem-
ma 1.1:

LEvMA 1.4. Let K be a closed additive subgroup of R™ and 1t a Borel.
probability measure on K such that Refi{(z) > 1 —¢ for eachz € K ND.
Then

n
(1.2) pEM ZK) <26+ A7
k=1

The proof is given in Section 2. Lemma 1.4 remains true for arbitrary,
not necessarily closed, additive subgroups of R, but then the proof becomes
slightly more complicated. We also obtain analogues of Lemma. 1.4 for convex
bodies other than ellipsoids; roughly speaking, Lemma 1.4 remains true if
D is replaced by a convex body with sufficiently large n-dimensional gauss-
ian measure (see Lemma 4.3). It should be peinted out that this result is
a consequence of the Talagrand theorem on the majorizing measure (see
Lemmas 2.3 and 4.2). In Sections 3 and 4 we apply the results of Section 2
to prove that if a positive-definite function ¢ on an additive subgroup G of
a Hilbert space H is continuous in the Sazonov topology (resp. the Gross
topology) on H, then ¢ is the Fourier transform of a Radon measure on G{}
(resp. on G2.). '

Remark 1.5. In[1, Ch. 3] the author introduced the so-called nuclear
groups, a class of abelian topological groups which contains all LCA groups

and nuclear locally convex spaces, and is closed with respect to the opera-
tions of taking subgroups, Hausdorff quotients and arbitrary products. Then
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it was proved in [1, Sec. 12] that every nuclear group satisfies an analogue
of the Bochner theorem.

2. Finite-dimensional inequalities. By a lattice in R™ we mean an
additive subgroup of R™ generated by n linearly independent vectors The
family of all lattices in R™ is denoted by L". For z € R", we write z? instead
of z - x.

Let L € L™ and y € R™. Then 35 ;.. € ~m2’ < o0, To see this, it is
enough to estimate in a standard way the pumber of elements of L +yin
the ball 7Bg, for large 7. It is convenient to denote

o(4) = E e ACL+y;
ncA

then g(4) < o(L +y) < cc.
Let L € £™. By o1 we denote the probability measure on L given by

or(4) = o(A)/o(L), ACL.
By of we denote the Fourier transform of or:
op () = | x(z) dor(z), x €L
L
LEMMA 2.1. Let L be a lattice in R®. Then

o{zeLty:le 2 2t} <2 ™ o(L)
for arbitrary y e B*, 2 € BY andt > 0.
This is Lemma 2.4 of [3].
LeMMA 2.2, If L€ L™ and x € LN\ XL, then of(x) < 2e™".
Proof. Consider the epimorphism f : R* — L given by
z, fy)) = ™Y, zeglL, yeR
Let L* be the dual lattice:
={yeR":2-y ¢ Z for each = € L}.
Next, consider the function
¥(y) = o(L" +y)/e(l*), yeR™

Then ¢ = o0 f (see Corollary (1.2) of [2]). Now, take an arbitrary x €
LM\ X1. We can find some yg € R™ with f(yg) == x. The condition x & Xr,
means that there exists some zg € LN %BE such that cos 2w(zo - o) < 0. It
is clear that if y € L* + yo, then |zo - y| > ;. Thus, by Lemma 2.1, we have

o) = ¥(yo) = o(L" +yo)/e(L") |
<ol{yeL*+wo:ly-zo| > 1}) /(L) <2 ™. m
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Let C™ denote the family of all convex bodies in R™ which are symmetric
with respect to 0. For U € C", we define

aU) = sup o(L\U)/e(L) = sup o1(L\T).
Lelyn Lel,

LEMMA 2.3. Let K be o closed subgroup of R™ and let p be a Borel
probability measure on K. Suppose U € C™ and e & (0,1) are such that
Reji{z) 2 1 —€ for each x € KNU. Then

p(EM\ Z) < (1 - 2e77)7 (e + 2(U)).

Proof Without loss of generality we may assume that K is a lattice
in R* (cf. the proof of Lemuma (12.2} in [1]). We may also assume that u is
symmetric, i.e. that [ is real-valued. According to our definitions, we may
write

| o0 dn(x)
K'f\

S f{z)dog(z

I
L’ﬁx

+ | ) dox(2) > (1- &) ox(U) - ox (K\ D)
U KU
, =1l-e~(2—-8)og(K\U)>1-¢e-2a(l)
On the other hand, Lemma 2.2 implies that
{ okdut) = | + | ok du(x)
KN Zx \Zk
< w(Zx) + 267" p(\Zxc) =1~ (1 - 2¢77) p{\Zk)-
Hence
l—e~20(U)<1—(1—2"")u(\2k). m
To apply Lemma 2.3 to a given convex body U we need upper bounds

for (). For certain special convex bodies such bounds were found in [3,
Sec. 2]; let us recall them here. See also Lemma 4.2 below.

LEMMA 2.4. Letay, .. ., an be positive numbers, let o = (a1,...,a,) € R™
and let o® = af + ...+ a2. Define
{(9:1, S Tn) ERY Z[akwkip<1} 1 <p< oo,
k=1
={(z1,...,2n) ER™ : lages| S 1 fork=1,...,n}.

Then
(i) «(Ug) < a?/2m;
(11) a(U$) € (2we/a®)? e —%/a” for a2 < 2y
(iil) a(Ug) < pvr“P/")]"(p/Z) Shoi 0k for 1< p < oo;

(iv) a(Us) S 250 /% p
/é\
W
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Proof of Lemma 1.4, From Lemma 2.3 we have
KM\ Zg) £ (1—2e77) 7 e+ 2e(D)),
and Lemma 2.4(i) says that

alD) < (2m)7! i Al
k=1

Putting these two inequalities together we obtain (1.2). m

Remark 2.5. Lemma 1.4 may be treated as an analogue of Lemma 1.1
for subgroups of R™. The author does not know whether the corresponding
analogue of Lemma 1.2 is true. More precisely, set U = tB7, in Lemma 2.3,
where ¢ is a positive coefficient. Then, by Lemma 2.4(iv), u(K" \ Zk) is
small if ¢ is of order (logn)Y/2. It is not clear if (logn)'/2 may be replaced
here by a constant.

3. The Sazonov topology. In the rest of the paper H denotes a real
Hilbert space, and By is the closed unit ball of H. If p is a seminorm on H,
then we write

B, = {z € H:p(z) <1}.
‘We say that p is a pre-Hilbert seminorm if

P2z +y) +p*(z —y) = 20°(z) + 2p°(y), =my€EH.

Let X,Y be symmetric convex subsets of H with X C ¢Y¥ for some ¢ > 0.
For k=1,2,..., we define

di(X,Y) =inf inf{t > 0: X C ¥ + M},

where the first infimum is taken over all linear subspaces M of H with
dim M < k. The numbers di(X,Y) are called the Kolmogorov diameters of
X with respect to Y.

By §(H) we denote the family of continuous pre-Hilbert seminorms p on
H such that

oo

> &} (Ba, Bp) < 0.

k=1
The topology on H induced by S(H) is called the Sazonov topology (cf.
Sec. 1.1 of {11, Ch. VI]).

LEMMA 3.1. The family {Bp}pes(a) 3 o basis of neighbourhoods of zero
for the Sazonov topology on H.

Proof. Let U be a neighbourhood of zero in the Sazonov topology. Then
we can find some py,...,p, € S(H) with By, N...N B, CU. It is not hard
to see that p= (p¥+ ... +p2)/? € S(H) and B, C Bp, N...N By,
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Let T be a topology on H such that (H,7) is an additive topological
group. We say that 7 is sufficient if every r-continuous positive-definite
function on H is the Fourier transform of some Radon measure on Hy). Next,
we say that T is subgroup-sufficient if every T-countinuous positive-definite
function on an arbitrary additive subgroup G of H is the Fourier transform
of some Radon measure on G}. The Sazonov topology on H is sufficient (see
e.g. Theorem 1.1 of [11, Ch. VI}); we shall prove it is subgroup-sufficient as
well.

LeMMA 3.2. A character x of an abelian topological group G is continuous
if and only if there is o neighbourhood U of zero in G such that Rex(z) > 0
for each x € U. :

This simple fact is well known (see e.g. Lemma (1.4) of [1]).

LEMMA 3.3. Let U be a neighbourhood of zero in an abelian topological
group G, and let

Z ={x€G":Rex(z) >0 for each z € U}.
Then Z is a compact subset of G-
This is a standard fact, For the proof see e.g. Proposition (1.5) of [1].

LEMMA 3.4, Let E be a finite-dimensional real vector space and let p,q
be pre-Hilbert seminorms on B with p < q. Let K be a closed subgroup of E
and p o Borel probability measure on K,:,\ such that Refi(z) > 1—¢ for each
z € K N By, where € > 0. Define

Z = {x € K" :Rex(z) >0 foreachz € KN %Bq}.
Then

P”(KA \ Z) <2+ Zdi(Bqa Bp)-
k=1
Proof. The special case where p, ¢ are norms is nothing but another for-
mulation of Lemma 1.4. The general case follows by an easy approximation
argument. w

Let X,Y be topological spaces, f : X — Y a continuous mapping and
4 a Borel measure on X. By f(u) we denote the image of u, i.e. the Borel
measure on Y given by f(u)(4) = p(f~(4)) for A € B(Y).

LEMMA 3.5. Let (M, C) be o directed set. For each M € M, let Xy
be a Hausdorff topological space and par @ regular Borel probability measure
on X. Suppose that, for each pair (M,N) € M? such that M C N, a
continuous mapping warn of X onto X is given, such thot

(i) warne = idx,, for each M € M;
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(ii) mpw © wnp = warp for each triple (M, N, P) € M3 such that M C
NCP
(iii) par = Tarnv(pn) for each pair (M, N) € M? such that M C N,

Suppose further that X 45 o Hausdorff topological space, and that, for each
M € M, a continuous mapping vy of X onto Xy is given, such that

(iv) 7ar = Ty o TN for each pair (M, N) € M? such that M C N.

Finally, suppose that, for any two distinct points x,y € X, there exists some
M € M such that mpr(z) # maely). Then the following two conditions are
equivalent: '

(*) there exists a unique Redon probability measure p on X such that
wn = war(p) for each M € M;
(#x) for each e > 0, there is a compact subset Z of X such that pn (X
mm(Z)) < ¢ for each M € M.

This is Theorem 3.2 of Kisynski [5].
THEOREM 3.6. The Sazonov topology on H is subgroup-sufficient.

Proof Let G be a subgroup of A and ¢ a positive-definite function
on G continuous in the Sazonov topology. We have to prove that ¢ is the
Fourier transform of some Radon probability measure on G{. Let @ be the
continuous extension of ¢ onto the closure G of G. Then 7 is a positive-
definite function continuous in the Sazonov topology on G. We may idextify
(G){ with G{. Thus, if 4 is a Radon measure on (G){ with 7 = %, it may
also be treated as a Radon measure on G{ with [ = ¢. Therefore we may
agsume G to be closed.

Let M be the directed family of all finite-dimensional subspaces of H.
For each M € M, define Xjy = (G N M)}, and let py be the Radon
probability measure on Xps such that finy = @jgnas, existing due to the
Bochner theorem. Define X = Gp and let mp ¢ X — Xpr and wyy ¢
XN — Xp, M C N, be the natural homomorphisms given by x — X|anm-
Then all the assumptions of Lemma 3.5 are satisfied. The surjectivity of the
homomorphisms 7 and murn follows easily from standard facts. To prove
(%), we shall verify (xx).

Fix € > 0. By Lemma 3.1, there exists a seminorm p € S(H) such that

(3.1) Rey(z) > 1—-¢/4 for eachz € GN B,.

A standard argument based on the spectral theorem for compact operators
allows one to find a continuous pre-Hilbert seminorm g > p on H such that

oo
(3.2) &(B,, B,) < £,
g k( q p) 2
(33) 7 dk(BH,Bq) — () as kE— 0.
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Let us define
Z={x € G":Rex(x) > 0foreach z € GN1B,}.

Let G, denote the group G endowed with the topology induced by ¢.
By Lemma 3.3, the set Z is compact in (Gg)p.. Condition (3.3) implies that
every bounded subset of G is precompact in G, (one may assume that g
is a norm and then apply e.g. Proposition 9.1.4 of [8]). Hence the identity
mapping (Gg)p. — G is continuous. Consequently, Z is compact in GJ.

Fix an arbitrary M € M. We have to prove that
(3.4) pu(Xpe \7as(Z)) < €.
Define N ={N € M : N > M} and, for N € A,
Zny ={x € (GNN)":Rex(z) > 0 for eachz € GN NN }B,}.

To prove (3.4), we cannot apply Lemma 3.4 directly because, in general,
maa(Z) is strictly smaller than Zy,. We shall prove that

(3.5) wm(2) = ) muw(Zn).
NeN

Denote the right-hand side by 5. Let G# be the group of all characters of
G (continuous or not) endowed with the topology of pointwise convergence.
Suppose ¥ € §. Then a standard argument based on the compactness of G*
proves the existence of some ¢ € G¥ such that £jgnp = x and Reé(z) > 0
for each z € GN 1 B,. By Lemma 3.2, the latter condition means that { € Z;
then y = mp(£) € 7 (Z). Thus S C mpr(Z), and the opposite inclusion is
trivial.

By (3.5), we have

par (X ar \ T (2)) = #M( U (Xnr \WMN(ZN)))-
NeN

For each N ¢ A, the set Zy is compact in X due to Lemma 3.3; hence
mun{(Zy) is compact and Xas \ mun(Zn) is open in Xps. Being a Radon
measure, iy is T-smooth {see Proposition 3.1(c) of [11, Ch. I]}, so that

Ha (NLEJN(XM \ WMN(ZN))) = SE%MM(XM \marn(Zn).
So, to prove (3.4), it is enough to show that, for each N € N,
(3.6) ine(Xoe \ maan (Zy)) S €

Fix N and let p’ and ¢’ be the restrictions to N of p and g, respectively.
Then By = NN B, and By = N N B,. We have

d(N N By, NN B,) <du(By,Bp), k=1,2,...
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(see e.g. Lemma (2.13) of [1]), whence
oo =]

(37 > di(By, By) < 3 di(By, By)-
k=1 k=1

Condition (3.1) implies that Refiy(z) > 1 ~¢/4 for z € GNN N By. Then
Lemma 3.4 yields

oo
~+ Z di(BQ’? BP’)-

k=1
Hence, by (3.7) and {3.2), we get un(Xn \ Zn) < ¢, which clearly implies
(3.6). This proves (3.4) and, consequently, (*+).

By Lemma 3.5, also condition (*) is satisfied, i.e. there exists a Radon
probability measure g on G with uar = war () for every M. The condition
pag = mar(p) implies that fiy(z) = fi(x) for 2 € GN M, whence fijgnnm =
Bias = @|gnum- Since this is true for every M, it follows that = nu

pun{Xy\ Zy) <2-

o

4. The Gross topology. Let X be a Banach space and T : H — X a
bounded linear operator. By £(T") we denote the £-norm of T (see [9, Ch. 3],
(10, {12.2)] or, for finite-dimensional H, [6, (2.3.16) and (2.3.17)]).

Let p be a continuous seminorm on H and let T be the canonical pro-
jection of H onto X = H/p~*(0). Let us endow X with the canonical norm
given by [|Tz| = p(z) for z € H, and let X be the completion of X. By
{(p) we denote the L-norm. of the operator T : H — X. We say that p is a
bounding seminorm if £(p) < oo. The topology on H induced by the family
of all bounding seminorms is called the Gross topology (cf. Sec. 2.3 of [11,
Ch. VI}}.

The author does not know whether the Gross topology is subgroup-
sufficient. Below we prove the following weaker fact:

THEOREM 4.1. Let G be o subgroup of H and ¢ a positive-definite function
on G continuous in the Gross topology. Then ¢ 15 the Fourier transform of
a Radon measure on G, '

By pr we denote the Minkowski functional of a convex body U & C".
The following fact is an easy consequence of Lemma 2.1 and the Talagrand
theorem on the majorizing measure. For the detailed proof we refer the
reader to [4, Lemma 2].

LemMMA 4.2, To each ¢ > 0 there corresponds some £t > 0 such that if
U ec® and £(py) < t, then a(U) < 0.

Thus, there exists a continuous non-decreasing function o : (0,00) —
(0,1] such that

(4.1) a() <ollpy)), Uel”, n=12,...,

icm
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(4.2) a(t) =0 ast— 0.
In the rest of this section, ¢ is a fixed function with the above properties.

LEMMA 4.3. Suppose that dim H < oo and let p be a seminorm on H.
Let G be a closed subgroup of H and p a Borel probability measure on GQ
such that

(4.3) Ref(z)>1-¢
where & > 0. Define

Z = {x € G" :Rex(z) = 0 for each x € G  kBy}
where k > 0. Then
(4.4) G\ Z) < 2e + 30 (ké(p)).

Proof. We may assume that & = 1, replacing the norm on H by the
new norm k~'||2}; then kByg is replaced by By and kf(p) by £(p).

We may identify H with the euclidean space R*, n = dim H; then By =
B?. If p is a norm on H =R", then B, € ™ and, by Lemma 2.3, we have

p(GM\ Z) < (1~ 2e7™) " e + 20(B,)) < 2¢ + 3a(By).

Next, by (4.1), we have a(B,) < o({(p)), which proves (4.4). If p is not
a norm, then we can find a sequence (p;)$2, of norms on R* such that
B,, C By for every 4, and £(p;) — £(p) as i — oo, When By, C By, (4.3)
implies that Refi(z) > 1 — ¢ for each x € G N By,. Applying Lemma 4.3 to
the norms p;, we obtain

WG\ Z) < 2e + 3 (€(ps))

for every i. Passing to the limit with ¢ — oo, we obtain (4.4). =

for each x € G N By,

Proof of Theorem 4.1. The argument is similar to that used in the
proof of Theorem 3.6. We may assume G to be closed. Let M, X7, uar and
marn be defined as before. Define X = Gp, and let mys 1 X — Xpr, M € M,
be the natural homomorphisms. Then all the assumptions of Lemma 3.5 are
satisfied. As in the proof of Theorem 3.6, it is enough to verify (#).

Fix £ > 0. Since ¢ is continuous in the Gross topology, there exist some
bounding seminorms pi, ...,pn on H such that

Reyw(z) > 1~¢e/4 foreachz€ GN B, N...NBy,.
Then p = p; + ... + pn is a bounding seminorm again, and
(4.5) Rep(z) > 1—e/4 for each z € G Bp.
By (4.2}, there is a coefticient & > 0 such that
(4.6) o(kb(p)) < &/6.
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The set
Z ={x€G":Rex(z) > 0 for each z € GN 3kBy}

is compact in G4, according to Lemma 3.3.
Fix an arbitrary M € M. We have to show that

(4.7) e (X \ m(2)) S e
Define N = {N € M: M C N} and, for each N € N,
Zy ={x e (GNN)" :Rex(z) 20 foreach x € GNNN %kBH}.

As in the proof of Theorem. 3.6, to prove (4.7), it is enough to show that
pn{Xn \ Zn) < € for every N.

Fix N and let p' be the restriction of p to N. It is clear that £(p) < £(p).
Hence, by (4.6), we have

o(ki(p)) < o(ké(p)) < /6.
Then, by (4.5) and Lemma 4.3, we obtain

XN\ Zn) S22+ 30(kUF) S S 43

[ =2 R0

= g,

S m

This proves (4.7) and, consequently, (**). w

Remark 4.4. If a function ¢ on H is the transform of a Radon measure
on the dual space, then ¢ is continuous in the Sazonov topology and in the
Gross topology; we say that these topologies are necessary. Of course, they
are not subgroup-necessary (consider e.g. suitable discrete subgroups of H),
and the problem of subgroup-necessary topologies on H does not seem to
have much sense.
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