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First and second order Opial inequalities
by
STEVEN BLOOM (Loudonville, N.Y.)
Abstract. Let Ty f(z) = Sg k(z,y)" f(v) dy, where k is a nonnegative kernel increasing

in z, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality
has the form

T . 0 ® (go+.--+an)/p
| (1=]1 (T @I ) @) Pu(e) do < G(§ (ot ) |

Such inequalities can always be simplified to nth-order reduced inequalities, where the
exponent gqo = 0. When n = 1, the reduced inequality is a standard weighted norm
inequality, and characterizing the weights is eagy. We also find necessary and sufficient
conditions on the weights for second-order reduced Opial inequalities to hold.

1. Introduction. Opial’s inequality is the elementary inequality

[

(1) [If@)f (@) dw < S| 17 (@) da
0

o}

when f(0) = 0. This was proven by Opial [13] in 1960. Since then, numerous
authors have studied variants of this. The most natural extension is the
weighted Opial inequality

b . .
(2) S If(m)lqlf’(z)lrw(:c) dr < C(S |ff(w)|pv(m) dm)( + )/p’

a a

when f(a) = 0. There are two fundamental questions associated with (2).

o The Enistence Question: For what weights (v, w) and exponents (p; ¢,7)
will (2) hold?

and

o The Optimization Question: If (2) does hold for a given pair of weights
and a range of exponents, what is the best constant C7
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Best constant problems were more or less completely settled in Boyd’s
beautiful papers [5], [6], but existence is still open.

Another generalization of (1) is to higher order derivatives, what we call
an nth-order Opial inequality:

b n

® {17
ai=0
where here, f(a) = f/(a) = ... = f(*N(a) = 0.

Several authors have studied existence questions for (3), notably (8], (9],
and [14], and each gave sufficient conditions on the weights for (3) to hold.
Likewise, there have been many papers detailing sufficient conditions for
(2), such as {2], [3], and [18]. The sharpest conditions for the first order
inequality are due to Sinnamon, who proceeded from the following simple
observation: Let

)(QU+-'-+Q‘")/P

b
B (z)de < G(S | (@) |Po(z) da

If) = | £ty .

This is the Hardy anti-differentiation operator. Then (2) can be rewritten
as
b

b
JIF@) @) () de < O ( 1F(@)Po(s) deo
0 0
Applying Hblder’s inequality, when r < p, we get
b

b b .
§1o17 127170 do < ( §1£170 d:c)” “(Sir 1 wlot Y y=rite=r) dm)l 7
0 o 0

)(Q'H')/P-

where the prime represents the conjugate exponent, i.e., 1/s + 1/5s' = 1. Se
a sufficient condition for (2) to hold can be obtained by choosing weights
for which

b b
(4) S uﬂq(p/r‘)’w(P/r)fU_r/(p—r) dz < C(S | £IPv d
0 0
(4) is, of course, just a special case of (2), with » = 0 (and with different
weights, and different exponents).

The inequality (3) with ¢, = 0 is known as a reduced nth-order Opial
inequality. Hélder’s inequality shows that sufficient conditions for (3) can
always be obtained from a corresponding reduced inequality, when ¢, < p
(and even when g, = p, with the reduced inequality on L*).

This reduction when n = 1 is to a weighted norm inequality for the
Hardy operator I. In general, given an operator T' and a pair of weights

)q(p/r)'/p'
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(v,w), a weighted norm inequality has the form

(5) [ 175 (@) (o) dz < O(§ | f(@)Pota) da) "

The weight problem is to characterize all weight pairs (v,w) for which (5)
holds. When 1 < p,¢ < o0, the weight problem for the Hardy operator is
solved ({1, [7), [11], [12], (18], [21], and [22]). For instance, when 1 < p < g,

[ @) do < o(1 17 @)Pota) da)
holds if and only if
(6) Io(z)"* Muw(z) < C
for all z > 0. Here I* is the adjoint operator, I*g(z) = {. g(t)dt, and
g=uv-P/P,
This ¢ that appears in (6) arises in a very fundamental way. If we are
studying an operator T' with kernel k(x,y), it is quite natural to ask on

what measure spaces is this operator LP-L¢ bounded. For instance, if p, v/
are measures on R™, we set

T, f(z) = S k(z,
R
and we are asking whether T}, : LP(R™, dv) — LA(R", dp),

y)f(y) dv(y)

' 4/p
(7 [ 1T f(@)l%du() < o | 1 (@)Pdv())
e &
When these are absolutely continuous measures, dp = w(m) de, dv =

o(z) dz, then (7) is exactly equivalent to (5) with ¢ = +77 e (), Tt is
almost axiomatic, therefore, that any weight problem solution like (6) will
be given in terms of w and ¢, not in terms of v.

When we refer to a weight pair (v,w), we mean that the functions w, o
are nonnegative and finite almost everywhere.

The weight conditions obtained by Sinnamon turn out to be necessary
as well as sufficient. This is because the reduction process used by Sinnamon
is actually sharp.

We call an operator T' positive if, whenever 0 < f < g, we have

0 £ Tf(z) £ Ty(x)

for all z. Our first result is

(1) This observation is.due to Sawyer [16], and has been a key starting point for his
solution to several weight problems ([16], [17], and [10}}.
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THEOREM 1. Let T' be a positive operator acting on o nonatomic o-finite
measure space (X, du), with T £ 0. Let v,q,p > 0. Then

(8) [ IF@IITF @) dulz) < O( § 1£(@)P dp

X X

)(r+q)/p

can hold only if v < p, and in that case, (8) is equivalent fo
(9) T LP(X,dp) — L9P/" (X, dp).

We will extend the Opial inequalities (2) and (3) to the generalized Hardy
operators introduced in [4].

DEFINITION 2. An operator T acting on RT is called a generalized Hardy
operator, or GHO, if T has the form

]

T{z) = | k(z,v)f(y) dy

0
where the kernel k > 0 is nondecreasing in z, nonincreasing in y, and satisfies
a triangle inequality
k(z,y) < Clk(z, 2) + k(z,v)]
whenever y < z < &.

These include the Hardy operator and all higher order anti-derivatives,
as well as the Riemann-Liouville fractional integrals,

=

Iof(z) = (= — y)*f(v) dy.

0
We will write T, for the operator

x

T, (@) = | ke, 9)"F(y) dy
1]

and we write T" and T¥ for the adjoint operators

o0
Ty (=) = § kv, 2) f(y) dy.
@
Notice that T is the Hardy operator I.
Let 1 < p < o¢,7i,q: > 0, and let (v, w) be a weight pair. The nth-order
Opial inequality is
o0 n (o)

10) § (TI 1T @) If @) w(z) do < O § ifpvde

)(qo+---+qn)/p
0 i=1 0
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and an nth-order reduced Opial inequality is (10) with gg = 0. (10) can be
rewritten, ¢ la Sawyer, as
oo
Q-’)

°§°(w o [ Tyo - 719 (@) o (@)de < ©( § £ da

i=] V]

) (g0 tgn }/p

and since {w-o0® " [[1n.; [Ty, 0 - |%)Y/(01t-tam) jg 5 positive (although non-
linear) operator, we can apply Theorem 1. And so, (10) is equivalent to the
corresponding nth-order reduced Opial inequality.

The first order Opial inequality reduces to a weighted norm inequality
(5) for a GHO T. For such operators and p > 1, ¢ = 1, the weight problem is
completely solved ({4], [19], [20], {10]), and so we have a complete solution to
the existence question for (10) when g,(p/g0)’ > 1. We will prove Theorem
1 in the next section and present this existence solution for first order Opial
inequalities.

Sufficient conditions for {3} to hold with n > 2 have been obtained in
(8], [9], and [14]. The best of these is Li’s paper [9], where the following is
shown: f p = 3" ¢:, gn > 0, set

n—1
Q= H[(n —1-l%,
Ri(z) = ﬁ (x — £)(n=1=98' (1) gt

a

}qm-(p-—l)/(lﬂ—-qn)

and
b not (p—an}/p
Kn(v,w) = [Sw(w)P/(.‘p""QH)/u(m)"q“/,(P_q“) H R;(x) dzr:] : )
a i=0
Then (3) holds with
Kn(v,w) (qn)qn/’!’ 2
C="m"2 1 .
o \3 )

Unfortunately, this condition is quite far from necessary. Indeed, perhaps
the simplest weighted Opial inequality is

1 1
da
(11) fif fl= < clIf1P de,
o z 0
which follows trivially from the classical Hardy inequality. But here, Li’s
constant K (1,1/x) is infinite. The best known results are not sharp enough

to reproduce even very simple inequalities like (11).

(2) This result is stronger than the results proven by Cheung or Pachpatte. Theorem
1 in {14], for instance, is simply a special case of Li's theorem.
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Thanks to Theorem 1, the study of an nth-order Opial inequality can
be simplified to the corresponding nth-order reduced Opial inequality. The
remainder of the paper is devoted to the study of the second order reduced
inequality

(12)  § Ty @)IPIT, £@) (@) do < O(§ if()Pu(e) do

when 1 <p < do +q1a g0, 43 =z 1.

The restriction p < qo + ¢1 corresponds to the usual Riesz triangle in
operator theory, but here, surprisingly, the situation i8 much easier if p <
o, q1-

In Section 3, we will characterize the corresponding weak-type inequality.
Obviously,

§ T F (@)% | Ty, f(2) | w(z) dz 2 AP A w([z

We prove the foilowing:

)(qm—mn)/P

T, f(m)] > A for 4= 0,1]).

THEOREM 3. Let § and T be linear operators with kernels j(z,y) and
k(z,y) respectively on RY xR, which are nonnegative and nondecreasing in
x. Then the weak-type Opiol inequality

(13) A ITF@) > A 1SF@) > W) < O(f 7Py
holds for g, > 0, p > 1, and (v,w) o weight pair, if and only if
(14) Sy (z)? Tya(z)™? Mw(z) < C

forall z > 0.

)(Q'i'"")/P

In Section 4, we begin our study of the second order Opial ineqgualities in
earnest. The previous results are all quite straightforward, but things begin
to get very technical here. The general batile plan is this: We can simplify
a second order Opial inequality to a second order reduced inequality (12).
That can be reduced even further to a special case where one of the kernel
exponents -y; is zero. Then, by a careful use of the triangle ineguality for the
remaining kernel, this can be reduced to a series of first order problems, and
those we can solve. So the scheme is

2nd-order — 2nd-crder reduced
— special case: vy =0
— lst-order
—+ known weighted norm inequalities.

This scheme governs the remainder of the paper. We begin with a large
collection of necessary conditions. These are all presented in Section 4. In
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Section 5, we deal with the special case. We investigate the inequality

1) [ H@FT@I e de <0 | 1)) do)
0 0

(a+r)/p

The case when p < g is much simpler, and there we prove:

THEOREM 4. Let 1 <p < g < 00,1 <1 < oo, let (v,w) be a weight pair,
and let T' be o GHQ. Then (15) holds if and only if both of the following
conditions hold: For each = > 0,

(16) Io ()" Tyo () F'w(z) < C
and '
am Io(z)@t)/¥ Try(z) < C.

For g < p, we obtain:

THEOREM 5. Let L<p<oo,l<qr<coc withg<p<g+r. Let T be
o GHO ond let (v,w) be a weight pair. Then the following are equivalent:

(i) The Opial inequality (15) holds.

(i) Four separate conditions hold. For each x > 0, we have (16), (17),
as well as

(18)  Tpol@) @D | o) Mruly)lo(y)? P dy < C

and
o0

(19) Ig(x)(r/p’)(p/ﬂ’ S k(y,x)r(p/q)’g(y)[j*w

T

() o(y) Y ®/ dy < C.

(iii) Four separate conditions hold. For each x > 0, we have (16), (17),
as well as

(20)  Tyo(@)PE [uy)

T

(W) Io(y)P )9 rdy < C

and
[+ a]

(21) Io(x) (r/p e/ a) S k(y,:c)‘"(i’/‘l)'w(y)[I*w(y)la(y)”‘l](?/‘?)"l dy < C.

Finally, in the last section, we tackle (12). By redefining the kernel, it
suffices to consider vy = 1,71 > 1. We show

THEOREM 6 (Main Theorem). Let r,¢ 2 1,1 <p < g +7. Let T be a
GHO, v > 1, and let (v,w) be a weight pair. Then the Opial inequality

(22) T |Tf(g;)|‘I|T.¥f(w)\’w(m) dr < O(S | F()[Pu(z) dm)(q“f"‘)/p
o 0
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holds if and only if each of the following hold: For each x > 0, we have

(23) Tp‘U(m)Q/p’Tw’0(5)1‘/]”[*1”(@ <C,
(24) Ia(:c)‘I/p’T'ypfa(u:)’"/p’T;w(:B) <C,
and

(25) Id(m)("""")/"'T;_,_T,.w(m) <C.

If, in addition, g < p, then we also have the conditions

(26)  Typo(a) /P (I w(Tyo )~} Y (g) < ¢,
27 Ia(m)(r/p')(p/q)’T;r(p/q), [w{f*w(Tp,g)p—l}(p/q)’—l](m) <C,
(28) Ty o (2) /PP (o { Trw(T)1 1} /(o) < €,
and

(29) Ia(x)(r/p’)(p/q)’gﬂ:r (oyay [T I0)T~ 1} /9| () < C.
Finally, if r <p, then we also have the conditions

(30) Ty (@) WP NP/ Py { (T P2} P/ (2} < ©
and

(31) Iff(m)(qm)(p/r)' ;(p/r)f[W{I*W(Tw‘U)pwl}(p/r)r_ll(w) <C

Throughout this paper, we follow the notational convention that € will
stand for a universal constant, which may vary from line to line, even within
a string of inequalities,

2. First order Opial inequalities. The key here is the reduction given
by Theorem 1. We start with that.

Proof of Theorem 1. Suppose that (8) holds. Since T is nontrivial,
there exists an f € L? with f > 0and Tf £ 0. So Tf > ¢ > 0 on a set £
of positive and finite measure. We normalize f so that || f|l, = 1. Let 0 < g
be supported on E with ||g/, < 1. Then (8) gives

[(F+9)T(f + 9)7 dutz) < 27+eC.
Hence,

yARelol
L

S g dp < pra
Thus LP(E) C L"(E), which forces r < p.

Likewise (8) gives for f >0, || f]l, < 1,

sup | o"(TH?du< b0,
”_HHPS.]-:SIZDX .

which gives (9). The converse is Holder’s inequality. m

Opiel inequalities 35

To apply this theorem to first order Opial inequalities, we need the cor-
responding weighted norm inequalities for generalized Hardy operators. For
that, we use Stepanov’s theorem (%) [20):

THEOREM 7. Let 1 < p < 00, T be o GHO, and (v,w) a weight pair.
Then 1" : LP(v) — LY(w) if and only if we have, either

(i) p £ g < 00 and both

(32) Tyo(z)¥? I*w(z) < C
and
(33) Io(e) P Tou(z) < ©

for all >0, or
(i) 1 £ ¢ < p and both

(34) | e Tpw(t o)/ dt < C
0
and
(35) {wE)rwt)Tyer e/ d < C.
0
Applying Theorem 1, the Opial inequality
T T (a+r)/p
@) | IF@IITHE) @ b < o [ 15@)P) d)
0 0
holds when p > 1,0 < 7, ¢, and r < p, if and only if
(37) T:LP(v) — Lq(p/r)’[(wpfr)l/(p—r)].

If p < g+, then g(p/r} > p, and so we have:

COROLLARY 8. Let T be a GHO, (v,w) a weight pair, g,v > 0, anfi
1<p<qg+r. Then the first order Opial inequality (36) holds if and only if
both

o

(38) Tp,a(w)(q/p’)(p/r)' S [wPu™ Y dy < C
and
(39) Id(m)(q/p’)(p/r)' S k(y,m)q(p/r)' [wpv_—r]lltp—r) dy < C.

&

(3) Calling this Stepancv's theorem is perhaps & bit unfair. Necessary and sufficient
conditions also appeared in two other papers, [4] and [10], and bqt!l of these papers
contributed greatly to the final form of this theorem. Still, the conditions (32)—(35) are
Stepanov’s, and he is the only author to deal with the full range of g.
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When p > g-+r, g¢(p/r) < p. To apply Stepanov’s theorem here, we need
this > 1, or p < gp+ r. That gives:

COROLLARY 9. Let T be a GHO, (v,w) a weight pair, g, v > 0, and
1<p If g+r <p<gp+r, then the first order Opial inequality (36) holds
if and only if we have both
(40) S o(t)[T;(p/T),(wp/(?’"”v"‘/(?“‘"))(t)Ia(t)q(p/”)'"1]("/‘7(3’/’")')' dt < ¢

0

and
o0

(41) S w(t)[I*(wp/(P‘T)v"'"/(P“’"))(t)Tp;a(t)?"l](”/“(P/T)')"l dt < C.
0

When p = gp+r, then (36) holds if and only if (40).

When the kernel k(x,y) = X(0,s)(%), then T is the Hardy operator I.
In that case, (38) and (39) are equivalent, as are (40) and (41}, and these
conditions are the (sufficient) conditions given by Sinnamon. Sinnamon also
extends the Hardy theorem to the case ¢ < 1, and so extends Corollary 9.

3. Second order reduced inequalities: weak type. We now turn to
the second order reduced inequality, and establish the weak type conditions
of Theorem 3.

Proof of Theorem 3. Since the kernels are increasing, if we fix our
attention on an f > 0, the set where T'f(z} > A will be an interval of the
form (@, 00) or [a, 00). Thus the set [¢ : Tf(z) > X, §f(z) > p] has this form
(a,00) or [a,00). Let b > a. Then A < T'f(b), and & < SF(b), and so, if (14)
holds, we have

ATp < [

‘[

K, 9)f (W) dy| [ﬁj@s,y)f(y) ay)’

] (r+q)/p

Fy)*u(y} dy Ty o (b)/7' Spo(b)e/”

Ol & O e O

and (14) gives

=) b oa »
i fw o] {sarewa] " <c[ T upow ] 7.
b 0 0

Let b a to get (13).
Conversely, fix = and let E be a measurable set C (0,x) for which both

A=Ty(oxg)(x) and B = Sy(oxg)(z)
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are finite. Set

Fy) = ok(z,y) o(W)xsly) and gy) = Bi(e, v o (y)xe).
Call h = f +g. Thenif ¢t > x,
Thit) > Tf(z) = ad, Sh(t) > 8B.
So (13) gives

o

(@A) (8B)7 § w < ClIblIEE, < CIAIEE, +ClalSr,

But || flizey = ad/? and g/l Loey = BBY?, and so we have

(42) (@A) (BB)I*w(z) < CladY/P 4+ gRV/P)otT,

Taking o = 1 and 8 = (AB~1)*/? in (42) gives
ATV BaY ray(z) < ©.

Letting E increase to (0,z) gives (14). m

4. Necessary conditions. Let «,3 > 0. We investigate the conse-
quences of the second order reduced Opial inequality
o0 o0
43) | ITaf @I |Tof (@) w(e) do < O | 1£(2)[Pu(a) d)
0 0
The conditions are stated in the following two lemmas.

LEmMA 10. Let 1 < g < p < o0, and let r > 0. Let T be a GHO,
o, > 0, and let (v,w) be a weight pair. Then each of the following are
consequences of the reduced Opial inequality (43): For each z > 0,

e
(49)  Tapo(@) P § o) T5u(y) o)) dy < ¢,
o
o0

(48)  Top o) /00D | () [P w(y)Tape (y)* @91 dy < €,

bl

(gtr)/p

o0
(46) Io(z)("/#)@/a) S k(y, m)ar(p/q)’g(y)[quw(y)b(y)q—l](p/q)' dy < C,

B

and
(47) Ia(m)(’/?")(f’/ qy

| *y, @)@/ 0w () [T () Tap o ()~ 0/ 1 dy < €.

When q = 1, then (43) implies both (44). and (46).
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LeEMMA 11, Letr > 0,¢> 1, 1 <p<q+r. Let T bea GHO, 0,3 2> 0,
and let (v,w) be a weight pair. Then each of the following are consequences
of the reduced Opial inequality (43): For each z >0,

(48) Ty 0(2) /7 T ()77 I*w(z) < C,
(49) Io(e) P T gpu(e) < C,
and

(50) Ty ()" Io(z)" 7 Thw(z) < C.

Proof of Lemma 10. Fix f,g > 0 with f supported in (0, x), and
with || flizo(vy = l9llz2() = 1. Applying (43) to f + g, we get

C > | Tuf(y) Toa(w) w(y) dy = | w(y)Tog(y)? [ k(w07 dt]r dy.
] 0

Cutting the kernel down to k(y, z) or k(z,t) respectively, we get

(51) C = If(z) DSO k(y, 2)* w(y) Tse(y)? dy
and
(52) C > Tof(z)" | Tagly) w(y) dy

x
Now take the supremum over such f. In (51),
sup{If(z)" : || fllzrw) = 1, f 2 0 and supported in (0,z)} = Icr(m)r/’”.
Set
wi(y) = L ()7 By, @) w(y)X(z,00) (¥):
Then (51) gives :
T8l 2aqusy < ClgllLec)

with the constant ¢ independent of z. So, for ¢ > 1, (34) and (35) of
Stepanov’s theorem hold. (34) is

o0
{ o) T3 wi () To (1)) dt < C.
0

Now, for t >z,

Thg1(t) = Io(@)"" | k(y,0)P*h(y, =) wly) dy

> k(t, z)*" To ()P Tjw(z),
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and so we have (46). Likewise (35) is

00

S wy (B} w1 () Tp o ()PP 1 gt <
0

and this gives (47).
In (52), sup(To f(x))" = Topo(z)"/?. Taking

wa(y) = Tap o (@) /P w(y )X (2,003 (¥)5

(52) gives Tp : LP(v) — L%(wy), and again Stepanov’s theorem gives (44)
and (45).

Finally, when ¢ = 1, and when we apply Stepanovs theorem, we get
(44) and (46). =

Proof of Lemma 11. (48) follows immediately from the weak-type
boundedness and Theorem 3. For (49), observe that for f > 0,

Tarsairsaf @I = [, )20k, ) 501049 g 2]

T(a-r+ﬁq)/(-r-+q) : Lp(’v) — Lq+r(w).

(49) is simply the Stepanov condition (33). Finally, for (50), we argue as in
Lemma 10, to get T : LP(v) — L%(w,). From the corresponding weak-type
inequality, this forces

(53) Loy (y)¥? T"wi(y) < C

for all ¥ > 0 {{53) can be proven by following the proof of Theorem 3 with
r = 0. This condition is exactly the first of the Stepanov conditions (32)),
and (50} is just (53) when v = z. This completes the proof of the second
lemma. =

r

k(z,3)° £( ] [ Ve(z9)21(2) d:u]q,

0

Ol § O

and so (43) implies

5. The special case. We now turn to the inequality (15),
< , °? (g+7)/p
J @I @) w@) de < O( | If @) Poe) da)
0 0

Proof of Theorem 4. (16) and (17) are simply (48) and (49) with
& =1, # = (0. For the sufficiency, let f > 0 be fixed and let & be a large
constant. Choose z,, so that

o = If ()" T F ().
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Set
In = (Tn_1,8,) and Jp=(0,Zn-1)
Now
rIn /'rw"‘
n < c(gf)’” [ kemu)f +C( ] £)" § Mony)r.

I, 0 Ju 0
Furthermore, by the triangle inequality for the kernel &,

Tn

S k(mnay)f S S k(mn: f+0k($n7mn— ) S f+OTf($n_1),
¢ In In

and so (with a different constant C),

o < 0[( §4)" T sen)

n

+( S f)q/r S k(mmy)f"l"k(xn,mr;_l)( S f)q/r+1 +an—1].

In In Jn

So long as o is larger than this constant €, we can absorb the a™ 1 to
conclude (again with a different constant)

(54) o < C[( )q Tf(zn) +k(mn,mn-1)( S )W’H_1
(§

In

(10" § ko)t ]

Hence, writing w(l,) for §; w(m) dz, we obtain

{IHNUTHw < CY a™ w(lnsr)

and this splits up into three sums, I, IJ, and IIJ, using the decomposition
(54). The first of these is

IZZw(In—f-l)( | f)q(xsn k{(%n, ) F () dv) :
n In 0

Applying Hélder’s inequality, we have

re w7 (§ )" “ (T ke o))" i
n a I 0

n

<Ny Y I 00 To @) Ty any/# | £70)"”

In

icm
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< Ol 32 (§ 520) "
14} In

< Cllfllzaee (30§ )" = clsizs,,

n In

by (16),

by Minkowski's inequality, valid since g > p.
The next term, I1, is

g+r
= Zw(1n+1)k(mnymn—l)r( S f) ,
" . T
Now, if ¢ € I41, then

Bom ) ( § 1) = (] Bon a0 p(g) )"
J

n n

< Tr/(?+r)f($)q+r-
Thus
IT < § (T jgan )
and we require
Ty (qery s LP(v) — Lat (w).
By Stepanov’s theorem, this will follow from (32) and (33), which are
Tyirjtabna (@) P I u(z) < C

and

Io(z) /P Try(z) < C.

The latter is (17), and the former follows immediately from (16) and a
Holder’s inequality.

This leaves us with III to estimate. We get

III=Zw(In+1)(S )(Sk(mn,y)f( )
e J,

n

S;w(fm-l)(} f) (Sfpv) p(S xn,y)p[cr)w’.

In

When p < r, this is handled exactly like I. For p > r, set £ = (p/r) and
apply another Holder’s inequality. Then we have

it (5§ 1) (St (1 (1007) )

n n n n



icm

42 S. Bioom

and it will suffice to estimate this last sum IV,

v mzwun“)t( S f)qt( S k(mn,y)p’a)f't/ﬁ’-
n I

n n

Notice that
Tt p—1

Y oplr—1°7
since r > 1. We rewrite I'V as

1V =3 w(lan)( § f)qt(IS K(@n,9)70) [ k(@n,v)Po

n n I'n

rifp' 1

< S ultoen)*( § lom o)™ § ban, 7 ot 150
n In I,

Set
u(y) = o(y)lo(y)~"/# .
Then

§ kom0 o ()17 ()" dy = | k(@ v)" u(y)Io(y) ™" I f(y)* dy
I, In ’

Y
= § 1o ()™ 1) u(y) (| k@n, v)" o(s)ds)
n 0
< To(@n) ™7 Tyo(za) | 1£(y)uly) dy,
In
and so, since vt/p’ > 1,
IV <3 w(we) o (2n) " Tyo(z,) "1 | (1) < CY(If)"u
n In

by (16).

So we can control IV if the Hardy operator I maps LP(v) — L'(u).
Since ¢ > p, we have tg > p, and so we must verify the Muckenhoupt
condition (6),

(55) Io(z)/? I*u(z) < C.
But

[es]
Iu(z) = S o(y)o(y) TP L dy = “gja(y)-—qt/p’ﬁo < gla(m)"q*/”].

x*

So (55) holds, and the proof is complete. m

Proof of Theorem 5. Again, the implications (1)=>(ii) and (i)=-(iii)
are Lemma 11. For (ii)=>(i), we proceed as in the proof of Theorem 4. The
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decomposition (54) led to three terms, I, IT, and JIJ. The arguments for
IT and IIT are virtually identical, with one exception: To apply (55), we
needed tg > p, and this was trivial in the case of Theorem 4, whereas now,
g < p. Still,

P /) L N

plr—t p-r—gq °

since p<qg+r.
What we need is a new argument for term I in the case ¢ < p. Set

e o (19 00}

So,if n € A, then @™ is dominated by the last two terms in (54), which led
to IT and I1I. Thus we can control

Z o™ w(l,q1)
nEA

and obviously we can alsc handle the sum over the terms where n — 1 & A,
That leaves us to estimate the sum over the set B, where

B={n:nn—-1¢A}.
Write I for this sum, Ip = 3 3 0™ w(Ip41). When n € B, we have both

o <( § £)""Tf(@)

In
and

ar<o( § )iy <o § 5T,

In_1 In—:l.

Let 0 < 8 < ¢g. We have

I <O wltm)(§£) (| £) THaay
n I

n -1

<o uun)(§720)7( § 1) @) ol s

-rn n-1

SC’[;(IS fpv)ﬂ/Q‘( S f)(q—a)/q]q/p

n n=-1

' ' ' ’ ' 1 1-a/p
X[Z w{Tniy )/ g (L) /P N/ (1, 4N PN/ D f (g )0/ 0) .
n

The first swm handles trivially by Holder’s inequality. For the other sum, we
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choose s so that

Notice that s =

We must estimate

S. Bloom

!
(-
P \q

P(1—q/p) <9'(qg—q/p) = ¢ Let

50

3 (T 1) P/ 0 (1) Ty JPT £ () P2

We further decompose this piece into three pieces. The firat is

IV = 3 wlan) D o(L)o(In-2) | | Kz, ) (y) dy]

Applying Hélder’s inequality,
IV < Z w(In+1)(p/q)lo'(fn)g(fn—l)ﬁ
n

% [ S k(ﬁmy)p’d] (r/p’)(;p/q}’( S fp'u) (T‘/p)(p/q)’-

Now,

and so,

< C; (Is fpv)(T/p)(p/Q)’

y (16). But

and so

We are left with

Y e o(Ia2)? § 0(@)] § klon,1) 5 @) 1]

n

In

< 0(§ FPu

In

)f/(p—q).

In

r(p/q)

r(p/q)

IV -<_ Z [I*w(mn)l_o(xn)q/‘pfTpra(mn),r/pl](p/q)! ( S fpru) (T/P)(pIQ)

TIn

dz.
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Now we apply the triangle inequality for k. For z € I,,,
§ B(2n,9)f (W) dy < Clh(wm, 2)If(z) + Tf(z)].
Jﬂ.

This gives us the two other pieces, V and VI,

V=2 wltnea)®'P oll)? [ olak(an, 2 /Y 1@y ¢ az,

In
and |
VI= Zw(fnﬂ)p/q) 1) | o (2)Tf(2) @9 dg.
In
For V, set
u(y) = o(y)lo(y)~C/PE/O 1,
Then

V= Y w(la) 7/ o (I 0)?

S ()1 f(z)rP/a Io(z [Sﬂ wn,m)p'a(y)dy

Iw(z,)?' 9 Io(z, YTy o (z,) /P We/q) S (If)yr®/a)y,
n I,
and so, again using (16), we get
V< GS (IF)relaYy,

and this is bounded by (6) and our choice of u.
Finally, for VI,

Vi< S Tf(cc)"(p/qyU(;B)I*w(x)(p/th'(w)ﬁ da,
and so here we need
T : LP(v) — L0/ o (P w(lo) 1) P/a],

(r/2")p/q)
] dr

45

which will hold, by Stepanov’s theorem, provided both (18) and (19) hold.

This cornpletes the proof that (ii)=-(i).

The argument for (iii)=>(i) is substantially easier. Again, all we have to

do is estimate T,
I = Z +1)(p/q)’a(1 )(q/p (p/a) TF (@ )r(p/q)’

Now,
En1

w(Ta)®? = ¢ fu)( | wlt)at

(p/9) -
I, ¥ ) I,

1 : '
dy <C S wl*w®/a' 1
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and so,

I < O] T (@)@ w(z)[I* (@) o #/' " d.

(20), (21), and Stepanov’s theorem finish the proof. =

6. The Main Theorem

Proof of Theorem 6. The necessity is handled by the two lemmas.

For the sufficiency, we argue as in the last section. Set

o™ = T'f(zn) VT, f(2n),

I, = (wnmlzmn) and J, = (0,.1‘“._1).

Then
q/r

o < C[( § Mann)f W) dy) Tof(en)

Iﬂ.

+

(§
+( | k(@ny f) " § Bn,y)'s)
(1

Sn (em1)f)" r}k(mmy)f]
<ol

"

+ 5@, Tn)? 7 f)”m + k(zn, 2n-1)?"( § £)
J, J

n

+ Tf(wn»-l)wrk(mny Zp-1)" S f+ an—l} -
JTI.

So, with & chosen large enough, we have

"

@n)f) " T b @) + T ( § Bony)F)

q/rTfyf(mn—l)

68 Con < [(§ bamu))" Tos(on) + T5@n)" (| Blonn)?s)

In
+ k($m mnnl)q/T+'y( S f)
In
+ T f(2n1)V " k{(@n, @) | F
Jn

+ k{2, Tp1)¥" ( S f)Q/rTT f(mn_l)] .
J

n

q/r+1

In
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This decomposition (56) leads to five pieces,

JTHUT Y w S O3 0™ wlln) < CUI+ T+ T+ IV + V).
We start with the third piece. For 111,

¢+ )
k(mn: mn_l)q+'r"y( S f) = [ S k(xn: mn—l)(q+1‘1)/(q+1‘)f:| o
Jn N
< Tggrmysigen ()77,
and so we need
Tigtymyig+n)  LP(0) = LI (w),
From Stepanov’s theorem, this will hold provided we have (25) as well as

(57) Tp’(q+r*f)/(q+1")a(z)(qM)/p’I*w(@ <C.
But Hoélder’s inequality gives
T (q4rmy/ (Q+P)U($)(q+r)/p’ <Tyo (E)Q/p’Tfyp’U (m)'r‘/p',

and so (57) follows from (23).
Next, we estimate IV. Here,

Tf(@n-1)""k(Tn, 3n1)" | f
Jn

= § k(on, gay) @t ]| k(wn_l,w)k(mn,wn_l)@“f—")f('?“)f]"/
In 0

< gy gy F(@n) T,

and so IV Is controlled exactly like 1711,
We now turn to the estimate for I:

I= Zw n+1)(5 (Tn,y) ) T, f(zn)

< S wltnen) ( § Ko o)™ (| £20) T 00y
n In T

When p < ¢, T, f(,)" < (§ fpv)"/PT.,pfa(xn)"/f", and [ is bounded in the
familiar way by (23). So we can focus our attention on the case g < p: In
that case,

(Z S 0 )q/p

I,

. (Zw(fn+1)(p/q) ( S k(:vmy)p’U) (QIP’)(P/q)lTn,f(g:ﬁ)"(z?/q)’)1_‘”"’,

Iy
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and we must estimate this last sum. As in Theorem 5,
w(fn+1)(p/q)’ <C S w(w)P/a) -1
Tn
and so this latter sum is bounded by

OS (T, )7/ D [ P w(Tp o )P~ @/ 1

which is bounded in turn by Stepanov’s theorem, and the conditions (26)
and (27).
The estimate for IT is identical, and uses (30) and (31) when p > r.
That leaves us only with V' to estimate,

V=Y was)(@a,zn)?( | £) Tof(@ama)
n J,

n

Set, for & € Inqy,
w(z) = k(Tn, Tn-1)w(z) and  h(z) = zu-;.
Then, in this notation,
Mz) . h() .
4 =S [ S f] [ S k(h(z}, y)" f(y) dy] u(z) de.
0 0

Thanks to the Monotone Convergence Theorem, it will suffice to replace
h by an approximating function g < A which is strictly increasing, with a
differentiable inverse, and with g(zn41) = Zn—1. Set

ugle) = ulo™ )] g~ )

It will suffice to show

(58) [ INHUT f) ug do < O(S Py

with this constant C' independent of g (and f). (58) is the special type
of Opial inequality studied in the last section, and we need to verify that
the weight pair (v, u,) satisfies the appropriate conditions from Theorems 4
and 5. To see this, we need a simple estimate: Let 8 > 0. Then

(59) Taug(x) < Ty uw(z).
To prove (59), fix %, and choose n so that g~!(z) € I,41. Then

?

) (g+r)/p

o0

Thug(z) = Sk(y,w)ﬁu[g"l(ﬂ:)](g“l)’(x)dw = | klg(t), alult) dt
97{z)
<Z S klg(t), 2]Pk(z, tr—1)%w(t) dt.

k2n Dy
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Now, for t € Ix41, g(t) < h(t) = zx-1. So

Thug(z) < Z S k(zg-1, ) k(z, zp—1)%0(t) di
k>n fpg

< | kit m)Ph(t, 20 ) wlt) dt
Bub Zn-1 = g(Tnq1) = glg7 (z)] = z, and (59) follows.

Now we can verify the conditions for (58). The first is the weak-type
condition (16) from Thecrem 4,

(60) Io(@)¥? Typo(2)™* Iug(z) < C.

But I*u,(z) = Tgug(z) < Ty (x), by (59), and so (60} is simply the condition
(24). |

The other condition from Theorem 4 is (17),

To(z) P T5 uy(z) < €,

which follows immediately from (25) and (59).

When p > ¢, we need the two additional conditions (18) and (19) of
Theorem 5(ii). These are

oo
(61)  Toypo() P aly) I uy(g)lo(y)? @/ dy < C.

and
o

(62) Io(z) (v"/p)(p/q)’ S k(y, x)vr(p/*?)’g(y)[j*ug(y)IU(y)q—l](p/q)’ dy < C.

Replacing [*ug by Tjw, (61) is (28), and (62) is (29). This completes the
proof. w
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Hankel multipliers and transplantation operators
by

KRZYSZTOF STEMPAK (Wroclaw) and
WALTER TREBELS (Darmstadt)

Dedicated to Professor Satoru Igari on the occasion of his 60th birthday

Abstract. Connections between Hankel transforms of different order for LP-functions
are examined. Well known are the results of Guy [Guy] and Schindler [Sch). Further rela-
tions result from projection formulae for Bessel functions of different order. Consequences
for Hankel multipliers are exhibited and implications for radial Fourier multipliers on
Euclidean spaces of different dimensions indicated.

1. Introduction. It is well known that harmonic analysis of radial func-
tions on the Euclidean space R®, n > 1, reduces to studying appropriate
function spaces on the half-line equipped with the measure z* 'dz. The
Fourier transform is then replaced by the modified Hankel transform of or-
der (n — 2)/2. The aim of this paper is to show, among other things, that also
studying the non-medified Hankel transform of an arbitrary order v > —1/2
within an appropriate weighted setting leads to corresponding results for the
Fourier transform of radial functions. This is seen, for instance, in Section 2
where we discuss multiplier results for the modified Hankel transform. It
occurs that they are closely related to two transference theorems of Rubio
de Francia for the Fourier transform on Euclidean spaces.

Given v > —1/2 and f, an integrable function on By = (0,00), its
(non-modified) Hankel transform is defined by
oo
(L.1) Hof(z) = { (@) 2 (zp)f(y) dy, = >0.
0
Here J,(z) denotes the Bessel function of the first kind of order v [Sz,
(1.17.1)]. For v = —1/2 or v = 1/2 one recovers the cosine and sine trans-
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